Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis
Corresponding Author: Siwei Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 57
Abstract
Electrocatalytic oxygen evolution reaction (OER) has been recognized as the bottleneck of overall water splitting, which is a promising approach for sustainable production of H2. Transition metal (TM) hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER, while TM basic salts [M2+(OH)2-x(Am−)x/m, A = CO32−, NO3−, F−, Cl−] consisting of OH− and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade. In this review, we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting. We categorize TM basic salt-based OER pre-catalysts into four types (CO32−, NO3−, F−, Cl−) according to the anion, which is a key factor for their outstanding performance towards OER. We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance. To develop bifunctional TM basic salts as catalyst for the practical electrolysis application, we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance. Finally, we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis.
Highlights:
1 We summarize the recent advances of transition metal basic salts and their application in oxygen evolution reaction (OER) and further overall water splitting.
2 The structure evolution of transition metal basic salts during OER and the impact of F−, Cl−, CO32− and NO3− on the OER performance are highlighted
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51(7), 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
- S. Li, P. Miao, Y. Zhang, J. Wu, B. Zhang et al., Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 33(6), e2000086 (2021). https://doi.org/10.1002/adma.202000086
- H.-J. Liu, C.-Y. Chiang, Y.-S. Wu, L.-R. Lin, Y.-C. Ye et al., Breaking the relation between activity and stability of the oxygen-evolution reaction by highly doping Ru in wide-band-gap SrTiO3 as electrocatalyst. ACS Catal. (2022). https://doi.org/10.1021/acscatal.1c05539
- R. Li, D. Wang, Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 12(9), 2103564 (2022). https://doi.org/10.1002/aenm.202103564
- H. Abe, J. Liu, K. Ariga, Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater. Today 19(1), 12–18 (2016). https://doi.org/10.1016/j.mattod.2015.08.021
- M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
- J. Liu, S. Duan, H. Shi, T. Wang, X. Yang et al., Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises. Angew. Chem. Int. Ed. 61, e202210753 (2022). https://doi.org/10.1002/anie.202210753
- M.D. Staples, R. Malina, S.R.H. Barrett, The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat. Energy 2(2), 16202 (2017). https://doi.org/10.1038/nenergy.2016.202
- J. Liang, F. Ma, S. Hwang, X. Wang, J. Sokolowski et al., Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 3(4), 956–991 (2019). https://doi.org/10.1016/j.joule.2019.03.014
- P.E. Brockway, A. Owen, L.I. Brand-Correa, L. Hardt, Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 4(7), 612–621 (2019). https://doi.org/10.1038/s41560-019-0425-z
- N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science (2017). https://doi.org/10.1126/science.aad4998
- H. Jin, L.W. Wong, K.H. Lai, X. Zheng, S.P. Lau et al., N-stabilized metal single atoms enabled rich defects for noble-metal alloy toward superior water reduction. EcoMat (2022). https://doi.org/10.1002/eom2.12267
- Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei et al., Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2(4), 304–313 (2019). https://doi.org/10.1038/s41929-019-0246-2
- X. Liu, S. Xi, H. Kim, A. Kumar, J. Lee et al., Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction. Nat. Commun. 12(1), 5676 (2021). https://doi.org/10.1038/s41467-021-26025-0
- B. Huang, Y. Zhao, Iridium-based electrocatalysts toward sustainable energy conversion. EcoMat 4(2), e12176 (2022). https://doi.org/10.1002/eom2.12176
- J. Sun, J. Li, Z. Li, C. Li, G. Ren et al., Modulating the electronic structure on cobalt sites by compatible heterojunction fabrication for greatly improved overall water/seawater electrolysis. ACS Sustain. Chem. Eng. 10(30), 9980–9990 (2022). https://doi.org/10.1021/acssuschemeng.2c02571
- A. Goswami, D. Ghosh, D. Pradhan, K. Biradha, In situ grown mn(II) MOF upon Nickel Foam acts as a robust self-supporting bifunctional electrode for overall water splitting: a bimetallic synergistic collaboration strategy. ACS Appl. Mater. Interfaces 14(26), 29722–29734 (2022). https://doi.org/10.1021/acsami.2c04304
- Z. Chen, J. Chang, C. Liang, W. Wang, Y. Li et al., Size-dependent and support-enhanced electrocatalysis of 2H-MoS2 for hydrogen evolution. Nano Today 46, 101592 (2022). https://doi.org/10.1016/j.nantod.2022.101592
- B. Zhang, Z. Wu, W. Shao, Y. Gao, W. Wang et al., Interfacial atom-substitution engineered transition-metal hydroxide nanofibers with high-valence fe for efficient electrochemical water oxidation. Angew. Chem. Int. Ed. 61(13), e202115331 (2022). https://doi.org/10.1002/anie.202115331
- C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu et al., Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13(1), 86–95 (2020). https://doi.org/10.1039/C9EE02388G
- M. Wang, Z. Wang, X. Gong, Z. Guo, The intensification technologies to water electrolysis for hydrogen production: a review. Renew. Sust. Energy Rev. 29, 573–588 (2014). https://doi.org/10.1016/j.rser.2013.08.090
- B. You, Y. Sun, Chalcogenide and phosphide solid-state electrocatalysts for hydrogen generation. ChemPlusChem 81(10), 1045–1055 (2016). https://doi.org/10.1002/cplu.201600029
- F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu et al., Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12(1), 4182 (2021). https://doi.org/10.1038/s41467-021-24529-3
- L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo et al., Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13(10), 3439–3446 (2020). https://doi.org/10.1039/D0EE00921K
- H.C. Fu, Q. Zhang, J. Luo, L. Shen, X.H. Chen et al., Boosting hydrogen evolution reaction activities of three-dimensional flower-like tungsten carbonitride via anion regulation. ACS Sustain. Chem. Eng. 8(37), 14109–14116 (2020). https://doi.org/10.1021/acssuschemeng.0c04773
- D. Jiang, Y. Xu, R. Yang, D. Li, S. Meng et al., CoP3/CoMoP heterogeneous nanosheet arrays as robust electrocatalyst for ph-universal hydrogen evolution reaction. ACS Sustain. Chem. Eng. 7(10), 9309–9317 (2019). https://doi.org/10.1021/acssuschemeng.9b00357
- X. Zhang, H. Yi, Q. An, S. Song, Recent advances in engineering cobalt carbonate hydroxide for enhanced alkaline water splitting. J. Alloys Compd. 887, 161405 (2021). https://doi.org/10.1016/j.jallcom.2021.161405
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012). https://doi.org/10.1038/nature11115
- Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen et al., A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(8), 2429–2434 (2013). https://doi.org/10.1039/C3EE41485J
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/B800489G
- X. Zheng, B. Zhang, P. De Luna, Y. Liang, R. Comin et al., Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft x-ray absorption. Nat. Chem. 10(2), 149–154 (2018). https://doi.org/10.1038/nchem.2886
- B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352(6283), 333–337 (2016). https://doi.org/10.1126/science.aaf1525
- W.H. Lee, C. Lim, S.Y. Lee, K.H. Chae, C.H. Choi et al., Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration. Nano Energy 84, 105859 (2021). https://doi.org/10.1016/j.nanoen.2021.105859
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- W.H. Lee, Y.-J. Ko, Y. Choi, S.Y. Lee, C.H. Choi et al., Highly selective and scalable CO2 to CO: electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy 76, 105030 (2020). https://doi.org/10.1016/j.nanoen.2020.105030
- W.H. Lee, C. Lim, E. Ban, S. Bae, J. Ko et al., W@Ag dendrites as efficient and durable electrocatalyst for solar-to-CO conversion using scalable photovoltaic-electrochemical system. Appl. Catal. B-Environ. 297, 120427 (2021). https://doi.org/10.1016/j.apcatb.2021.120427
- R. Frydendal, E.A. Paoli, B.P. Knudsen, B. Wickman, P. Malacrida et al., Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses. ChemElectroChem 1(12), 2075–2081 (2014). https://doi.org/10.1002/celc.201402262
- Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanops for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3(3), 399–404 (2012). https://doi.org/10.1021/jz2016507
- T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanops and bulk materials. ACS Catal. 2(8), 1765–1772 (2012). https://doi.org/10.1021/cs3003098
- W.H. Lee, M.H. Han, U. Lee, K.H. Chae, H. Kim et al., Oxygen vacancies induced NiFe-hydroxide as a scalable, efficient, and stable electrode for alkaline overall water splitting. ACS Sustain. Chem. Eng. 8(37), 14071–14081 (2020). https://doi.org/10.1021/acssuschemeng.0c04542
- W.H. Lee, Y.-J. Ko, J.H. Kim, C.H. Choi, K.H. Chae et al., High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nat. Commun. 12(1), 4271 (2021). https://doi.org/10.1038/s41467-021-24578-8
- C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013). https://doi.org/10.1021/ja407115p
- L. Tong, L. Duan, Y. Xu, T. Privalov, L. Sun, Structural modifications of mononuclear ruthenium complexes: A combined experimental and theoretical study on the kinetics of Ruthenium-catalyzed water oxidation. Angew. Chem. Int. Ed. 50(2), 445–449 (2011). https://doi.org/10.1002/anie.201005141
- D.Y. Kuo, J.K. Kawasaki, J.N. Nelson, J. Kloppenburg, G. Hautier et al., Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J. Am. Chem. Soc. 139(9), 3473–3479 (2017). https://doi.org/10.1021/jacs.6b11932
- S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu et al., Low ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl. Catal. B 297, 120442 (2021). https://doi.org/10.1016/j.apcatb.2021.120442
- Q. Zhang, X. Liang, H. Chen, W. Yan, L. Shi et al., Identifying key structural subunits and their synergism in low-Iridium triple perovskites for oxygen evolution in acidic media. Chem. Mater. 32(9), 3904–3910 (2020). https://doi.org/10.1021/acs.chemmater.0c00081
- Y. Li, J. Abbott, Y. Sun, J. Sun, Y. Du et al., Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various ph values. Appl. Catal. B 258, 117952 (2019). https://doi.org/10.1016/j.apcatb.2019.117952
- E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4(5), 1426–1440 (2014). https://doi.org/10.1021/cs4011875
- R. Kötz, H. Neff, S. Stucki, Anodic iridium oxide films: XPS-studies of oxidation state changes and. J. The Electrochem. Soc. 131(1), 72–77 (1984). https://doi.org/10.1149/1.2115548
- R. Kötz, H.J. Lewerenz, S. Stucki, Xps studies of oxygen evolution on Ru and RuO2 anodes. J. Electrochem. Soc. 130(4), 825–829 (1983). https://doi.org/10.1149/1.2119829
- B. Zhang, Y.H. Lui, H. Ni, S. Hu, Bimetallic (FexNi1−x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media. Nano Energy 38, 553–560 (2017). https://doi.org/10.1016/j.nanoen.2017.06.032
- J. Wang, H.X. Zhong, Z.L. Wang, F.L. Meng, X.B. Zhang, Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10(2), 2342–2348 (2016). https://doi.org/10.1021/acsnano.5b07126
- X. Xu, H. Liang, F. Ming, Z. Qi, Y. Xie et al., Prussian blue analogues derived penroseite (Ni, Co)Se2 nanocages anchored on 3d graphene aerogel for efficient water splitting. ACS Catal. 7(9), 6394–6399 (2017). https://doi.org/10.1021/acscatal.7b02079
- S. Pan, H. Li, D. Liu, R. Huang, X. Pan et al., Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13(1), 2294 (2022). https://doi.org/10.1038/s41467-022-30064-6
- A. Moysiadou, S. Lee, C.-S. Hsu, H.M. Chen, X. Hu, Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 142(27), 11901–11914 (2020). https://doi.org/10.1021/jacs.0c04867
- H.B. Tao, J. Zhang, J. Chen, L. Zhang, Y. Xu et al., Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 141(35), 13803–13811 (2019). https://doi.org/10.1021/jacs.9b01834
- L. Wang, L. Wang, Y. Du, X. Xu, S.X. Dou, Progress and perspectives of bismuth oxyhalides in catalytic applications. Mater. Today Phys. 16, 100294 (2021). https://doi.org/10.1016/j.mtphys.2020.100294
- F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546
- A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9(5), 457–465 (2017). https://doi.org/10.1038/nchem.2695
- X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6(2), 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432
- X. Liu, W. Liu, M. Ko, M. Park, M.G. Kim et al., Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 25(36), 5799–5808 (2015). https://doi.org/10.1002/adfm.201502217
- J. Huang, J. Chen, T. Yao, J. He, S. Jiang et al., Coooh nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54(30), 8722–8727 (2015). https://doi.org/10.1002/anie.201502836
- Y. Zhan, G. Du, S. Yang, C. Xu, M. Lu et al., Development of cobalt hydroxide as a bifunctional catalyst for oxygen electrocatalysis in alkaline solution. ACS Appl. Mater. Interfaces 7(23), 12930–12936 (2015). https://doi.org/10.1021/acsami.5b02670
- M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137(10), 3638–3648 (2015). https://doi.org/10.1021/jacs.5b00281
- X. Zou, A. Goswami, T. Asefa, Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc–cobalt layered double hydroxide. J. Am. Chem. Soc. 135(46), 17242–17245 (2013). https://doi.org/10.1021/ja407174u
- J. Ping, Y. Wang, Q. Lu, B. Chen, J. Chen et al., Self-assembly of single-layer coal-layered double hydroxide nanosheets on 3d graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 28(35), 7640–7645 (2016). https://doi.org/10.1002/adma.201601019
- J. Ding, S. Ji, H. Wang, H. Gai, F. Liu et al., Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis. Int. J. Hydrog. Energy 44(5), 2832–2840 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.031
- Y. Xu, A. Sumboja, Y. Zong, J.A. Darr, Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc–air batteries: Examining the effects of compositional tuning on oer and orr activity. Catal. Sci. Technol. 10(7), 2173–2182 (2020). https://doi.org/10.1039/C9CY02185J
- A. Singh, A. Singh, G. Kociok-Köhn, R. Bhimireddi, A. Singh et al., Ternary copper molybdenum sulfide (Cu2MoS4) nanops anchored on pani/rgo as electrocatalysts for oxygen evolution reaction (OER). Appl. Organomet Chem. 36(6), e6683 (2022). https://doi.org/10.1002/aoc.6683
- D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanops grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136(13), 4897–4900 (2014). https://doi.org/10.1021/ja501497n
- Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu et al., Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136(44), 15670–15675 (2014). https://doi.org/10.1021/ja5085157
- C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, H.N. Alshareef, Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016). https://doi.org/10.1002/adma.201503906
- N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54(21), 6251–6254 (2015). https://doi.org/10.1002/anie.201501616
- P. Wang, F. Song, R. Amal, Y.H. Ng, X. Hu, Efficient water splitting catalyzed by cobalt phosphide-based nanoneedle arrays supported on carbon cloth. Chemsuschem 9(5), 472–477 (2016). https://doi.org/10.1002/cssc.201501599
- D. Li, H. Baydoun, C.N. Verani, S.L. Brock, Efficient water oxidation using CoMnP nanops. J. Am. Chem. Soc. 138(12), 4006–4009 (2016). https://doi.org/10.1021/jacs.6b01543
- X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 26(23), 4067–4077 (2016). https://doi.org/10.1002/adfm.201505509
- J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan et al., A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 30(5), 1705045 (2018). https://doi.org/10.1002/adma.201705045
- K. Jin, J. Park, J. Lee, K.D. Yang, G.K. Pradhan et al., Hydrated manganese(II) phosphate (Mn3(Po4)2·3H2O) as a water oxidation catalyst. J. Am. Chem. Soc. 136(20), 7435–7443 (2014). https://doi.org/10.1021/ja5026529
- H. Kim, J. Park, I. Park, K. Jin, S.E. Jerng et al., Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 6(1), 8253 (2015). https://doi.org/10.1038/ncomms9253
- G.S. Hutchings, Y. Zhang, J. Li, B.T. Yonemoto, X. Zhou et al., In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 137(12), 4223–4229 (2015). https://doi.org/10.1021/jacs.5b01006
- J.R. Petrie, H. Jeen, S.C. Barron, T.L. Meyer, H.N. Lee, Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 138(23), 7252–7255 (2016). https://doi.org/10.1021/jacs.6b03520
- L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo et al., Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55(17), 5277–5281 (2016). https://doi.org/10.1002/anie.201600687
- X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li et al., Hollow fluffy co3o4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl. Mate. Interfaces 7(36), 20322–20331 (2015). https://doi.org/10.1021/acsami.5b05989
- X. Deng, H. Tüysüz, Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges. ACS Catal. 4(10), 3701–3714 (2014). https://doi.org/10.1021/cs500713d
- P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10(1), 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
- H. Ben Yahia, M. Shikano, M. Tabuchi, H. Kobayashi, M. Avdeev et al., Synthesis and characterization of the crystal and magnetic structures and properties of the hydroxyfluorides Fe(OH)F and Co(OH)F. Inor. Chem. 53(1), 365–374 (2014). https://doi.org/10.1021/ic402294g
- Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu et al., A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanops strongly coupled to B. N-decorated graphene. Angew. Chem. Int. Ed. 56(25), 7121–7125 (2017). https://doi.org/10.1002/anie.201702430
- Y. Zhang, B. Cui, O. Derr, Z. Yao, Z. Qin et al., Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale 6(6), 3376–3383 (2014). https://doi.org/10.1039/c3nr05193e
- S. Surendran, A. Sivanantham, S. Shanmugam, U. Sim, R. Kalai Selvan, Ni2P2O7 microsheets as efficient bi-functional electrocatalysts for water splitting application. Sustain. Energy Fuels 3(9), 2435–2446 (2019). https://doi.org/10.1039/C9SE00265K
- F.-T. Tsai, Y.-T. Deng, C.-W. Pao, J.-L. Chen, J.-F. Lee et al., The her/oer mechanistic study of an feconi-based electrocatalyst for alkaline water splitting. J. Mater. Chem. A 8(19), 9939–9950 (2020). https://doi.org/10.1039/D0TA01877E
- W. Zhang, L. Cui, J. Liu, Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd. 821, 153542 (2020). https://doi.org/10.1016/j.jallcom.2019.153542
- M. Qin, Y. Wang, H. Zhang, M. Humayun, X. Xu et al., Hierarchical Co(OH)F/CoFe-LDH heterojunction enabling high-performance overall water-splitting. CrystEngComm 24(34), 6018–6030 (2022). https://doi.org/10.1039/d2ce00817c
- T. Tang, W.-J. Jiang, S. Niu, N. Liu, H. Luo et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139(24), 8320–8328 (2017). https://doi.org/10.1021/jacs.7b03507
- Y. Yang, X. Luan, X. Dai, X. Zhang, H. Qiao et al., Partially sulfurated ultrathin nickel-iron carbonate hydroxides nanosheet boosting the oxygen evolution reaction. Electrochim. Acta 309, 57–64 (2019). https://doi.org/10.1016/j.electacta.2019.04.091
- J. Kang, J. Sheng, J. Xie, H. Ye, J. Chen et al., Tubular Cu(OH)2 arrays decorated with nanothorny Co–Ni bimetallic carbonate hydroxide supported on cu foam: A 3D hierarchical core–shell efficient electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 6(21), 10064–10073 (2018). https://doi.org/10.1039/c8ta02492h
- A. Karmakar, H.S. Chavan, S.M. Jeong, J.S. Cho, Mixed transition metal carbonate hydroxide-based nanostructured electrocatalysts for alkaline oxygen evolution: Status and perspectives. Adv. Energy Sustain. Res. 3(9), 2200071 (2022). https://doi.org/10.1002/aesr.202200071
- W. Wen, J.-M. Wu, L.-L. Lai, G.-P. Ling, M.-H. Cao, Hydrothermal synthesis of needle-like hyperbranched Ni(SO4)0.3(OH)1.4 bundles and their morphology-retentive decompositions to NiO for lithium storage. CrystEngComm 14(20), 6565–6572 (2012). https://doi.org/10.1039/c2ce26127h
- G.G.C. Arizaga, K.G. Satyanarayana, F. Wypych, Layered hydroxide salts: synthesis, properties and potential applications. Solid State Ion. 178(15), 1143–1162 (2007). https://doi.org/10.1016/j.ssi.2007.04.016
- L. Li, J. Liang, M. Luo, J. Fang, Highly qualified fabrication of Ni(SO4)0.3(OH)1.4 nanobelts via a facile TEA-assisted hydrothermal route. Powder Technol. 226, 143–146 (2012). https://doi.org/10.1016/j.powtec.2012.04.033
- N. Ma, C. Fei, J. Wang, Y. Wang, Fabrication of NiFe-MOF/cobalt carbonate hydroxide hydrate heterostructure for a high-performance electrocatalyst of oxygen evolution reaction. J. Alloys Compd. 917, 165511 (2022). https://doi.org/10.1016/j.jallcom.2022.165511
- F.-G. Wang, B. Liu, Z.-Y. Lin, X. Liu, Y. Ma et al., Constructing partially amorphous borate doped iron-nickel nitrate hydroxide nanoarrays by rapid microwave activation for oxygen evolution. Appl. Surf. Sci. 592, 153245 (2022). https://doi.org/10.1016/j.apsusc.2022.153245
- S. Wan, J. Qi, W. Zhang, W. Wang, S. Zhang et al., Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29(28), 1700286 (2017). https://doi.org/10.1002/adma.201700286
- H. Jiang, Q. He, X. Li, X. Su, Y. Zhang et al., Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 31(8), 1805127 (2019). https://doi.org/10.1002/adma.201805127
- Z. Jia, Nickel hydroxide sulfate nanobelts: Hydrothermal synthesis, electrochemical property and conversion to porous NiO nanobelts, In 2011 International Conference on Materials for Renewable Energy & Environment. 1, 673–677 (2011)
- W. Maalej, S. Vilminot, G. André, M. Kurmoo, Synthesis, magnetic structure, and properties of a layered cobalt−hydroxide ferromagnet, Co5(OH)6(SeO4)2(H2O)4. Inorg. Chem. 49(6), 3019–3024 (2010). https://doi.org/10.1021/ic9025552
- M.A. Ballesteros, M.A. Ulibarri, V. Rives, C. Barriga, Optimum conditions for intercalation of lacunary tungstophosphate(V) anions into layered Ni(II)–Zn(II) hydroxyacetate. J. Solid State Chem. 181(11), 3086–3094 (2008). https://doi.org/10.1016/j.jssc.2008.07.037
- M. Rajamathi, P.V. Kamath, Urea hydrolysis of cobalt(II) nitrate melts: Synthesis of novel hydroxides and hydroxynitrates. Int. J. Inorg. Mater. 3(7), 901–906 (2001). https://doi.org/10.1016/S1466-6049(01)00090-3
- L. Markov, K. Petrov, V. Petkov, On the thermal decomposition of some cobalt hydroxide nitrates. Thermochim. Acta 106, 283–292 (1986). https://doi.org/10.1016/0040-6031(86)85140-1
- H. Effenberger, Verfeinerung der kristallstruktur des monoklinen dikupfer(II)-trihydroxi-nitrates Cu2(NO3)(OH)3. Z. Kristallogr. 165(1–4), 127–136 (1983). https://doi.org/10.1524/zkri.1983.165.14.127
- S.P. Newman, W. Jones, Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. J. Solid State Chem. 148(1), 26–40 (1999). https://doi.org/10.1006/jssc.1999.8330
- Y. Wang, W. Ding, S. Chen, Y. Nie, K. Xiong et al., Cobalt carbonate hydroxide/C: an efficient dual electrocatalyst for oxygen reduction/evolution reactions. Chem. Comm. 50(98), 15529–15532 (2014). https://doi.org/10.1039/C4CC07722A
- S. Wang, G. Lü, W. Tang, Synthesis and crystal structure of Co2(OH)2CO3 by rietveld method. Powder Differ. 25(S1), S7–S10 (2010). https://doi.org/10.1154/1.3478978
- Z. Zhang, L. Yin, Mn-doped Co2(OH)3Cl xerogels with 3d interconnected mesoporous structures as lithium ion battery anodes with improved electrochemical performance. J. Mater. Chem. A 3(34), 17659–17668 (2015). https://doi.org/10.1039/c5ta03426d
- X.G. Zheng, M. Hagihala, M. Fujihala, T. Kawae, Recent developments in the magnetic study of the deformed pyrochlore lattice M2(OH)3X (M = 3d magnetic ions, X = Cl, Br)-exotic magnetic order in Ni2(OH)3Cl and controlled spin-spin interactions in Co2(OH)3Cl1-xBrx and (Co1-xFex)2(OH)3Cl. J. Phys. Conf. Ser. 145, 012034 (2009). https://doi.org/10.1088/1742-6596/145/1/012034
- L. Hui, Y. Xue, D. Jia, H. Yu, C. Zhang et al., Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting. Adv. Energy Mater. 8(20), 1800175 (2018). https://doi.org/10.1002/aenm.201800175
- S. Zhang, B. Ni, H. Li, H. Lin, H. Zhu et al., Cobalt carbonate hydroxide superstructures for oxygen evolution reactions. Chem. Comm. 53(57), 8010–8013 (2017). https://doi.org/10.1039/C7CC04604A
- X. He, B. Liu, S. Zhang, H. Li, J. Liu et al., Nickel nitrate hydroxide holey nanosheets for efficient oxygen evolution electrocatalysis in alkaline condition. Electrocatalysis 13(1), 37–46 (2022). https://doi.org/10.1007/s12678-021-00686-3
- W. Wang, Y. Zhong, X. Zhang, S. Zhu, Y. Tao et al., Fe-modified Co2(OH)3Cl microspheres for highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 582, 803–814 (2021). https://doi.org/10.1016/j.jcis.2020.08.095
- D. Potphode, M.S. Sayed, T. Lama Tamang, J.-J. Shim, High-performance binder-free flower-like (Ni0.66Co0.3Mn0.04)2(OH)2(CO3) array synthesized using ascorbic acid for supercapacitor applications. Chem. Eng. J 378, 122129 (2019). https://doi.org/10.1016/j.cej.2019.122129
- Y. Ma, J. Chu, Z. Li, D. Rakov, X. Han et al., Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution. Small 14(52), 1803783 (2018). https://doi.org/10.1002/smll.201803783
- H. Jiang, Q. He, X. Li, X. Su, Y. Zhang et al., Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 31(8), e1805127 (2019). https://doi.org/10.1002/adma.201805127
- W. Wang, Y. Zhong, X. Zhang, S. Zhu, Y. Tao et al., Fe-modified co2(oh)3cl microspheres for highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 582(Pt B), 803–814 (2021). https://doi.org/10.1016/j.jcis.2020.08.095
- Z. Liang, Z. Huang, H. Yuan, Z. Yang, C. Zhang et al., Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chem. Sci. 9(34), 6961–6968 (2018). https://doi.org/10.1039/c8sc02294a
- F. Shang, S. Wan, X. Gao, W. Zhang, R. Cao, Engineering hierarchical-dimensional Co(OH)F into CoP superstructure for electrocatalytic water splitting. ChemCatChem 12(19), 4770–4774 (2020). https://doi.org/10.1002/cctc.202000993
- Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31(17), 1807134 (2019). https://doi.org/10.1002/adma.201807134
- J.-Y. Xie, R.-Y. Fan, J.-Y. Fu, Y.-N. Zhen, M.-X. Li et al., Double doping of v and f on Co3O4 nanoneedles as efficient electrocatalyst for oxygen evolution. Int. J. Hydrog. Energy 46(38), 19962–19970 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.141
- J. Lv, X. Yang, H.-Y. Zang, Y.-H. Wang, Y.-G. Li, Ultralong needle-like N-doped Co(OH)F on carbon fiber paper with abundant oxygen vacancies as an efficient oxygen evolution reaction catalyst. Mater. Chem. Front. 2(11), 2045–2053 (2018). https://doi.org/10.1039/c8qm00405f
- G. Zhang, B. Wang, L. Li, S. Yang, Phosphorus and yttrium codoped Co(OH)F nanoarray as highly efficient and bifunctional electrocatalysts for overall water splitting. Small 15(42), e1904105 (2019). https://doi.org/10.1002/smll.201904105
- Q. Lin, D. Guo, L. Zhou, L. Yang, H. Jin et al., Tuning the interface of Co1-xS/Co(OH)F by atomic replacement strategy toward high-performance electrocatalytic oxygen evolution. ACS Nano 16(9), 15460–15470 (2022). https://doi.org/10.1021/acsnano.2c07588
- Z. Liang, Z. Yang, Z. Huang, J. Qi, M. Chen et al., Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochim. Acta 271, 526–536 (2018). https://doi.org/10.1016/j.electacta.2018.03.186
- S. Zhou, H. Jang, Q. Qin, Z. Li, M.G. Kim et al., Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci. China Mater. 64(6), 1408–1417 (2021). https://doi.org/10.1007/s40843-020-1536-6
- S. Zhang, B. Ni, H. Li, H. Lin, H. Zhu, H. Wang, X. Wang, Cobalt carbonate hydroxide superstructures for oxygen evolution reactions. Chem. Commun. 53(57), 8010–8013 (2017). https://doi.org/10.1039/c7cc04604a
- J. Li, X. Li, Y. Luo, Q. Cen, Q. Ye et al., Cobalt carbonate hydroxide mesostructure with high surface area for enhanced electrocatalytic oxygen evolution. Int. J. Hydrog. Energy 43(20), 9635–9643 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.229
- G. Li, F. Li, Y. Zhao, W. Li, Z. Zhao et al., Selective electrochemical alkaline seawater oxidation catalyzed by cobalt carbonate hydroxide nanorod arrays with sequential proton-electron transfer properties. ACS Sustain. Chem. Eng. 9(2), 905–913 (2021). https://doi.org/10.1021/acssuschemeng.0c07953
- W. Wang, M. Ma, M. Kong, Y. Yao, N. Wei, Cobalt carbonate hydroxide hydrate nanowires array: A three-dimensional catalyst electrode for effective water oxidation. Micro Nano Lett. 12(4), 264–266 (2017). https://doi.org/10.1049/mnl.2016.0639
- M. Xie, L. Yang, Y. Ji, Z. Wang, X. Ren et al., An amorphous co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale 9(43), 16612–16615 (2017). https://doi.org/10.1039/c7nr07269d
- Y. Jia, Y.-N. Li, Z.-M. Wang, F.-M. Li, P.-J. Jin et al., Porous cobalt carbonate hydroxide nanospheres towards oxygen evolution reaction. Chem. Eng. J. 417, 128066 (2021). https://doi.org/10.1016/j.cej.2020.128066
- Y. Yan, Facile synthesis of carbon cloth supported cobalt carbonate hydroxide hydrate nanoarrays for highly efficient oxygen evolution reaction. Front. Chem. 9, 754357 (2021). https://doi.org/10.3389/fchem.2021.754357
- C. Tang, R. Zhang, W. Lu, L. He, X. Jiang et al., Fe-doped cop nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 29(2), 1602441 (2017). https://doi.org/10.1002/adma.201602441
- S. Zhang, B. Huang, L. Wang, X. Zhang, H. Zhu et al., Boosted oxygen evolution reactivity via atomic iron doping in cobalt carbonate hydroxide hydrate. ACS Appl. Mater. Interfaces 12(36), 40220–40228 (2020). https://doi.org/10.1021/acsami.0c07260
- K. Karthick, S. Subhashini, R. Kumar, S. Sethuram Markandaraj, M.M. Teepikha et al., Cubic nanostructures of nickel-cobalt carbonate hydroxide hydrate as a high-performance oxygen evolution reaction electrocatalyst in alkaline and near-neutral media. Inorg. Chem. 59(22), 16690–16702 (2020). https://doi.org/10.1021/acs.inorgchem.0c02680
- A. Karmakar, S.K. Srivastava, Transition-metal-substituted cobalt carbonate hydroxide nanostructures as electrocatalysts in alkaline oxygen evolution reaction. ACS Appl. Energy Mater. 3(8), 7335–7344 (2020). https://doi.org/10.1021/acsaem.0c00623
- A. Karmakar, S.K. Srivastava, Hierarchically hollow interconnected rings of nickel substituted cobalt carbonate hydroxide hydrate as promising oxygen evolution electrocatalyst. Int. J. Hydrog. Energy 47(53), 22430–22441 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.062
- M. Jin, J. Li, J. Gao, W. Liu, J. Han et al., Atomic-level tungsten doping triggered low overpotential for electrocatalytic water splitting. J. Colloid Interface Sci. 587, 581–589 (2021). https://doi.org/10.1016/j.jcis.2020.11.015
- J. Zhao, X. Liu, X. Ren, B. Du, X. Kuang et al., Chromium doping: a new approach to regulate electronic structure of cobalt carbonate hydroxide for oxygen evolution improvement. J. Colloid Interface Sci. 609, 414–422 (2022). https://doi.org/10.1016/j.jcis.2021.12.020
- M. Dai, H. Fan, G. Xu, M. Wang, S. Zhang et al., Boosting electrocatalytic oxygen evolution using ultrathin carbon protected iron-cobalt carbonate hydroxide nanoneedle arrays. J. Power Sources 450, 227639 (2020). https://doi.org/10.1016/j.jpowsour.2019.227639
- T. Tang, W.-J. Jiang, S. Niu, L.-P. Yuan, J.-S. Hu et al., Hetero-coupling of a carbonate hydroxide and sulfide for efficient and robust water oxidation. J. Mater. Chem. A 7(38), 21959–21965 (2019). https://doi.org/10.1039/C9TA07882G
- J. Kang, J. Chen, J. Sheng, J. Xie, X.-Z. Fu et al., Pd nanop-interspersed hierarchical copper hydroxide@nickel cobalt hydroxide carbonate tubular arrays as efficient electrocatalysts for oxygen evolution reaction. ACS Sustain. Chem. Eng. 7(19), 16459–16466 (2019). https://doi.org/10.1021/acssuschemeng.9b03653
- Y. Liu, Y. Wang, H. Wen, Y. Han, S. Deng, Green preparation of CNTs/graphite supported NiFe carbonate hydroxides for oxygen evolution reaction. ChemCatChem 14(18), e202200453 (2022). https://doi.org/10.1002/cctc.202200453
- X. He, B. Liu, S. Zhang, H. Li, J. Liu et al., Nickel nitrate hydroxide holey nanosheets for efficient oxygen evolution electrocatalysis in alkaline condition. Electrocatalysis 13(1), 37–46 (2021). https://doi.org/10.1007/s12678-021-00686-3
- Y. Ma, J. Chu, Z. Li, D. Rakov, X. Han et al., Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution. Small 14(52), e1803783 (2018). https://doi.org/10.1002/smll.201803783
- J. Liu, X. He, Y. Wang, Z. Sun, Y. Liu et al., Deep reconstruction of highly disordered iron/nickel nitrate hydroxide nanoplates for high-performance oxygen evolution reaction in alkaline media. J. Alloys Compd. 927, 167060 (2022). https://doi.org/10.1016/j.jallcom.2022.167060
- C. Li, G. Wang, K. Li, Y. Liu, B. Yuan et al., Feni-based coordination crystal directly serving as efficient oxygen evolution reaction catalyst and its density functional theory insight on the active site change mechanism. ACS Appl. Mater. Interfaces 11(23), 20778–20787 (2019). https://doi.org/10.1021/acsami.9b02994
- M.B. Stevens, C.D.M. Trang, L.J. Enman, J. Deng, S.W. Boettcher, Reactive fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139(33), 11361–11364 (2017). https://doi.org/10.1021/jacs.7b07117
- F. Song, M.M. Busch, B. Lassalle-Kaiser, C.-S. Hsu, E. Petkucheva et al., An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 5(3), 558–568 (2019). https://doi.org/10.1021/acscentsci.9b00053
- S. Niu, Y. Sun, G. Sun, D. Rakov, Y. Li et al., Stepwise electrochemical construction of FeOOH/Ni(OH)2 on Ni foam for enhanced electrocatalytic oxygen evolution. ACS Appl. Energy Mater. 2(5), 3927–3935 (2019). https://doi.org/10.1021/acsaem.9b00785
- Y. Ma, Z. Lu, S. Li, J. Wu, J. Wang et al., In situ growth of amorphous fe(oh)3 on nickel nitrate hydroxide nanoarrays for enhanced electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 12(11), 12668–12676 (2020). https://doi.org/10.1021/acsami.9b19437
- Y.N. Zhou, Y. Ma, Z.N. Shi, J.C. Zhou, B. Dong et al., Boosting oxygen evolution by nickel nitrate hydroxide with abundant grain boundaries via segregated high-valence molybdenum. J. Colloid Interface Sci. 613, 224–233 (2022). https://doi.org/10.1016/j.jcis.2021.12.179
- R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
- W. Lu, X. Li, F. Wei, K. Cheng, W. Li et al., Fast sulfurization of nickel foam-supported nickel-cobalt carbonate hydroxide nanowire array at room temperature for hydrogen evolution electrocatalysis. Electrochim. Acta 318, 252–261 (2019). https://doi.org/10.1016/j.electacta.2019.06.088
- L. Yuan, S. Liu, S. Xu, X. Yang, J. Bian et al., Modulation of volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide. Nano Energy 82, 105732 (2021). https://doi.org/10.1016/j.nanoen.2020.105732
- L. Hui, D. Jia, H. Yu, Y. Xue, Y. Li, Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting. ACS Appl. Mater. Interfaces 11(3), 2618–2625 (2019). https://doi.org/10.1021/acsami.8b01887
- X. Zhang, R. Zheng, M. Jin, R. Shi, Z. Ai et al., Nicosx@cobalt carbonate hydroxide obtained by surface sulfurization for efficient and stable hydrogen evolution at large current densities. ACS Appl. Mater. Interfaces 13(30), 35647–35656 (2021). https://doi.org/10.1021/acsami.1c07504
- S.-Q. Liu, M.-R. Gao, S. Liu, J.-L. Luo, Hierarchically assembling cobalt/nickel carbonate hydroxide on copper nitride nanowires for highly efficient water splitting. Appl. Catal. B (2021). https://doi.org/10.1016/j.apcatb.2021.120148
- J. Ding, L. Zhong, Q. Huang, Y. Guo, T. Miao et al., Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting. Carbon 177, 160–170 (2021). https://doi.org/10.1016/j.carbon.2021.01.160
- K. Karthick, A.B. Mansoor Basha, A. Sivakumaran, S. Kundu, Enhancement of her kinetics with rhnife for high-rate water electrolysis. Catal. Sci. Technol. 10(11), 3681–3693 (2020). https://doi.org/10.1039/d0cy00310g
- J. Li, Q. Zhou, Z. Shen, S. Li, J. Pu et al., Synergistic effect of ultrafine nano-ru decorated cobalt carbonate hydroxides nanowires for accelerated alkaline hydrogen evolution reaction. Electrochim. Acta 331, 135367 (2020). https://doi.org/10.1016/j.electacta.2019.135367
- H.T. Le, D.T. Tran, T.H. Nguyen, V.A. Dinh, N.H. Kim et al., Single platinum atoms implanted 2d lateral anion-intercalated metal hydroxides of Ni2(OH)2(NO3)2 as efficient catalyst for high-yield water splitting. Appl. Catal. B 317, 121684 (2022). https://doi.org/10.1016/j.apcatb.2022.121684
- M. Zhao, J. Du, H. Lei, L. Pei, Z. Gong et al., Enhanced electrocatalytic activity of feni alloy quantum dot-decorated cobalt carbonate hydroxide nanosword arrays for effective overall water splitting. Nanoscale 14(8), 3191–3199 (2022). https://doi.org/10.1039/d1nr08035k
- S.-Q. Liu, M.-R. Gao, S. Liu, J.-L. Luo, Hierarchically assembling cobalt/nickel carbonate hydroxide on copper nitride nanowires for highly efficient water splitting. Appl. Catal. B 292, 120148 (2021). https://doi.org/10.1016/j.apcatb.2021.120148
- H. Yi, X. Zhang, R. Zheng, S. Song, Q. An et al., Rich se nanops modified cobalt carbonate hydroxide as an efficient electrocatalyst for boosted hydrogen evolution in alkaline conditions. Appl. Surf. Sci. 565, 150505 (2021). https://doi.org/10.1016/j.apsusc.2021.150505
- Y. Zeng, Z. Cao, J. Liao, H. Liang, B. Wei et al., Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B 292, 120160 (2021). https://doi.org/10.1016/j.apcatb.2021.120160
- Y. Qiu, Z. Liu, Q. Yang, X. Zhang, J. Liu et al., Atmospheric-temperature chain reaction towards ultrathin non-crystal-phase construction for highly efficient water splitting. Chemistry 28(51), e202200683 (2022). https://doi.org/10.1002/chem.202200683
- M. Song, Z. Zhang, Q. Li, W. Jin, Z. Wu et al., Ni-foam supported Co(OH)F and Co-P nanoarrays for energy-efficient hydrogen production via urea electrolysis. J. Mater. Chem. A 7(8), 3697–3703 (2019). https://doi.org/10.1039/C8TA10985K
References
B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51(7), 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
S. Li, P. Miao, Y. Zhang, J. Wu, B. Zhang et al., Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 33(6), e2000086 (2021). https://doi.org/10.1002/adma.202000086
H.-J. Liu, C.-Y. Chiang, Y.-S. Wu, L.-R. Lin, Y.-C. Ye et al., Breaking the relation between activity and stability of the oxygen-evolution reaction by highly doping Ru in wide-band-gap SrTiO3 as electrocatalyst. ACS Catal. (2022). https://doi.org/10.1021/acscatal.1c05539
R. Li, D. Wang, Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 12(9), 2103564 (2022). https://doi.org/10.1002/aenm.202103564
H. Abe, J. Liu, K. Ariga, Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater. Today 19(1), 12–18 (2016). https://doi.org/10.1016/j.mattod.2015.08.021
M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
J. Liu, S. Duan, H. Shi, T. Wang, X. Yang et al., Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises. Angew. Chem. Int. Ed. 61, e202210753 (2022). https://doi.org/10.1002/anie.202210753
M.D. Staples, R. Malina, S.R.H. Barrett, The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat. Energy 2(2), 16202 (2017). https://doi.org/10.1038/nenergy.2016.202
J. Liang, F. Ma, S. Hwang, X. Wang, J. Sokolowski et al., Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 3(4), 956–991 (2019). https://doi.org/10.1016/j.joule.2019.03.014
P.E. Brockway, A. Owen, L.I. Brand-Correa, L. Hardt, Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 4(7), 612–621 (2019). https://doi.org/10.1038/s41560-019-0425-z
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science (2017). https://doi.org/10.1126/science.aad4998
H. Jin, L.W. Wong, K.H. Lai, X. Zheng, S.P. Lau et al., N-stabilized metal single atoms enabled rich defects for noble-metal alloy toward superior water reduction. EcoMat (2022). https://doi.org/10.1002/eom2.12267
Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei et al., Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2(4), 304–313 (2019). https://doi.org/10.1038/s41929-019-0246-2
X. Liu, S. Xi, H. Kim, A. Kumar, J. Lee et al., Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction. Nat. Commun. 12(1), 5676 (2021). https://doi.org/10.1038/s41467-021-26025-0
B. Huang, Y. Zhao, Iridium-based electrocatalysts toward sustainable energy conversion. EcoMat 4(2), e12176 (2022). https://doi.org/10.1002/eom2.12176
J. Sun, J. Li, Z. Li, C. Li, G. Ren et al., Modulating the electronic structure on cobalt sites by compatible heterojunction fabrication for greatly improved overall water/seawater electrolysis. ACS Sustain. Chem. Eng. 10(30), 9980–9990 (2022). https://doi.org/10.1021/acssuschemeng.2c02571
A. Goswami, D. Ghosh, D. Pradhan, K. Biradha, In situ grown mn(II) MOF upon Nickel Foam acts as a robust self-supporting bifunctional electrode for overall water splitting: a bimetallic synergistic collaboration strategy. ACS Appl. Mater. Interfaces 14(26), 29722–29734 (2022). https://doi.org/10.1021/acsami.2c04304
Z. Chen, J. Chang, C. Liang, W. Wang, Y. Li et al., Size-dependent and support-enhanced electrocatalysis of 2H-MoS2 for hydrogen evolution. Nano Today 46, 101592 (2022). https://doi.org/10.1016/j.nantod.2022.101592
B. Zhang, Z. Wu, W. Shao, Y. Gao, W. Wang et al., Interfacial atom-substitution engineered transition-metal hydroxide nanofibers with high-valence fe for efficient electrochemical water oxidation. Angew. Chem. Int. Ed. 61(13), e202115331 (2022). https://doi.org/10.1002/anie.202115331
C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu et al., Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13(1), 86–95 (2020). https://doi.org/10.1039/C9EE02388G
M. Wang, Z. Wang, X. Gong, Z. Guo, The intensification technologies to water electrolysis for hydrogen production: a review. Renew. Sust. Energy Rev. 29, 573–588 (2014). https://doi.org/10.1016/j.rser.2013.08.090
B. You, Y. Sun, Chalcogenide and phosphide solid-state electrocatalysts for hydrogen generation. ChemPlusChem 81(10), 1045–1055 (2016). https://doi.org/10.1002/cplu.201600029
F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu et al., Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12(1), 4182 (2021). https://doi.org/10.1038/s41467-021-24529-3
L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo et al., Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13(10), 3439–3446 (2020). https://doi.org/10.1039/D0EE00921K
H.C. Fu, Q. Zhang, J. Luo, L. Shen, X.H. Chen et al., Boosting hydrogen evolution reaction activities of three-dimensional flower-like tungsten carbonitride via anion regulation. ACS Sustain. Chem. Eng. 8(37), 14109–14116 (2020). https://doi.org/10.1021/acssuschemeng.0c04773
D. Jiang, Y. Xu, R. Yang, D. Li, S. Meng et al., CoP3/CoMoP heterogeneous nanosheet arrays as robust electrocatalyst for ph-universal hydrogen evolution reaction. ACS Sustain. Chem. Eng. 7(10), 9309–9317 (2019). https://doi.org/10.1021/acssuschemeng.9b00357
X. Zhang, H. Yi, Q. An, S. Song, Recent advances in engineering cobalt carbonate hydroxide for enhanced alkaline water splitting. J. Alloys Compd. 887, 161405 (2021). https://doi.org/10.1016/j.jallcom.2021.161405
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012). https://doi.org/10.1038/nature11115
Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen et al., A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(8), 2429–2434 (2013). https://doi.org/10.1039/C3EE41485J
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/B800489G
X. Zheng, B. Zhang, P. De Luna, Y. Liang, R. Comin et al., Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft x-ray absorption. Nat. Chem. 10(2), 149–154 (2018). https://doi.org/10.1038/nchem.2886
B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352(6283), 333–337 (2016). https://doi.org/10.1126/science.aaf1525
W.H. Lee, C. Lim, S.Y. Lee, K.H. Chae, C.H. Choi et al., Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration. Nano Energy 84, 105859 (2021). https://doi.org/10.1016/j.nanoen.2021.105859
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017). https://doi.org/10.1038/s41570-016-0003
W.H. Lee, Y.-J. Ko, Y. Choi, S.Y. Lee, C.H. Choi et al., Highly selective and scalable CO2 to CO: electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy 76, 105030 (2020). https://doi.org/10.1016/j.nanoen.2020.105030
W.H. Lee, C. Lim, E. Ban, S. Bae, J. Ko et al., W@Ag dendrites as efficient and durable electrocatalyst for solar-to-CO conversion using scalable photovoltaic-electrochemical system. Appl. Catal. B-Environ. 297, 120427 (2021). https://doi.org/10.1016/j.apcatb.2021.120427
R. Frydendal, E.A. Paoli, B.P. Knudsen, B. Wickman, P. Malacrida et al., Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses. ChemElectroChem 1(12), 2075–2081 (2014). https://doi.org/10.1002/celc.201402262
Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanops for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3(3), 399–404 (2012). https://doi.org/10.1021/jz2016507
T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanops and bulk materials. ACS Catal. 2(8), 1765–1772 (2012). https://doi.org/10.1021/cs3003098
W.H. Lee, M.H. Han, U. Lee, K.H. Chae, H. Kim et al., Oxygen vacancies induced NiFe-hydroxide as a scalable, efficient, and stable electrode for alkaline overall water splitting. ACS Sustain. Chem. Eng. 8(37), 14071–14081 (2020). https://doi.org/10.1021/acssuschemeng.0c04542
W.H. Lee, Y.-J. Ko, J.H. Kim, C.H. Choi, K.H. Chae et al., High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nat. Commun. 12(1), 4271 (2021). https://doi.org/10.1038/s41467-021-24578-8
C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013). https://doi.org/10.1021/ja407115p
L. Tong, L. Duan, Y. Xu, T. Privalov, L. Sun, Structural modifications of mononuclear ruthenium complexes: A combined experimental and theoretical study on the kinetics of Ruthenium-catalyzed water oxidation. Angew. Chem. Int. Ed. 50(2), 445–449 (2011). https://doi.org/10.1002/anie.201005141
D.Y. Kuo, J.K. Kawasaki, J.N. Nelson, J. Kloppenburg, G. Hautier et al., Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J. Am. Chem. Soc. 139(9), 3473–3479 (2017). https://doi.org/10.1021/jacs.6b11932
S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu et al., Low ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl. Catal. B 297, 120442 (2021). https://doi.org/10.1016/j.apcatb.2021.120442
Q. Zhang, X. Liang, H. Chen, W. Yan, L. Shi et al., Identifying key structural subunits and their synergism in low-Iridium triple perovskites for oxygen evolution in acidic media. Chem. Mater. 32(9), 3904–3910 (2020). https://doi.org/10.1021/acs.chemmater.0c00081
Y. Li, J. Abbott, Y. Sun, J. Sun, Y. Du et al., Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various ph values. Appl. Catal. B 258, 117952 (2019). https://doi.org/10.1016/j.apcatb.2019.117952
E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4(5), 1426–1440 (2014). https://doi.org/10.1021/cs4011875
R. Kötz, H. Neff, S. Stucki, Anodic iridium oxide films: XPS-studies of oxidation state changes and. J. The Electrochem. Soc. 131(1), 72–77 (1984). https://doi.org/10.1149/1.2115548
R. Kötz, H.J. Lewerenz, S. Stucki, Xps studies of oxygen evolution on Ru and RuO2 anodes. J. Electrochem. Soc. 130(4), 825–829 (1983). https://doi.org/10.1149/1.2119829
B. Zhang, Y.H. Lui, H. Ni, S. Hu, Bimetallic (FexNi1−x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media. Nano Energy 38, 553–560 (2017). https://doi.org/10.1016/j.nanoen.2017.06.032
J. Wang, H.X. Zhong, Z.L. Wang, F.L. Meng, X.B. Zhang, Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10(2), 2342–2348 (2016). https://doi.org/10.1021/acsnano.5b07126
X. Xu, H. Liang, F. Ming, Z. Qi, Y. Xie et al., Prussian blue analogues derived penroseite (Ni, Co)Se2 nanocages anchored on 3d graphene aerogel for efficient water splitting. ACS Catal. 7(9), 6394–6399 (2017). https://doi.org/10.1021/acscatal.7b02079
S. Pan, H. Li, D. Liu, R. Huang, X. Pan et al., Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13(1), 2294 (2022). https://doi.org/10.1038/s41467-022-30064-6
A. Moysiadou, S. Lee, C.-S. Hsu, H.M. Chen, X. Hu, Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 142(27), 11901–11914 (2020). https://doi.org/10.1021/jacs.0c04867
H.B. Tao, J. Zhang, J. Chen, L. Zhang, Y. Xu et al., Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 141(35), 13803–13811 (2019). https://doi.org/10.1021/jacs.9b01834
L. Wang, L. Wang, Y. Du, X. Xu, S.X. Dou, Progress and perspectives of bismuth oxyhalides in catalytic applications. Mater. Today Phys. 16, 100294 (2021). https://doi.org/10.1016/j.mtphys.2020.100294
F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546
A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9(5), 457–465 (2017). https://doi.org/10.1038/nchem.2695
X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6(2), 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432
X. Liu, W. Liu, M. Ko, M. Park, M.G. Kim et al., Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 25(36), 5799–5808 (2015). https://doi.org/10.1002/adfm.201502217
J. Huang, J. Chen, T. Yao, J. He, S. Jiang et al., Coooh nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54(30), 8722–8727 (2015). https://doi.org/10.1002/anie.201502836
Y. Zhan, G. Du, S. Yang, C. Xu, M. Lu et al., Development of cobalt hydroxide as a bifunctional catalyst for oxygen electrocatalysis in alkaline solution. ACS Appl. Mater. Interfaces 7(23), 12930–12936 (2015). https://doi.org/10.1021/acsami.5b02670
M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137(10), 3638–3648 (2015). https://doi.org/10.1021/jacs.5b00281
X. Zou, A. Goswami, T. Asefa, Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc–cobalt layered double hydroxide. J. Am. Chem. Soc. 135(46), 17242–17245 (2013). https://doi.org/10.1021/ja407174u
J. Ping, Y. Wang, Q. Lu, B. Chen, J. Chen et al., Self-assembly of single-layer coal-layered double hydroxide nanosheets on 3d graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 28(35), 7640–7645 (2016). https://doi.org/10.1002/adma.201601019
J. Ding, S. Ji, H. Wang, H. Gai, F. Liu et al., Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis. Int. J. Hydrog. Energy 44(5), 2832–2840 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.031
Y. Xu, A. Sumboja, Y. Zong, J.A. Darr, Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc–air batteries: Examining the effects of compositional tuning on oer and orr activity. Catal. Sci. Technol. 10(7), 2173–2182 (2020). https://doi.org/10.1039/C9CY02185J
A. Singh, A. Singh, G. Kociok-Köhn, R. Bhimireddi, A. Singh et al., Ternary copper molybdenum sulfide (Cu2MoS4) nanops anchored on pani/rgo as electrocatalysts for oxygen evolution reaction (OER). Appl. Organomet Chem. 36(6), e6683 (2022). https://doi.org/10.1002/aoc.6683
D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanops grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136(13), 4897–4900 (2014). https://doi.org/10.1021/ja501497n
Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu et al., Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136(44), 15670–15675 (2014). https://doi.org/10.1021/ja5085157
C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, H.N. Alshareef, Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016). https://doi.org/10.1002/adma.201503906
N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54(21), 6251–6254 (2015). https://doi.org/10.1002/anie.201501616
P. Wang, F. Song, R. Amal, Y.H. Ng, X. Hu, Efficient water splitting catalyzed by cobalt phosphide-based nanoneedle arrays supported on carbon cloth. Chemsuschem 9(5), 472–477 (2016). https://doi.org/10.1002/cssc.201501599
D. Li, H. Baydoun, C.N. Verani, S.L. Brock, Efficient water oxidation using CoMnP nanops. J. Am. Chem. Soc. 138(12), 4006–4009 (2016). https://doi.org/10.1021/jacs.6b01543
X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 26(23), 4067–4077 (2016). https://doi.org/10.1002/adfm.201505509
J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan et al., A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 30(5), 1705045 (2018). https://doi.org/10.1002/adma.201705045
K. Jin, J. Park, J. Lee, K.D. Yang, G.K. Pradhan et al., Hydrated manganese(II) phosphate (Mn3(Po4)2·3H2O) as a water oxidation catalyst. J. Am. Chem. Soc. 136(20), 7435–7443 (2014). https://doi.org/10.1021/ja5026529
H. Kim, J. Park, I. Park, K. Jin, S.E. Jerng et al., Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 6(1), 8253 (2015). https://doi.org/10.1038/ncomms9253
G.S. Hutchings, Y. Zhang, J. Li, B.T. Yonemoto, X. Zhou et al., In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 137(12), 4223–4229 (2015). https://doi.org/10.1021/jacs.5b01006
J.R. Petrie, H. Jeen, S.C. Barron, T.L. Meyer, H.N. Lee, Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 138(23), 7252–7255 (2016). https://doi.org/10.1021/jacs.6b03520
L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo et al., Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55(17), 5277–5281 (2016). https://doi.org/10.1002/anie.201600687
X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li et al., Hollow fluffy co3o4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl. Mate. Interfaces 7(36), 20322–20331 (2015). https://doi.org/10.1021/acsami.5b05989
X. Deng, H. Tüysüz, Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges. ACS Catal. 4(10), 3701–3714 (2014). https://doi.org/10.1021/cs500713d
P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10(1), 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
H. Ben Yahia, M. Shikano, M. Tabuchi, H. Kobayashi, M. Avdeev et al., Synthesis and characterization of the crystal and magnetic structures and properties of the hydroxyfluorides Fe(OH)F and Co(OH)F. Inor. Chem. 53(1), 365–374 (2014). https://doi.org/10.1021/ic402294g
Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu et al., A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanops strongly coupled to B. N-decorated graphene. Angew. Chem. Int. Ed. 56(25), 7121–7125 (2017). https://doi.org/10.1002/anie.201702430
Y. Zhang, B. Cui, O. Derr, Z. Yao, Z. Qin et al., Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale 6(6), 3376–3383 (2014). https://doi.org/10.1039/c3nr05193e
S. Surendran, A. Sivanantham, S. Shanmugam, U. Sim, R. Kalai Selvan, Ni2P2O7 microsheets as efficient bi-functional electrocatalysts for water splitting application. Sustain. Energy Fuels 3(9), 2435–2446 (2019). https://doi.org/10.1039/C9SE00265K
F.-T. Tsai, Y.-T. Deng, C.-W. Pao, J.-L. Chen, J.-F. Lee et al., The her/oer mechanistic study of an feconi-based electrocatalyst for alkaline water splitting. J. Mater. Chem. A 8(19), 9939–9950 (2020). https://doi.org/10.1039/D0TA01877E
W. Zhang, L. Cui, J. Liu, Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd. 821, 153542 (2020). https://doi.org/10.1016/j.jallcom.2019.153542
M. Qin, Y. Wang, H. Zhang, M. Humayun, X. Xu et al., Hierarchical Co(OH)F/CoFe-LDH heterojunction enabling high-performance overall water-splitting. CrystEngComm 24(34), 6018–6030 (2022). https://doi.org/10.1039/d2ce00817c
T. Tang, W.-J. Jiang, S. Niu, N. Liu, H. Luo et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139(24), 8320–8328 (2017). https://doi.org/10.1021/jacs.7b03507
Y. Yang, X. Luan, X. Dai, X. Zhang, H. Qiao et al., Partially sulfurated ultrathin nickel-iron carbonate hydroxides nanosheet boosting the oxygen evolution reaction. Electrochim. Acta 309, 57–64 (2019). https://doi.org/10.1016/j.electacta.2019.04.091
J. Kang, J. Sheng, J. Xie, H. Ye, J. Chen et al., Tubular Cu(OH)2 arrays decorated with nanothorny Co–Ni bimetallic carbonate hydroxide supported on cu foam: A 3D hierarchical core–shell efficient electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 6(21), 10064–10073 (2018). https://doi.org/10.1039/c8ta02492h
A. Karmakar, H.S. Chavan, S.M. Jeong, J.S. Cho, Mixed transition metal carbonate hydroxide-based nanostructured electrocatalysts for alkaline oxygen evolution: Status and perspectives. Adv. Energy Sustain. Res. 3(9), 2200071 (2022). https://doi.org/10.1002/aesr.202200071
W. Wen, J.-M. Wu, L.-L. Lai, G.-P. Ling, M.-H. Cao, Hydrothermal synthesis of needle-like hyperbranched Ni(SO4)0.3(OH)1.4 bundles and their morphology-retentive decompositions to NiO for lithium storage. CrystEngComm 14(20), 6565–6572 (2012). https://doi.org/10.1039/c2ce26127h
G.G.C. Arizaga, K.G. Satyanarayana, F. Wypych, Layered hydroxide salts: synthesis, properties and potential applications. Solid State Ion. 178(15), 1143–1162 (2007). https://doi.org/10.1016/j.ssi.2007.04.016
L. Li, J. Liang, M. Luo, J. Fang, Highly qualified fabrication of Ni(SO4)0.3(OH)1.4 nanobelts via a facile TEA-assisted hydrothermal route. Powder Technol. 226, 143–146 (2012). https://doi.org/10.1016/j.powtec.2012.04.033
N. Ma, C. Fei, J. Wang, Y. Wang, Fabrication of NiFe-MOF/cobalt carbonate hydroxide hydrate heterostructure for a high-performance electrocatalyst of oxygen evolution reaction. J. Alloys Compd. 917, 165511 (2022). https://doi.org/10.1016/j.jallcom.2022.165511
F.-G. Wang, B. Liu, Z.-Y. Lin, X. Liu, Y. Ma et al., Constructing partially amorphous borate doped iron-nickel nitrate hydroxide nanoarrays by rapid microwave activation for oxygen evolution. Appl. Surf. Sci. 592, 153245 (2022). https://doi.org/10.1016/j.apsusc.2022.153245
S. Wan, J. Qi, W. Zhang, W. Wang, S. Zhang et al., Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29(28), 1700286 (2017). https://doi.org/10.1002/adma.201700286
H. Jiang, Q. He, X. Li, X. Su, Y. Zhang et al., Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 31(8), 1805127 (2019). https://doi.org/10.1002/adma.201805127
Z. Jia, Nickel hydroxide sulfate nanobelts: Hydrothermal synthesis, electrochemical property and conversion to porous NiO nanobelts, In 2011 International Conference on Materials for Renewable Energy & Environment. 1, 673–677 (2011)
W. Maalej, S. Vilminot, G. André, M. Kurmoo, Synthesis, magnetic structure, and properties of a layered cobalt−hydroxide ferromagnet, Co5(OH)6(SeO4)2(H2O)4. Inorg. Chem. 49(6), 3019–3024 (2010). https://doi.org/10.1021/ic9025552
M.A. Ballesteros, M.A. Ulibarri, V. Rives, C. Barriga, Optimum conditions for intercalation of lacunary tungstophosphate(V) anions into layered Ni(II)–Zn(II) hydroxyacetate. J. Solid State Chem. 181(11), 3086–3094 (2008). https://doi.org/10.1016/j.jssc.2008.07.037
M. Rajamathi, P.V. Kamath, Urea hydrolysis of cobalt(II) nitrate melts: Synthesis of novel hydroxides and hydroxynitrates. Int. J. Inorg. Mater. 3(7), 901–906 (2001). https://doi.org/10.1016/S1466-6049(01)00090-3
L. Markov, K. Petrov, V. Petkov, On the thermal decomposition of some cobalt hydroxide nitrates. Thermochim. Acta 106, 283–292 (1986). https://doi.org/10.1016/0040-6031(86)85140-1
H. Effenberger, Verfeinerung der kristallstruktur des monoklinen dikupfer(II)-trihydroxi-nitrates Cu2(NO3)(OH)3. Z. Kristallogr. 165(1–4), 127–136 (1983). https://doi.org/10.1524/zkri.1983.165.14.127
S.P. Newman, W. Jones, Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. J. Solid State Chem. 148(1), 26–40 (1999). https://doi.org/10.1006/jssc.1999.8330
Y. Wang, W. Ding, S. Chen, Y. Nie, K. Xiong et al., Cobalt carbonate hydroxide/C: an efficient dual electrocatalyst for oxygen reduction/evolution reactions. Chem. Comm. 50(98), 15529–15532 (2014). https://doi.org/10.1039/C4CC07722A
S. Wang, G. Lü, W. Tang, Synthesis and crystal structure of Co2(OH)2CO3 by rietveld method. Powder Differ. 25(S1), S7–S10 (2010). https://doi.org/10.1154/1.3478978
Z. Zhang, L. Yin, Mn-doped Co2(OH)3Cl xerogels with 3d interconnected mesoporous structures as lithium ion battery anodes with improved electrochemical performance. J. Mater. Chem. A 3(34), 17659–17668 (2015). https://doi.org/10.1039/c5ta03426d
X.G. Zheng, M. Hagihala, M. Fujihala, T. Kawae, Recent developments in the magnetic study of the deformed pyrochlore lattice M2(OH)3X (M = 3d magnetic ions, X = Cl, Br)-exotic magnetic order in Ni2(OH)3Cl and controlled spin-spin interactions in Co2(OH)3Cl1-xBrx and (Co1-xFex)2(OH)3Cl. J. Phys. Conf. Ser. 145, 012034 (2009). https://doi.org/10.1088/1742-6596/145/1/012034
L. Hui, Y. Xue, D. Jia, H. Yu, C. Zhang et al., Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting. Adv. Energy Mater. 8(20), 1800175 (2018). https://doi.org/10.1002/aenm.201800175
S. Zhang, B. Ni, H. Li, H. Lin, H. Zhu et al., Cobalt carbonate hydroxide superstructures for oxygen evolution reactions. Chem. Comm. 53(57), 8010–8013 (2017). https://doi.org/10.1039/C7CC04604A
X. He, B. Liu, S. Zhang, H. Li, J. Liu et al., Nickel nitrate hydroxide holey nanosheets for efficient oxygen evolution electrocatalysis in alkaline condition. Electrocatalysis 13(1), 37–46 (2022). https://doi.org/10.1007/s12678-021-00686-3
W. Wang, Y. Zhong, X. Zhang, S. Zhu, Y. Tao et al., Fe-modified Co2(OH)3Cl microspheres for highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 582, 803–814 (2021). https://doi.org/10.1016/j.jcis.2020.08.095
D. Potphode, M.S. Sayed, T. Lama Tamang, J.-J. Shim, High-performance binder-free flower-like (Ni0.66Co0.3Mn0.04)2(OH)2(CO3) array synthesized using ascorbic acid for supercapacitor applications. Chem. Eng. J 378, 122129 (2019). https://doi.org/10.1016/j.cej.2019.122129
Y. Ma, J. Chu, Z. Li, D. Rakov, X. Han et al., Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution. Small 14(52), 1803783 (2018). https://doi.org/10.1002/smll.201803783
H. Jiang, Q. He, X. Li, X. Su, Y. Zhang et al., Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 31(8), e1805127 (2019). https://doi.org/10.1002/adma.201805127
W. Wang, Y. Zhong, X. Zhang, S. Zhu, Y. Tao et al., Fe-modified co2(oh)3cl microspheres for highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 582(Pt B), 803–814 (2021). https://doi.org/10.1016/j.jcis.2020.08.095
Z. Liang, Z. Huang, H. Yuan, Z. Yang, C. Zhang et al., Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chem. Sci. 9(34), 6961–6968 (2018). https://doi.org/10.1039/c8sc02294a
F. Shang, S. Wan, X. Gao, W. Zhang, R. Cao, Engineering hierarchical-dimensional Co(OH)F into CoP superstructure for electrocatalytic water splitting. ChemCatChem 12(19), 4770–4774 (2020). https://doi.org/10.1002/cctc.202000993
Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31(17), 1807134 (2019). https://doi.org/10.1002/adma.201807134
J.-Y. Xie, R.-Y. Fan, J.-Y. Fu, Y.-N. Zhen, M.-X. Li et al., Double doping of v and f on Co3O4 nanoneedles as efficient electrocatalyst for oxygen evolution. Int. J. Hydrog. Energy 46(38), 19962–19970 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.141
J. Lv, X. Yang, H.-Y. Zang, Y.-H. Wang, Y.-G. Li, Ultralong needle-like N-doped Co(OH)F on carbon fiber paper with abundant oxygen vacancies as an efficient oxygen evolution reaction catalyst. Mater. Chem. Front. 2(11), 2045–2053 (2018). https://doi.org/10.1039/c8qm00405f
G. Zhang, B. Wang, L. Li, S. Yang, Phosphorus and yttrium codoped Co(OH)F nanoarray as highly efficient and bifunctional electrocatalysts for overall water splitting. Small 15(42), e1904105 (2019). https://doi.org/10.1002/smll.201904105
Q. Lin, D. Guo, L. Zhou, L. Yang, H. Jin et al., Tuning the interface of Co1-xS/Co(OH)F by atomic replacement strategy toward high-performance electrocatalytic oxygen evolution. ACS Nano 16(9), 15460–15470 (2022). https://doi.org/10.1021/acsnano.2c07588
Z. Liang, Z. Yang, Z. Huang, J. Qi, M. Chen et al., Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochim. Acta 271, 526–536 (2018). https://doi.org/10.1016/j.electacta.2018.03.186
S. Zhou, H. Jang, Q. Qin, Z. Li, M.G. Kim et al., Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci. China Mater. 64(6), 1408–1417 (2021). https://doi.org/10.1007/s40843-020-1536-6
S. Zhang, B. Ni, H. Li, H. Lin, H. Zhu, H. Wang, X. Wang, Cobalt carbonate hydroxide superstructures for oxygen evolution reactions. Chem. Commun. 53(57), 8010–8013 (2017). https://doi.org/10.1039/c7cc04604a
J. Li, X. Li, Y. Luo, Q. Cen, Q. Ye et al., Cobalt carbonate hydroxide mesostructure with high surface area for enhanced electrocatalytic oxygen evolution. Int. J. Hydrog. Energy 43(20), 9635–9643 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.229
G. Li, F. Li, Y. Zhao, W. Li, Z. Zhao et al., Selective electrochemical alkaline seawater oxidation catalyzed by cobalt carbonate hydroxide nanorod arrays with sequential proton-electron transfer properties. ACS Sustain. Chem. Eng. 9(2), 905–913 (2021). https://doi.org/10.1021/acssuschemeng.0c07953
W. Wang, M. Ma, M. Kong, Y. Yao, N. Wei, Cobalt carbonate hydroxide hydrate nanowires array: A three-dimensional catalyst electrode for effective water oxidation. Micro Nano Lett. 12(4), 264–266 (2017). https://doi.org/10.1049/mnl.2016.0639
M. Xie, L. Yang, Y. Ji, Z. Wang, X. Ren et al., An amorphous co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale 9(43), 16612–16615 (2017). https://doi.org/10.1039/c7nr07269d
Y. Jia, Y.-N. Li, Z.-M. Wang, F.-M. Li, P.-J. Jin et al., Porous cobalt carbonate hydroxide nanospheres towards oxygen evolution reaction. Chem. Eng. J. 417, 128066 (2021). https://doi.org/10.1016/j.cej.2020.128066
Y. Yan, Facile synthesis of carbon cloth supported cobalt carbonate hydroxide hydrate nanoarrays for highly efficient oxygen evolution reaction. Front. Chem. 9, 754357 (2021). https://doi.org/10.3389/fchem.2021.754357
C. Tang, R. Zhang, W. Lu, L. He, X. Jiang et al., Fe-doped cop nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 29(2), 1602441 (2017). https://doi.org/10.1002/adma.201602441
S. Zhang, B. Huang, L. Wang, X. Zhang, H. Zhu et al., Boosted oxygen evolution reactivity via atomic iron doping in cobalt carbonate hydroxide hydrate. ACS Appl. Mater. Interfaces 12(36), 40220–40228 (2020). https://doi.org/10.1021/acsami.0c07260
K. Karthick, S. Subhashini, R. Kumar, S. Sethuram Markandaraj, M.M. Teepikha et al., Cubic nanostructures of nickel-cobalt carbonate hydroxide hydrate as a high-performance oxygen evolution reaction electrocatalyst in alkaline and near-neutral media. Inorg. Chem. 59(22), 16690–16702 (2020). https://doi.org/10.1021/acs.inorgchem.0c02680
A. Karmakar, S.K. Srivastava, Transition-metal-substituted cobalt carbonate hydroxide nanostructures as electrocatalysts in alkaline oxygen evolution reaction. ACS Appl. Energy Mater. 3(8), 7335–7344 (2020). https://doi.org/10.1021/acsaem.0c00623
A. Karmakar, S.K. Srivastava, Hierarchically hollow interconnected rings of nickel substituted cobalt carbonate hydroxide hydrate as promising oxygen evolution electrocatalyst. Int. J. Hydrog. Energy 47(53), 22430–22441 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.062
M. Jin, J. Li, J. Gao, W. Liu, J. Han et al., Atomic-level tungsten doping triggered low overpotential for electrocatalytic water splitting. J. Colloid Interface Sci. 587, 581–589 (2021). https://doi.org/10.1016/j.jcis.2020.11.015
J. Zhao, X. Liu, X. Ren, B. Du, X. Kuang et al., Chromium doping: a new approach to regulate electronic structure of cobalt carbonate hydroxide for oxygen evolution improvement. J. Colloid Interface Sci. 609, 414–422 (2022). https://doi.org/10.1016/j.jcis.2021.12.020
M. Dai, H. Fan, G. Xu, M. Wang, S. Zhang et al., Boosting electrocatalytic oxygen evolution using ultrathin carbon protected iron-cobalt carbonate hydroxide nanoneedle arrays. J. Power Sources 450, 227639 (2020). https://doi.org/10.1016/j.jpowsour.2019.227639
T. Tang, W.-J. Jiang, S. Niu, L.-P. Yuan, J.-S. Hu et al., Hetero-coupling of a carbonate hydroxide and sulfide for efficient and robust water oxidation. J. Mater. Chem. A 7(38), 21959–21965 (2019). https://doi.org/10.1039/C9TA07882G
J. Kang, J. Chen, J. Sheng, J. Xie, X.-Z. Fu et al., Pd nanop-interspersed hierarchical copper hydroxide@nickel cobalt hydroxide carbonate tubular arrays as efficient electrocatalysts for oxygen evolution reaction. ACS Sustain. Chem. Eng. 7(19), 16459–16466 (2019). https://doi.org/10.1021/acssuschemeng.9b03653
Y. Liu, Y. Wang, H. Wen, Y. Han, S. Deng, Green preparation of CNTs/graphite supported NiFe carbonate hydroxides for oxygen evolution reaction. ChemCatChem 14(18), e202200453 (2022). https://doi.org/10.1002/cctc.202200453
X. He, B. Liu, S. Zhang, H. Li, J. Liu et al., Nickel nitrate hydroxide holey nanosheets for efficient oxygen evolution electrocatalysis in alkaline condition. Electrocatalysis 13(1), 37–46 (2021). https://doi.org/10.1007/s12678-021-00686-3
Y. Ma, J. Chu, Z. Li, D. Rakov, X. Han et al., Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution. Small 14(52), e1803783 (2018). https://doi.org/10.1002/smll.201803783
J. Liu, X. He, Y. Wang, Z. Sun, Y. Liu et al., Deep reconstruction of highly disordered iron/nickel nitrate hydroxide nanoplates for high-performance oxygen evolution reaction in alkaline media. J. Alloys Compd. 927, 167060 (2022). https://doi.org/10.1016/j.jallcom.2022.167060
C. Li, G. Wang, K. Li, Y. Liu, B. Yuan et al., Feni-based coordination crystal directly serving as efficient oxygen evolution reaction catalyst and its density functional theory insight on the active site change mechanism. ACS Appl. Mater. Interfaces 11(23), 20778–20787 (2019). https://doi.org/10.1021/acsami.9b02994
M.B. Stevens, C.D.M. Trang, L.J. Enman, J. Deng, S.W. Boettcher, Reactive fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139(33), 11361–11364 (2017). https://doi.org/10.1021/jacs.7b07117
F. Song, M.M. Busch, B. Lassalle-Kaiser, C.-S. Hsu, E. Petkucheva et al., An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 5(3), 558–568 (2019). https://doi.org/10.1021/acscentsci.9b00053
S. Niu, Y. Sun, G. Sun, D. Rakov, Y. Li et al., Stepwise electrochemical construction of FeOOH/Ni(OH)2 on Ni foam for enhanced electrocatalytic oxygen evolution. ACS Appl. Energy Mater. 2(5), 3927–3935 (2019). https://doi.org/10.1021/acsaem.9b00785
Y. Ma, Z. Lu, S. Li, J. Wu, J. Wang et al., In situ growth of amorphous fe(oh)3 on nickel nitrate hydroxide nanoarrays for enhanced electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 12(11), 12668–12676 (2020). https://doi.org/10.1021/acsami.9b19437
Y.N. Zhou, Y. Ma, Z.N. Shi, J.C. Zhou, B. Dong et al., Boosting oxygen evolution by nickel nitrate hydroxide with abundant grain boundaries via segregated high-valence molybdenum. J. Colloid Interface Sci. 613, 224–233 (2022). https://doi.org/10.1016/j.jcis.2021.12.179
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
W. Lu, X. Li, F. Wei, K. Cheng, W. Li et al., Fast sulfurization of nickel foam-supported nickel-cobalt carbonate hydroxide nanowire array at room temperature for hydrogen evolution electrocatalysis. Electrochim. Acta 318, 252–261 (2019). https://doi.org/10.1016/j.electacta.2019.06.088
L. Yuan, S. Liu, S. Xu, X. Yang, J. Bian et al., Modulation of volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide. Nano Energy 82, 105732 (2021). https://doi.org/10.1016/j.nanoen.2020.105732
L. Hui, D. Jia, H. Yu, Y. Xue, Y. Li, Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting. ACS Appl. Mater. Interfaces 11(3), 2618–2625 (2019). https://doi.org/10.1021/acsami.8b01887
X. Zhang, R. Zheng, M. Jin, R. Shi, Z. Ai et al., Nicosx@cobalt carbonate hydroxide obtained by surface sulfurization for efficient and stable hydrogen evolution at large current densities. ACS Appl. Mater. Interfaces 13(30), 35647–35656 (2021). https://doi.org/10.1021/acsami.1c07504
S.-Q. Liu, M.-R. Gao, S. Liu, J.-L. Luo, Hierarchically assembling cobalt/nickel carbonate hydroxide on copper nitride nanowires for highly efficient water splitting. Appl. Catal. B (2021). https://doi.org/10.1016/j.apcatb.2021.120148
J. Ding, L. Zhong, Q. Huang, Y. Guo, T. Miao et al., Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting. Carbon 177, 160–170 (2021). https://doi.org/10.1016/j.carbon.2021.01.160
K. Karthick, A.B. Mansoor Basha, A. Sivakumaran, S. Kundu, Enhancement of her kinetics with rhnife for high-rate water electrolysis. Catal. Sci. Technol. 10(11), 3681–3693 (2020). https://doi.org/10.1039/d0cy00310g
J. Li, Q. Zhou, Z. Shen, S. Li, J. Pu et al., Synergistic effect of ultrafine nano-ru decorated cobalt carbonate hydroxides nanowires for accelerated alkaline hydrogen evolution reaction. Electrochim. Acta 331, 135367 (2020). https://doi.org/10.1016/j.electacta.2019.135367
H.T. Le, D.T. Tran, T.H. Nguyen, V.A. Dinh, N.H. Kim et al., Single platinum atoms implanted 2d lateral anion-intercalated metal hydroxides of Ni2(OH)2(NO3)2 as efficient catalyst for high-yield water splitting. Appl. Catal. B 317, 121684 (2022). https://doi.org/10.1016/j.apcatb.2022.121684
M. Zhao, J. Du, H. Lei, L. Pei, Z. Gong et al., Enhanced electrocatalytic activity of feni alloy quantum dot-decorated cobalt carbonate hydroxide nanosword arrays for effective overall water splitting. Nanoscale 14(8), 3191–3199 (2022). https://doi.org/10.1039/d1nr08035k
S.-Q. Liu, M.-R. Gao, S. Liu, J.-L. Luo, Hierarchically assembling cobalt/nickel carbonate hydroxide on copper nitride nanowires for highly efficient water splitting. Appl. Catal. B 292, 120148 (2021). https://doi.org/10.1016/j.apcatb.2021.120148
H. Yi, X. Zhang, R. Zheng, S. Song, Q. An et al., Rich se nanops modified cobalt carbonate hydroxide as an efficient electrocatalyst for boosted hydrogen evolution in alkaline conditions. Appl. Surf. Sci. 565, 150505 (2021). https://doi.org/10.1016/j.apsusc.2021.150505
Y. Zeng, Z. Cao, J. Liao, H. Liang, B. Wei et al., Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B 292, 120160 (2021). https://doi.org/10.1016/j.apcatb.2021.120160
Y. Qiu, Z. Liu, Q. Yang, X. Zhang, J. Liu et al., Atmospheric-temperature chain reaction towards ultrathin non-crystal-phase construction for highly efficient water splitting. Chemistry 28(51), e202200683 (2022). https://doi.org/10.1002/chem.202200683
M. Song, Z. Zhang, Q. Li, W. Jin, Z. Wu et al., Ni-foam supported Co(OH)F and Co-P nanoarrays for energy-efficient hydrogen production via urea electrolysis. J. Mater. Chem. A 7(8), 3697–3703 (2019). https://doi.org/10.1039/C8TA10985K