Directional Three-Dimensional Macroporous Carbon Foams Decorated with WC1−x Nanoparticles Derived from Salting-Out Protein Assemblies for Highly Effective Electromagnetic Absorption
Corresponding Author: Yunchen Du
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 71
Abstract
Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials (EWAMs) thanks to their unique architecture, but their construction usually involves complex procedures and extremely depends on unidirectional freezing technique. Herein, we propose a groundbreaking approach that leverages the assemblies of salting-out protein induced by ammonium metatungstate (AM) as the precursor, and then acquire directional three-dimensional carbon-based foams through simple pyrolysis. The electrostatic interaction between AM and protein ensures well dispersion of WC1−x nanoparticles on carbon frameworks. The content of WC1−x nanoparticles can be rationally regulated by AM dosage, and it also affects the electromagnetic (EM) properties of final carbon-based foams. The optimized foam exhibits exceptional EM absorption performance, achieving a remarkable minimum reflection loss of − 72.0 dB and an effective absorption bandwidth of 6.3 GHz when EM wave propagates parallel to the directional pores. Such performance benefits from the synergistic effects of macroporous architecture and compositional design. Although there is a directional dependence of EM absorption, radar stealth simulation demonstrates that these foams can still promise considerable reduction in radar cross section with the change of incident angle. Moreover, COMSOL simulation further identifies their good performance in preventing EM interference among different electronic components.
Highlights:
1 A groundbreaking approach is developed for the fabrication of directional macroporous WC1−x/C foams, which frees the dependence on unidirectional freezing technique from the construction of directional macroporous carbon-based composites.
2 The electrostatic interaction between ammonium metatungstate and protein makes in situ generated tungsten carbide (WC1−x) nanoparticles well disperse on carbon flakes.
3 The optimized foam exhibits exceptional electromagnetic absorption performance, achieving a remarkable minimum reflection loss of − 72.0 dB and an effective absorption bandwidth of 6.3 GHz.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han et al., Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces. 6, 12997–13006 (2014). https://doi.org/10.1021/am502910d
- S. Khotthada, A. Matthujak, P. Khamphakdi, J. Glinubon, C. Siriboon et al., Development and performance analysis of an electromagnetic needle-free jet injection device for efficient drug delivery in pig farms. Engin. Sci. 33, 1329 (2025). https://doi.org/10.30919/es1329
- D. Bhargava, P. Rattanadecho, K. Jiamjiroch, Microwave imaging for breast cancer detection-a comprehensive review. Engin. Sci. 30, 1116 (2024). https://doi.org/10.30919/es1116
- P. Vengsungnle, S. Poojeera, A. Srichat, P. Naphon, optimized performance of closed loop control electromagnetic field for the electric generators with energy storage. Engin. Sci. 30, 1173 (2024). https://doi.org/10.30919/es1173
- X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small. 19, 2303393 (2023). https://doi.org/10.1002/smll.202303393
- J. Guo, T. Zhang, X. Hao, S. Liu, Y. Zou et al., Aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels for absorption-dominated electromagnetic interference shielding and wearable sensing. Nano-Micro Lett. 17, 271 (2025). https://doi.org/10.1007/s40820-025-01791-4
- F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanops encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon. 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
- M. Chang, Q. Li, Z. Jia, W. Zhao, G. Wu, Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: component optimization and structure modulation. J. Mater. Sci. Technol. 148, 150–170 (2023). https://doi.org/10.1016/j.jmst.2022.11.021
- J. Luo, S. Bo, Y. Qin, Q. An, Z. Xiao et al., Multistage reclamation of Co2+-containing alginate hydrogels as excellent reduction catalyst and subsequent microwave absorber by facile transformation. Int. J. Biol. Macromol. 166, 1513–1525 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.031
- J. Wang, Q. Sun, J. Li, Y. Guo, W. Tian et al., Polymer-based nanocomposites: role of interface for effective microwave absorption. Mater. Today Phys. 31, 100981 (2023). https://doi.org/10.1016/j.mtphys.2023.100981
- L. Li, J. Liu, F. Pan, J. Qiao, X. Zhang et al., Structural engineering of rare earth metal-organic frameworks derivatives with high anisotropy for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 481, 148383 (2024). https://doi.org/10.1016/j.cej.2023.148383
- L. Gai, H. Zhao, X. Li, P. Wang, S. Yu et al., Shell engineering afforded dielectric polarization prevails and impedance amelioration toward electromagnetic wave absorption enhancement in nested-network carbon architecture. Chem. Eng. J. 501, 157556 (2024). https://doi.org/10.1016/j.cej.2024.157556
- P. Wang, D. Fan, L. Gai, B. Hu, P. Xu et al., Synthesis of graphene oxide-mediated high-porosity Ni/C aerogels through topological MOF deformation for enhanced electromagnetic absorption and thermal management. J. Mater. Chem. A. 12, 8571–8582 (2024). https://doi.org/10.1039/D4TA00125G
- N. Wu, B. Zhao, Y. Lian, S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon. 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
- B. Hu, L. Gai, Y. Liu, P. Wang, S. Yu et al., State-of-the-art in carbides/carbon composites for electromagnetic wave absorption. iScience. 26, 107876 (2023). https://doi.org/10.1016/j.isci.2023.107876
- L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
- X. Lan, C. Liang, M. Wu, N. Wu, L. He et al., Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves. J. Phys. Chem. C. 122, 18537–18544 (2018). https://doi.org/10.1021/acs.jpcc.8b05339
- Y. Wang, C. Li, X. Han, D. Liu, H. Zhao et al., Ultrasmall Mo2C nanop-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1, 5366–5376 (2018). https://doi.org/10.1021/acsanm.8b01479
- C. He, J. Tao, Y. Ke, Y. Qiu, Graphene-supported small tungsten carbide nanocrystals promoting a Pd catalyst towards formic acid oxidation. RSC Adv. 5, 66695–66703 (2015). https://doi.org/10.1039/c5ra13028j
- L. Duan, J. Zhou, Z. Xu, Y. Liu, Y. Guo et al., Self-assembled WC@CN cage capture and anti-pitting effects synergize for integrated microwave absorption and corrosion protection. Ceram. Int. 50, 1013–1021 (2024). https://doi.org/10.1016/j.ceramint.2023.10.193
- Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanops-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon. 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
- J. Tao, J. Zhou, Z. Yao, Z. Jiao, B. Wei et al., Multi-shell hollow porous carbon nanops with excellent microwave absorption properties. Carbon. 172, 542–555 (2021). https://doi.org/10.1016/j.carbon.2020.10.062
- H. Ding, B. Hu, Y. Wang, Y. Du, Current progress and frontiers in three-dimensional macroporous carbon-based aerogels for electromagnetic wave absorption: a review. Nanoscale. 16, 21731–21760 (2024). https://doi.org/10.1039/D4NR03738C
- S. Liu, Y. Lian, Y. Zhao, H. Hou, J. Ren et al., Recent advances of MXene-based nanocomposites towards microwave absorption: a review. Adv. Compos. Hybrid Mater. 8(1), 144 (2025). https://doi.org/10.1007/s42114-024-01145-5
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano. 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- X. Wang, X. Chen, Q. He, Y. Hui, C. Xu et al., Bidirectional, multilayer MXene/polyimide aerogels for ultra-broadband microwave absorption. Adv. Mater. 36(36), e2401733 (2024). https://doi.org/10.1002/adma.202401733
- X. Li, L. Zhu, T. Kasuga, M. Nogi, H. Koga, Chitin-derived-carbon nanofibrous aerogel with anisotropic porous channels and defective carbon structures for strong microwave absorption. Chem. Eng. J. 450, 137943 (2022). https://doi.org/10.1016/j.cej.2022.137943
- X. Chen, X. Wang, K. Wen, J. Zhang, F. Zhao et al., Electrically aligned Ti3C2Tx MXene composite with multilayered gradient structure for broadband microwave absorption. Carbon. 203, 706–716 (2023). https://doi.org/10.1016/j.carbon.2022.12.016
- C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano. 12(6), 5816–5825 (2018). https://doi.org/10.1021/acsnano.8b01747
- Y. Zhao, M. Li, B. Li, Z. Hu, The honeycomb mesh structure derived from mangosteen shells with excellent microwave absorption properties. Materials letters. 360, 136021 (2024). https://doi.org/10.1016/j.matlet.2024.136021.
- Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting feco/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J Mater Chem A. 8(36), 18863–18871 (2020). https://doi.org/10.1039/D0TA05540A
- Y. Zhang, Y. Fang, X. Hou, J. Wen, J. Chen et al., Construction of three-dimensional mesh porous Mo2C/carbon composites by chitosan salting-out for efficient microwave absorption. Carbon. 214, 118323 (2023). https://doi.org/10.1016/j.carbon.2023.118323.
- T. Nojima, T. Iyoda, Egg white-based strong hydrogel via ordered protein condensation. NPG Asia Mater. 10(1), e460 (2018). https://doi.org/10.1038/am.2017.219
- Y. Zhang, J. He, Z. Gao, X. Li, Converting eggs to flexible, all-solid supercapacitors. Nano Energy. 65, 104045 (2019). https://doi.org/10.1016/j.nanoen.2019.104045
- H. Ma, C. Li, M. Zhang, J.-D. Hong, G. Shi, Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors. J Mater Chem A. 5(32), 17040–17047 (2017). https://doi.org/10.1039/C7TA04771A
- J. Zhao, X. Wen, H. Xu, Y. Wen, H. Lu et al., Salting-out and salting-in of protein: a novel approach toward fabrication of hierarchical porous carbon for energy storage application. J. Alloys Compd. 788, 397–406 (2019). https://doi.org/10.1016/j.jallcom.2019.02.252
- J. Niu, R. Shao, M. Liu, Y. Zan, M. Dou et al., Porous carbons derived from collagen-enriched biomass: tailored design, synthesis, and application in electrochemical energy storage and conversion. Adv. Funct. Mater. 29(46), 1905095 (2019). https://doi.org/10.1002/adfm.201905095
- Z. Xu, X. Zhang, N. Zhao, C. He, Synergistic strengthening effect of in situ synthesized WC1-x nanops and graphene nanosheets in copper matrix composites. Compos. Part A Appl. Sci. Manuf. 133, 105891 (2020). https://doi.org/10.1016/j.compositesa.2020.105891
- D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon. 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
- Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
- B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16(1), 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
- X. Lu, D. Zhu, X. Li, M. Li, Q. Chen et al., Protein-derived hybrid carbon nanospheres with tunable microwave absorbing performance in the X-band. ACS Appl. Electron. Mater. 3(6), 2685–2693 (2021). https://doi.org/10.1021/acsaelm.1c00274
- L. Zhang, Y. Huang, Crystallization and catalytic properties of molecular sieve SAPO-34 by a vapor-phase transport method. J Mater Chem A. 3(8), 4522–4529 (2015). https://doi.org/10.1039/C4TA06775D
- S. Uruş, M. Çaylar, İ Karteri, Synthesis of graphene supported bis(diphenylphosphinomethyl)amino ligands and their Pd(II) and Pt(II) complexes: highly efficient and recoverable nano-catalysts on vitamin K3 production. Chem. Eng. J. 306, 961–972 (2016). https://doi.org/10.1016/j.cej.2016.08.009
- L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon. 174, 673–682 (2021). https://doi.org/10.1016/j.carbon.2020.10.070
- N. Wang, W. Ma, Z. Ren, Y. Du, P. Xu et al., Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants. J Mater Chem A. 6(3), 884–895 (2018). https://doi.org/10.1039/C7TA08472B
- T. Kuanyshbekov, N. Guseinov, B. Kurbanova, R. Nemkaeva, K. Akatan et al., Local natural graphite as a promising raw material for the production of thermally reduced graphene-like films. Engin. Sci. 23, 1000 (2024). https://doi.org/10.30919/esmm1000
- X. Wang, X. Lv, R. Zhang, X. Yang, R. Dai et al., Dimensional self-assembled magnetic coupling via embedding ferromagnetic nanops in multi-channel fibers for microwave absorption. Adv. Funct. Mater. 35(3), 2413650 (2025). https://doi.org/10.1002/adfm.202413650
- A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys Rev B. 61(20), 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
- Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu et al., Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 461, 141867 (2023). https://doi.org/10.1016/j.cej.2023.141867
- N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9(1), 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
- F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 450, 138160 (2022). https://doi.org/10.1016/j.cej.2022.138160
- F. Wang, Y. Liu, R. Feng, X. Wang, X. Han et al., A win–win strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics. Small. 19(48), 2303597 (2023). https://doi.org/10.1002/smll.202303597
- S. Diamond, Mercury porosimetry An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30(10), 1517–1525 (2000). https://doi.org/10.1016/S0008-8846(00)00370-7
- J. Guo, S. Xi, Y. Zhang, X. Li, Z. Chen et al., Biomass-based electromagnetic wave absorption materials with unique structures: a critical review. ES Mater. Manufacturing 23, 1000 (2024). https://doi.org/10.30919/esmm1000
- P. Negi, A.K. Chhantyal, A.K. Dixit, S. Kumar, A. Kumar, Activated carbon derived from mango leaves as an enhanced microwave absorbing material. Sustain. Mater. Technol. 27, e00244 (2021). https://doi.org/10.1016/j.susmat.2020.e00244
- Z. Wu, J. Chang, X. Guo, D. Niu, A. Ren et al., Honeycomb-like bamboo powders-derived porous carbon with low filler loading, high-performance microwave absorption. Carbon. 215, 118415 (2023). https://doi.org/10.1016/j.carbon.2023.118415
- H. Wang, H. Kang, Z. Wang, J. Zhao, Waste leaves into biomass carbon materials with tunable oxygen-containing functional groups for microwave absorption. Carbon. 234, 119930 (2025). https://doi.org/10.1016/j.carbon.2024.119930
- H. Zhao, J.Z. Yeow Seow, Y. Cheng, Z.J. Xu, G. Ji, Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption. Ceram. Int. 46(10), 15447–15455 (2020). https://doi.org/10.1016/j.ceramint.2020.03.089
- Q. Li, J. Zhu, S. Wang, F. Huang, Q. Liu et al., Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon. 161, 639–646 (2020). https://doi.org/10.1016/j.carbon.2020.01.087
- W. Yu, Z. Wang, J. Lin, Y. Xiao, L. Zhu et al., Rose-Derived porous carbon and in-situ fabrication of Cobalt/Nickel nanops composites as high-performance electromagnetic wave absorber. Engin. Sci. 30, 1113 (2024). https://doi.org/10.30919/es1113
- Y. Lu, X. Zhao, Q. Tian, Y. Lin, P. Li et al., Hierarchical porous biomass-derived carbon with rich nitrogen doping for high-performance microwave absorption and tensile strain sensing. Carbon. 224, 119083 (2024). https://doi.org/10.1016/j.carbon.2024.119083.
- S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale. 10(15), 6945–6953 (2018). https://doi.org/10.1039/C8NR01244J
- L. Duan, J. Zhou, Y. Liu, J. Yao, Y. Wang et al., Synergistic defense: compositional regulation and temperature engineering of TMCs for enhanced microwave absorption and corrosion protection. J. Mater. Sci. Technol. 201, 187–196 (2024). https://doi.org/10.1016/j.jmst.2024.01.102
- X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Effects of SiC coating on microwave absorption of novel three-dimensional reticulated SiC/porous carbon foam. Ceram. Int. 45(7), 8660–8668 (2019). https://doi.org/10.1016/j.ceramint.2019.01.186
- L. Wang, H. Liu, X. Lv, G. Cui, G. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
- Y. Wang, X. Han, P. Xu, D. Liu, L. Cui et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
- F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15(1), 220 (2023). https://doi.org/10.1007/s40820-023-01197-0
- J.C. Anderson, Dielectrics by Joseph Chapman Anderson (Chapman and Hall LTD, 1964)
- H. Peng, D. Zhang, Z. Xie, S. Lu, Y. Liu et al., Recent advances in structural design of carbon/magnetic composites and their electromagnetic wave absorption applications. Small. 21(8), 2408570 (2025). https://doi.org/10.1002/smll.202408570
- K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941). https://doi.org/10.1063/1.1750906
- S. Lu, Z. Xie, D. Zhang, Y. Liu, H. Peng et al., Facile constructing core-shell F-CIP@O/N-SWCNHs composites for high-performance microwave absorption and anti-corrosion. Carbon. 230, 119632 (2024). https://doi.org/10.1016/j.carbon.2024.119632
- C. Li, X. Qi, X. Gong, Q. Peng, Y. Chen et al., Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 15(7), 6761–6771 (2022). https://doi.org/10.1007/s12274-022-4468-2
- Z. Xie, Y. Liu, S. Lu, J. Chen, H. Peng et al., One-step rapid achieving O-SWCNHs@SiO2 core–shell heterostructures with tunable electromagnetic absorption performance via arc plasma. Chem. Eng. J. 489, 151311 (2024). https://doi.org/10.1016/j.cej.2024.151311
- O. Levy, D. Stroud, Maxwell garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys Rev B. 56(13), 8035–8046 (1997). https://doi.org/10.1103/physrevb.56.8035
- X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon. 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
- Q. Liang, M. He, B. Zhan, H. Guo, X. Qi et al., Yolk-shell CoNi@N-doped carbon-CoNi@CNTs for enhanced microwave absorption, photothermal, anti-corrosion, and antimicrobial properties. Nano-Micro Lett. 17(1), 167 (2025). https://doi.org/10.1007/s40820-024-01626-8
- X. Wang, G. Dong, F. Pan, C. Lin, B. Yuan et al., Metal-support interaction induced electron localization in rationally designed metal sites anchored MXene enables boosted electromagnetic wave attenuation. Nano-Micro Lett. 17(1), 309 (2025). https://doi.org/10.1007/s40820-025-01819-9
References
Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han et al., Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces. 6, 12997–13006 (2014). https://doi.org/10.1021/am502910d
S. Khotthada, A. Matthujak, P. Khamphakdi, J. Glinubon, C. Siriboon et al., Development and performance analysis of an electromagnetic needle-free jet injection device for efficient drug delivery in pig farms. Engin. Sci. 33, 1329 (2025). https://doi.org/10.30919/es1329
D. Bhargava, P. Rattanadecho, K. Jiamjiroch, Microwave imaging for breast cancer detection-a comprehensive review. Engin. Sci. 30, 1116 (2024). https://doi.org/10.30919/es1116
P. Vengsungnle, S. Poojeera, A. Srichat, P. Naphon, optimized performance of closed loop control electromagnetic field for the electric generators with energy storage. Engin. Sci. 30, 1173 (2024). https://doi.org/10.30919/es1173
X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small. 19, 2303393 (2023). https://doi.org/10.1002/smll.202303393
J. Guo, T. Zhang, X. Hao, S. Liu, Y. Zou et al., Aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels for absorption-dominated electromagnetic interference shielding and wearable sensing. Nano-Micro Lett. 17, 271 (2025). https://doi.org/10.1007/s40820-025-01791-4
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanops encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon. 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
M. Chang, Q. Li, Z. Jia, W. Zhao, G. Wu, Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: component optimization and structure modulation. J. Mater. Sci. Technol. 148, 150–170 (2023). https://doi.org/10.1016/j.jmst.2022.11.021
J. Luo, S. Bo, Y. Qin, Q. An, Z. Xiao et al., Multistage reclamation of Co2+-containing alginate hydrogels as excellent reduction catalyst and subsequent microwave absorber by facile transformation. Int. J. Biol. Macromol. 166, 1513–1525 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.031
J. Wang, Q. Sun, J. Li, Y. Guo, W. Tian et al., Polymer-based nanocomposites: role of interface for effective microwave absorption. Mater. Today Phys. 31, 100981 (2023). https://doi.org/10.1016/j.mtphys.2023.100981
L. Li, J. Liu, F. Pan, J. Qiao, X. Zhang et al., Structural engineering of rare earth metal-organic frameworks derivatives with high anisotropy for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 481, 148383 (2024). https://doi.org/10.1016/j.cej.2023.148383
L. Gai, H. Zhao, X. Li, P. Wang, S. Yu et al., Shell engineering afforded dielectric polarization prevails and impedance amelioration toward electromagnetic wave absorption enhancement in nested-network carbon architecture. Chem. Eng. J. 501, 157556 (2024). https://doi.org/10.1016/j.cej.2024.157556
P. Wang, D. Fan, L. Gai, B. Hu, P. Xu et al., Synthesis of graphene oxide-mediated high-porosity Ni/C aerogels through topological MOF deformation for enhanced electromagnetic absorption and thermal management. J. Mater. Chem. A. 12, 8571–8582 (2024). https://doi.org/10.1039/D4TA00125G
N. Wu, B. Zhao, Y. Lian, S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon. 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
B. Hu, L. Gai, Y. Liu, P. Wang, S. Yu et al., State-of-the-art in carbides/carbon composites for electromagnetic wave absorption. iScience. 26, 107876 (2023). https://doi.org/10.1016/j.isci.2023.107876
L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
X. Lan, C. Liang, M. Wu, N. Wu, L. He et al., Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves. J. Phys. Chem. C. 122, 18537–18544 (2018). https://doi.org/10.1021/acs.jpcc.8b05339
Y. Wang, C. Li, X. Han, D. Liu, H. Zhao et al., Ultrasmall Mo2C nanop-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1, 5366–5376 (2018). https://doi.org/10.1021/acsanm.8b01479
C. He, J. Tao, Y. Ke, Y. Qiu, Graphene-supported small tungsten carbide nanocrystals promoting a Pd catalyst towards formic acid oxidation. RSC Adv. 5, 66695–66703 (2015). https://doi.org/10.1039/c5ra13028j
L. Duan, J. Zhou, Z. Xu, Y. Liu, Y. Guo et al., Self-assembled WC@CN cage capture and anti-pitting effects synergize for integrated microwave absorption and corrosion protection. Ceram. Int. 50, 1013–1021 (2024). https://doi.org/10.1016/j.ceramint.2023.10.193
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanops-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon. 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
J. Tao, J. Zhou, Z. Yao, Z. Jiao, B. Wei et al., Multi-shell hollow porous carbon nanops with excellent microwave absorption properties. Carbon. 172, 542–555 (2021). https://doi.org/10.1016/j.carbon.2020.10.062
H. Ding, B. Hu, Y. Wang, Y. Du, Current progress and frontiers in three-dimensional macroporous carbon-based aerogels for electromagnetic wave absorption: a review. Nanoscale. 16, 21731–21760 (2024). https://doi.org/10.1039/D4NR03738C
S. Liu, Y. Lian, Y. Zhao, H. Hou, J. Ren et al., Recent advances of MXene-based nanocomposites towards microwave absorption: a review. Adv. Compos. Hybrid Mater. 8(1), 144 (2025). https://doi.org/10.1007/s42114-024-01145-5
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano. 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
X. Wang, X. Chen, Q. He, Y. Hui, C. Xu et al., Bidirectional, multilayer MXene/polyimide aerogels for ultra-broadband microwave absorption. Adv. Mater. 36(36), e2401733 (2024). https://doi.org/10.1002/adma.202401733
X. Li, L. Zhu, T. Kasuga, M. Nogi, H. Koga, Chitin-derived-carbon nanofibrous aerogel with anisotropic porous channels and defective carbon structures for strong microwave absorption. Chem. Eng. J. 450, 137943 (2022). https://doi.org/10.1016/j.cej.2022.137943
X. Chen, X. Wang, K. Wen, J. Zhang, F. Zhao et al., Electrically aligned Ti3C2Tx MXene composite with multilayered gradient structure for broadband microwave absorption. Carbon. 203, 706–716 (2023). https://doi.org/10.1016/j.carbon.2022.12.016
C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano. 12(6), 5816–5825 (2018). https://doi.org/10.1021/acsnano.8b01747
Y. Zhao, M. Li, B. Li, Z. Hu, The honeycomb mesh structure derived from mangosteen shells with excellent microwave absorption properties. Materials letters. 360, 136021 (2024). https://doi.org/10.1016/j.matlet.2024.136021.
Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting feco/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J Mater Chem A. 8(36), 18863–18871 (2020). https://doi.org/10.1039/D0TA05540A
Y. Zhang, Y. Fang, X. Hou, J. Wen, J. Chen et al., Construction of three-dimensional mesh porous Mo2C/carbon composites by chitosan salting-out for efficient microwave absorption. Carbon. 214, 118323 (2023). https://doi.org/10.1016/j.carbon.2023.118323.
T. Nojima, T. Iyoda, Egg white-based strong hydrogel via ordered protein condensation. NPG Asia Mater. 10(1), e460 (2018). https://doi.org/10.1038/am.2017.219
Y. Zhang, J. He, Z. Gao, X. Li, Converting eggs to flexible, all-solid supercapacitors. Nano Energy. 65, 104045 (2019). https://doi.org/10.1016/j.nanoen.2019.104045
H. Ma, C. Li, M. Zhang, J.-D. Hong, G. Shi, Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors. J Mater Chem A. 5(32), 17040–17047 (2017). https://doi.org/10.1039/C7TA04771A
J. Zhao, X. Wen, H. Xu, Y. Wen, H. Lu et al., Salting-out and salting-in of protein: a novel approach toward fabrication of hierarchical porous carbon for energy storage application. J. Alloys Compd. 788, 397–406 (2019). https://doi.org/10.1016/j.jallcom.2019.02.252
J. Niu, R. Shao, M. Liu, Y. Zan, M. Dou et al., Porous carbons derived from collagen-enriched biomass: tailored design, synthesis, and application in electrochemical energy storage and conversion. Adv. Funct. Mater. 29(46), 1905095 (2019). https://doi.org/10.1002/adfm.201905095
Z. Xu, X. Zhang, N. Zhao, C. He, Synergistic strengthening effect of in situ synthesized WC1-x nanops and graphene nanosheets in copper matrix composites. Compos. Part A Appl. Sci. Manuf. 133, 105891 (2020). https://doi.org/10.1016/j.compositesa.2020.105891
D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon. 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16(1), 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
X. Lu, D. Zhu, X. Li, M. Li, Q. Chen et al., Protein-derived hybrid carbon nanospheres with tunable microwave absorbing performance in the X-band. ACS Appl. Electron. Mater. 3(6), 2685–2693 (2021). https://doi.org/10.1021/acsaelm.1c00274
L. Zhang, Y. Huang, Crystallization and catalytic properties of molecular sieve SAPO-34 by a vapor-phase transport method. J Mater Chem A. 3(8), 4522–4529 (2015). https://doi.org/10.1039/C4TA06775D
S. Uruş, M. Çaylar, İ Karteri, Synthesis of graphene supported bis(diphenylphosphinomethyl)amino ligands and their Pd(II) and Pt(II) complexes: highly efficient and recoverable nano-catalysts on vitamin K3 production. Chem. Eng. J. 306, 961–972 (2016). https://doi.org/10.1016/j.cej.2016.08.009
L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon. 174, 673–682 (2021). https://doi.org/10.1016/j.carbon.2020.10.070
N. Wang, W. Ma, Z. Ren, Y. Du, P. Xu et al., Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants. J Mater Chem A. 6(3), 884–895 (2018). https://doi.org/10.1039/C7TA08472B
T. Kuanyshbekov, N. Guseinov, B. Kurbanova, R. Nemkaeva, K. Akatan et al., Local natural graphite as a promising raw material for the production of thermally reduced graphene-like films. Engin. Sci. 23, 1000 (2024). https://doi.org/10.30919/esmm1000
X. Wang, X. Lv, R. Zhang, X. Yang, R. Dai et al., Dimensional self-assembled magnetic coupling via embedding ferromagnetic nanops in multi-channel fibers for microwave absorption. Adv. Funct. Mater. 35(3), 2413650 (2025). https://doi.org/10.1002/adfm.202413650
A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys Rev B. 61(20), 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu et al., Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 461, 141867 (2023). https://doi.org/10.1016/j.cej.2023.141867
N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9(1), 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 450, 138160 (2022). https://doi.org/10.1016/j.cej.2022.138160
F. Wang, Y. Liu, R. Feng, X. Wang, X. Han et al., A win–win strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics. Small. 19(48), 2303597 (2023). https://doi.org/10.1002/smll.202303597
S. Diamond, Mercury porosimetry An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30(10), 1517–1525 (2000). https://doi.org/10.1016/S0008-8846(00)00370-7
J. Guo, S. Xi, Y. Zhang, X. Li, Z. Chen et al., Biomass-based electromagnetic wave absorption materials with unique structures: a critical review. ES Mater. Manufacturing 23, 1000 (2024). https://doi.org/10.30919/esmm1000
P. Negi, A.K. Chhantyal, A.K. Dixit, S. Kumar, A. Kumar, Activated carbon derived from mango leaves as an enhanced microwave absorbing material. Sustain. Mater. Technol. 27, e00244 (2021). https://doi.org/10.1016/j.susmat.2020.e00244
Z. Wu, J. Chang, X. Guo, D. Niu, A. Ren et al., Honeycomb-like bamboo powders-derived porous carbon with low filler loading, high-performance microwave absorption. Carbon. 215, 118415 (2023). https://doi.org/10.1016/j.carbon.2023.118415
H. Wang, H. Kang, Z. Wang, J. Zhao, Waste leaves into biomass carbon materials with tunable oxygen-containing functional groups for microwave absorption. Carbon. 234, 119930 (2025). https://doi.org/10.1016/j.carbon.2024.119930
H. Zhao, J.Z. Yeow Seow, Y. Cheng, Z.J. Xu, G. Ji, Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption. Ceram. Int. 46(10), 15447–15455 (2020). https://doi.org/10.1016/j.ceramint.2020.03.089
Q. Li, J. Zhu, S. Wang, F. Huang, Q. Liu et al., Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon. 161, 639–646 (2020). https://doi.org/10.1016/j.carbon.2020.01.087
W. Yu, Z. Wang, J. Lin, Y. Xiao, L. Zhu et al., Rose-Derived porous carbon and in-situ fabrication of Cobalt/Nickel nanops composites as high-performance electromagnetic wave absorber. Engin. Sci. 30, 1113 (2024). https://doi.org/10.30919/es1113
Y. Lu, X. Zhao, Q. Tian, Y. Lin, P. Li et al., Hierarchical porous biomass-derived carbon with rich nitrogen doping for high-performance microwave absorption and tensile strain sensing. Carbon. 224, 119083 (2024). https://doi.org/10.1016/j.carbon.2024.119083.
S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale. 10(15), 6945–6953 (2018). https://doi.org/10.1039/C8NR01244J
L. Duan, J. Zhou, Y. Liu, J. Yao, Y. Wang et al., Synergistic defense: compositional regulation and temperature engineering of TMCs for enhanced microwave absorption and corrosion protection. J. Mater. Sci. Technol. 201, 187–196 (2024). https://doi.org/10.1016/j.jmst.2024.01.102
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Effects of SiC coating on microwave absorption of novel three-dimensional reticulated SiC/porous carbon foam. Ceram. Int. 45(7), 8660–8668 (2019). https://doi.org/10.1016/j.ceramint.2019.01.186
L. Wang, H. Liu, X. Lv, G. Cui, G. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
Y. Wang, X. Han, P. Xu, D. Liu, L. Cui et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15(1), 220 (2023). https://doi.org/10.1007/s40820-023-01197-0
J.C. Anderson, Dielectrics by Joseph Chapman Anderson (Chapman and Hall LTD, 1964)
H. Peng, D. Zhang, Z. Xie, S. Lu, Y. Liu et al., Recent advances in structural design of carbon/magnetic composites and their electromagnetic wave absorption applications. Small. 21(8), 2408570 (2025). https://doi.org/10.1002/smll.202408570
K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941). https://doi.org/10.1063/1.1750906
S. Lu, Z. Xie, D. Zhang, Y. Liu, H. Peng et al., Facile constructing core-shell F-CIP@O/N-SWCNHs composites for high-performance microwave absorption and anti-corrosion. Carbon. 230, 119632 (2024). https://doi.org/10.1016/j.carbon.2024.119632
C. Li, X. Qi, X. Gong, Q. Peng, Y. Chen et al., Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 15(7), 6761–6771 (2022). https://doi.org/10.1007/s12274-022-4468-2
Z. Xie, Y. Liu, S. Lu, J. Chen, H. Peng et al., One-step rapid achieving O-SWCNHs@SiO2 core–shell heterostructures with tunable electromagnetic absorption performance via arc plasma. Chem. Eng. J. 489, 151311 (2024). https://doi.org/10.1016/j.cej.2024.151311
O. Levy, D. Stroud, Maxwell garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys Rev B. 56(13), 8035–8046 (1997). https://doi.org/10.1103/physrevb.56.8035
X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon. 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
Q. Liang, M. He, B. Zhan, H. Guo, X. Qi et al., Yolk-shell CoNi@N-doped carbon-CoNi@CNTs for enhanced microwave absorption, photothermal, anti-corrosion, and antimicrobial properties. Nano-Micro Lett. 17(1), 167 (2025). https://doi.org/10.1007/s40820-024-01626-8
X. Wang, G. Dong, F. Pan, C. Lin, B. Yuan et al., Metal-support interaction induced electron localization in rationally designed metal sites anchored MXene enables boosted electromagnetic wave attenuation. Nano-Micro Lett. 17(1), 309 (2025). https://doi.org/10.1007/s40820-025-01819-9