Solvent-Free Synthesis of Ultrafine Tungsten Carbide Nanoparticles-Decorated Carbon Nanosheets for Microwave Absorption
Corresponding Author: Yunchen Du
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 153
Abstract
Carbides/carbon composites are emerging as a new kind of binary dielectric systems with good microwave absorption performance. Herein, we obtain a series of tungsten carbide/carbon composites through a simple solvent-free strategy, where the solid mixture of dicyandiamide (DCA) and ammonium metatungstate (AM) is employed as the precursor. Ultrafine cubic WC1−x nanoparticles (3–4 nm) are in situ generated and uniformly dispersed on carbon nanosheets. This configuration overcomes some disadvantages of conventional carbides/carbon composites and is greatly helpful for electromagnetic dissipation. It is found that the weight ratio of DCA to AM can regulate chemical composition of these composites, while less impact on the average size of WC1−x nanoparticles. With the increase in carbon nanosheets, the relative complex permittivity and dielectric loss ability are constantly enhanced through conductive loss and polarization relaxation. The different dielectric properties endow these composites with distinguishable attenuation ability and impedance matching. When DCA/AM weight ratio is 6.0, the optimized composite can produce good microwave absorption performance, whose strongest reflection loss intensity reaches up to − 55.6 dB at 17.5 GHz and qualified absorption bandwidth covers 3.6–18.0 GHz by manipulating the thickness from 1.0 to 5.0 mm. Such a performance is superior to many conventional carbides/carbon composites.
Highlights:
1 Ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets were successfully fabricated via a simple solvent-free strategy.
2 The chemical composition of tungsten carbide/carbon composites can be easily manipulated by the weight ratio of dicyandiamide to ammonium metatungstate.
3 The advantages in good performance and simple preparation provide a promising prospect for the application of these tungsten carbide/carbon composites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
- A. Singh, M. Mishra, P. Sambyal, B. Gupta, B. Singh, A. Chandra, S. Dhawan, Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2, 3581–3593 (2014). https://doi.org/10.1039/c3ta14212d
- C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
- L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730
- H. Abbasi, M. Antunes, J. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater Sci. 103, 313 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- X. Wang, J. Shu, W. Cao, M. Zhang, J. Yuan, M. Cao, Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
- X. Sun, M. Yang, S. Yang, S. Wang, W. Yin, R. Che, Y. Li, Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15, 1902974 (2019). https://doi.org/10.1002/small.201902974
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
- P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- Y. Wang, Y. Du, R. Qiang, C. Tian, P. Xu, X. Han, Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber. Adv. Mater. Interfaces 3, 1500684 (2016). https://doi.org/10.1002/admi.201500684
- M. Cao, J. Yang, W. Song, D. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces. 4, 6949–6956 (2012). https://doi.org/10.1021/am3021069
- W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, Y. Du, Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces. 9, 19202–19214 (2017). https://doi.org/10.1021/acsami.7b04053
- X. Liu, X. Cui, Y. Chen, X. Zhang, R. Yu, G. Wang, H. Ma, Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 95, 870–878 (2015). https://doi.org/10.1016/j.carbon.2015.09.036
- D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian, X. Han, Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interfaces Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013
- S. Sankaran, K. Deshmukh, M. Ahamed, S. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A 114, 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
- Y. Wang, W. Wang, J. Sun, C. Sun, Y. Feng, Z. Li, Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance. Carbon 135, 1–11 (2018). https://doi.org/10.1016/j.carbon.2018.04.026
- X. Yang, Y. Duan, Y. Zeng, H. Pang, G. Ma, X. Dai, Experimental and theoretical evidence for temperature driving an electric-magnetic complementary effect in magnetic microwave absorbing materials. J. Mater. Chem. C 8, 1583–1590 (2020). https://doi.org/10.1039/c9tc06551b
- X. Zhang, G. Wang, Y. Wei, L. Guo, M. Cao, Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1, 12115–12122 (2013). https://doi.org/10.1039/c3ta12451g
- H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
- P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016). https://doi.org/10.1039/c6tc01718e
- L. Cui, C. Tian, L. Tang, X. Han, Y. Wang et al., Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl. Mater. Interfaces. 11, 31182–31190 (2019). https://doi.org/10.1021/acsami.9b09779
- S. Chiu, H. Yu, Y. Li, High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range. J. Phys. Chem. C 114, 1947–1952 (2010). https://doi.org/10.1021/jp905127t
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces. 8, 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 41, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng et al., In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces. 9, 6320–6331 (2017). https://doi.org/10.1021/acsami.6b15795
- X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with: in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5, 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
- X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Effects of SiC coating on microwave absorption of novel three-dimensional reticulated SiC/porous carbon foam. Ceram. Int. 45, 8660–8668 (2019). https://doi.org/10.1016/j.ceramint.2019.01.186
- M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. Part B 179, 107525 (2019). https://doi.org/10.1016/j.compositesb.2019.107525
- H. Baskey, S. Singh, M. Akhtar, K. Kar, Investigation on the dielectric properties of exfoliated graphite silicon carbide nanocomposites and their absorbing capability for the microwave radiation. IEEE Trans. Nanotechnol. 16, 453–461 (2017). https://doi.org/10.1109/tnano.2017.2682121
- Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
- S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 10, 6945–6953 (2018). https://doi.org/10.1039/c8nr01244j
- C. Li, X. Shen, R. Ding, G. Wang, Excellent microwave absorption properties based on a composite of one dimensional Mo2C@C nanorods and a PVDF matrix. RSC Adv. 9, 21243–21248 (2019). https://doi.org/10.1039/c9ra03362a
- Y. Wang, X. Han, P. Xu, D. Liu, L. Cui, H. Zhao, Y. Du, Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
- Y. Wang, C. Li, X. Han, D. Liu, H. Zhao et al., Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1, 5366–5376 (2018). https://doi.org/10.1021/acsanm.8b01479
- Q. Wu, X. Meng, X. Gao, F. Xiao, Solvent-free synthesis of zeolites: mechanism and utility. Acc. Chem. Res. 51, 1396–1403 (2018). https://doi.org/10.1021/acs.accounts.8b00057
- C. Schneidermann, N. Jäckel, S. Oswald, L. Giebeler, V. Presser, L. Borchardt, Solvent-free mechanochemical synthesis of nitrogen-doped nanoporous carbon for electrochemical energy storage. Chemsuschem 10, 2416–2424 (2017). https://doi.org/10.1002/cssc.201700459
- A. Voevodin, J. O’Neill, S. Prasad, J. Zabinski, Nanocrystalline WC and WC/a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures. J. Vac. Sci. Technol., A 17, 986–992 (1999). https://doi.org/10.1116/1.581674
- J. Kim, J. Jang, Y. Lee, Y. Kwon, Enhancement of electrocatalytic activity of platinum for hydrogen oxidation reaction by sonochemically synthesized WC1−x nanoparticles. J. Power Sources 193, 441–446 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.070
- I. Kim, S. Park, D. Kim, Carbon-encapsulated multi-phase nanocomposite of W2C@WC1−x as a highly active and stable electrocatalyst for hydrogen generation. Nanoscale 10, 21123–21131 (2018). https://doi.org/10.1039/c8nr07221c
- J. Palmquist, Z. Czigany, M. Odén, J. Neidhart, L. Hultman, U. Jansson, Magnetron sputtered W–C films with C60 as carbon source. Thin Solid Films 444, 29–37 (2003). https://doi.org/10.1016/s0040-6090(03)00937-4
- A. Kurlov, A. Gusev, Tungsten carbides and W–C phase diagram. Inorg. Mater. 42, 121–127 (2006). https://doi.org/10.1134/s0020168506020051
- G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang, Y. Qin, High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014). https://doi.org/10.1007/s12274-014-0432-0
- L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes. Carbon 155, 298–308 (2019). https://doi.org/10.1016/j.carbon.2019.07.049
- D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui, H. Zhao, X. Han, MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
- F. Wang, M. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
- A. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
- K. Wang, Y. Wang, Y. Wang, E. Hosono, H. Zhou, Mesoporous carbon nanofibers for supercapacitor application. J. Phys. Chem. C 113, 1093–1097 (2009). https://doi.org/10.1021/jp807463u
- Y. Du, J. Wang, C. Cui, X. Liu, X. Wang, X. Han, Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synth. Met. 160, 2191–2196 (2010). https://doi.org/10.1016/j.synthmet.2010.08.008
- B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan et al., Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10, 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3
- M. Cao, W. Song, Z. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang et al., Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces. 7, 20090–20099 (2015). https://doi.org/10.1021/acsami.5b05259
- G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
- M. Cao, X. Wang, W. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3, 6589–6599 (2015). https://doi.org/10.1039/c5tc01354b
- J. Guo, Z. Mao, X. Yan, R. Su, P. Guan et al., Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction. Nano Energy 28, 261–268 (2016). https://doi.org/10.1016/j.nanoen.2016.08.045
- A. Ohlan, K. Singh, A. Chandra, S. Dhawan, Microwave absorption behavior of core-shell structured poly(3, 4-rthylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mater. Interfaces. 2, 927–933 (2010). https://doi.org/10.1021/am900893d
- Y. Wang, Y. Du, P. Xu, R. Qiang, X. Han, Recent advances in conjugated polymer-based microwave absorbing materials. Polymers 9, 29 (2017). https://doi.org/10.3390/polym9010029
- Y. Qing, H. Nan, F. Luo, W. Zhou, Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Adv. 7, 27755–27761 (2017). https://doi.org/10.1039/c7ra02417g
- Y. Cheng, M. Tan, P. Hu, X. Zhang, B. Sun et al., Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl. Surf. Sci. 448, 138–144 (2018). https://doi.org/10.1016/j.apsusc.2018.04.132
- M. Ma, R. Yang, C. Zhang, B. Wang, Z. Zhao et al., Direct large-scale fabrication of C-encapsulated B4C nanoparticles with tunable dielectric properties as excellent microwave absorbers. Carbon 148, 504–511 (2019). https://doi.org/10.1016/j.carbon.2019.04.020
- L. Wang, H. Liu, X. Lv, G. Cui, G. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
- L. Song, Y. Duan, J. Liu, H. Pang, Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 13, 95–104 (2020). https://doi.org/10.1007/s12274-019-2578-2
- B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys. Chem. Chem. Phys. 17, 2531–2539 (2015). https://doi.org/10.1039/c4cp05031b
- Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces. 6, 12997–13006 (2014). https://doi.org/10.1021/am502910d
- S. Dang, X. Wei, H. Ye, The design theory for a flat microwave absorber with a protective cover. Mater. Res. Express 6, 086312 (2019). https://doi.org/10.1088/2053-1591/ab1df1
- T. Giannakopoulou, A. Oikonomou, G. Kordas, Double-layer microwave absorbers based on materials with large magnetic and dielectric losses. J. Magn. Magn. Mater. 271, 224–229 (2004). https://doi.org/10.1016/j.jmmm.2003.09.040
- D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
- Z. Ma, C. Cao, Q. Liu, J. Wang, A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin. Phys. Lett. 29, 038401 (2012). https://doi.org/10.1088/0256-307x/29/3/038401
References
J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
A. Singh, M. Mishra, P. Sambyal, B. Gupta, B. Singh, A. Chandra, S. Dhawan, Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2, 3581–3593 (2014). https://doi.org/10.1039/c3ta14212d
C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730
H. Abbasi, M. Antunes, J. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater Sci. 103, 313 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
X. Wang, J. Shu, W. Cao, M. Zhang, J. Yuan, M. Cao, Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
X. Sun, M. Yang, S. Yang, S. Wang, W. Yin, R. Che, Y. Li, Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15, 1902974 (2019). https://doi.org/10.1002/small.201902974
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
Y. Wang, Y. Du, R. Qiang, C. Tian, P. Xu, X. Han, Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber. Adv. Mater. Interfaces 3, 1500684 (2016). https://doi.org/10.1002/admi.201500684
M. Cao, J. Yang, W. Song, D. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces. 4, 6949–6956 (2012). https://doi.org/10.1021/am3021069
W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, Y. Du, Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces. 9, 19202–19214 (2017). https://doi.org/10.1021/acsami.7b04053
X. Liu, X. Cui, Y. Chen, X. Zhang, R. Yu, G. Wang, H. Ma, Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 95, 870–878 (2015). https://doi.org/10.1016/j.carbon.2015.09.036
D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian, X. Han, Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interfaces Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013
S. Sankaran, K. Deshmukh, M. Ahamed, S. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A 114, 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
Y. Wang, W. Wang, J. Sun, C. Sun, Y. Feng, Z. Li, Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance. Carbon 135, 1–11 (2018). https://doi.org/10.1016/j.carbon.2018.04.026
X. Yang, Y. Duan, Y. Zeng, H. Pang, G. Ma, X. Dai, Experimental and theoretical evidence for temperature driving an electric-magnetic complementary effect in magnetic microwave absorbing materials. J. Mater. Chem. C 8, 1583–1590 (2020). https://doi.org/10.1039/c9tc06551b
X. Zhang, G. Wang, Y. Wei, L. Guo, M. Cao, Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1, 12115–12122 (2013). https://doi.org/10.1039/c3ta12451g
H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016). https://doi.org/10.1039/c6tc01718e
L. Cui, C. Tian, L. Tang, X. Han, Y. Wang et al., Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl. Mater. Interfaces. 11, 31182–31190 (2019). https://doi.org/10.1021/acsami.9b09779
S. Chiu, H. Yu, Y. Li, High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range. J. Phys. Chem. C 114, 1947–1952 (2010). https://doi.org/10.1021/jp905127t
M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces. 8, 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 41, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng et al., In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces. 9, 6320–6331 (2017). https://doi.org/10.1021/acsami.6b15795
X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with: in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5, 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Effects of SiC coating on microwave absorption of novel three-dimensional reticulated SiC/porous carbon foam. Ceram. Int. 45, 8660–8668 (2019). https://doi.org/10.1016/j.ceramint.2019.01.186
M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. Part B 179, 107525 (2019). https://doi.org/10.1016/j.compositesb.2019.107525
H. Baskey, S. Singh, M. Akhtar, K. Kar, Investigation on the dielectric properties of exfoliated graphite silicon carbide nanocomposites and their absorbing capability for the microwave radiation. IEEE Trans. Nanotechnol. 16, 453–461 (2017). https://doi.org/10.1109/tnano.2017.2682121
Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 10, 6945–6953 (2018). https://doi.org/10.1039/c8nr01244j
C. Li, X. Shen, R. Ding, G. Wang, Excellent microwave absorption properties based on a composite of one dimensional Mo2C@C nanorods and a PVDF matrix. RSC Adv. 9, 21243–21248 (2019). https://doi.org/10.1039/c9ra03362a
Y. Wang, X. Han, P. Xu, D. Liu, L. Cui, H. Zhao, Y. Du, Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
Y. Wang, C. Li, X. Han, D. Liu, H. Zhao et al., Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1, 5366–5376 (2018). https://doi.org/10.1021/acsanm.8b01479
Q. Wu, X. Meng, X. Gao, F. Xiao, Solvent-free synthesis of zeolites: mechanism and utility. Acc. Chem. Res. 51, 1396–1403 (2018). https://doi.org/10.1021/acs.accounts.8b00057
C. Schneidermann, N. Jäckel, S. Oswald, L. Giebeler, V. Presser, L. Borchardt, Solvent-free mechanochemical synthesis of nitrogen-doped nanoporous carbon for electrochemical energy storage. Chemsuschem 10, 2416–2424 (2017). https://doi.org/10.1002/cssc.201700459
A. Voevodin, J. O’Neill, S. Prasad, J. Zabinski, Nanocrystalline WC and WC/a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures. J. Vac. Sci. Technol., A 17, 986–992 (1999). https://doi.org/10.1116/1.581674
J. Kim, J. Jang, Y. Lee, Y. Kwon, Enhancement of electrocatalytic activity of platinum for hydrogen oxidation reaction by sonochemically synthesized WC1−x nanoparticles. J. Power Sources 193, 441–446 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.070
I. Kim, S. Park, D. Kim, Carbon-encapsulated multi-phase nanocomposite of W2C@WC1−x as a highly active and stable electrocatalyst for hydrogen generation. Nanoscale 10, 21123–21131 (2018). https://doi.org/10.1039/c8nr07221c
J. Palmquist, Z. Czigany, M. Odén, J. Neidhart, L. Hultman, U. Jansson, Magnetron sputtered W–C films with C60 as carbon source. Thin Solid Films 444, 29–37 (2003). https://doi.org/10.1016/s0040-6090(03)00937-4
A. Kurlov, A. Gusev, Tungsten carbides and W–C phase diagram. Inorg. Mater. 42, 121–127 (2006). https://doi.org/10.1134/s0020168506020051
G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang, Y. Qin, High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014). https://doi.org/10.1007/s12274-014-0432-0
L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes. Carbon 155, 298–308 (2019). https://doi.org/10.1016/j.carbon.2019.07.049
D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui, H. Zhao, X. Han, MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
F. Wang, M. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
A. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
K. Wang, Y. Wang, Y. Wang, E. Hosono, H. Zhou, Mesoporous carbon nanofibers for supercapacitor application. J. Phys. Chem. C 113, 1093–1097 (2009). https://doi.org/10.1021/jp807463u
Y. Du, J. Wang, C. Cui, X. Liu, X. Wang, X. Han, Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synth. Met. 160, 2191–2196 (2010). https://doi.org/10.1016/j.synthmet.2010.08.008
B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan et al., Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10, 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3
M. Cao, W. Song, Z. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang et al., Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces. 7, 20090–20099 (2015). https://doi.org/10.1021/acsami.5b05259
G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
M. Cao, X. Wang, W. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3, 6589–6599 (2015). https://doi.org/10.1039/c5tc01354b
J. Guo, Z. Mao, X. Yan, R. Su, P. Guan et al., Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction. Nano Energy 28, 261–268 (2016). https://doi.org/10.1016/j.nanoen.2016.08.045
A. Ohlan, K. Singh, A. Chandra, S. Dhawan, Microwave absorption behavior of core-shell structured poly(3, 4-rthylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mater. Interfaces. 2, 927–933 (2010). https://doi.org/10.1021/am900893d
Y. Wang, Y. Du, P. Xu, R. Qiang, X. Han, Recent advances in conjugated polymer-based microwave absorbing materials. Polymers 9, 29 (2017). https://doi.org/10.3390/polym9010029
Y. Qing, H. Nan, F. Luo, W. Zhou, Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Adv. 7, 27755–27761 (2017). https://doi.org/10.1039/c7ra02417g
Y. Cheng, M. Tan, P. Hu, X. Zhang, B. Sun et al., Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl. Surf. Sci. 448, 138–144 (2018). https://doi.org/10.1016/j.apsusc.2018.04.132
M. Ma, R. Yang, C. Zhang, B. Wang, Z. Zhao et al., Direct large-scale fabrication of C-encapsulated B4C nanoparticles with tunable dielectric properties as excellent microwave absorbers. Carbon 148, 504–511 (2019). https://doi.org/10.1016/j.carbon.2019.04.020
L. Wang, H. Liu, X. Lv, G. Cui, G. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
L. Song, Y. Duan, J. Liu, H. Pang, Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 13, 95–104 (2020). https://doi.org/10.1007/s12274-019-2578-2
B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys. Chem. Chem. Phys. 17, 2531–2539 (2015). https://doi.org/10.1039/c4cp05031b
Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces. 6, 12997–13006 (2014). https://doi.org/10.1021/am502910d
S. Dang, X. Wei, H. Ye, The design theory for a flat microwave absorber with a protective cover. Mater. Res. Express 6, 086312 (2019). https://doi.org/10.1088/2053-1591/ab1df1
T. Giannakopoulou, A. Oikonomou, G. Kordas, Double-layer microwave absorbers based on materials with large magnetic and dielectric losses. J. Magn. Magn. Mater. 271, 224–229 (2004). https://doi.org/10.1016/j.jmmm.2003.09.040
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
Z. Ma, C. Cao, Q. Liu, J. Wang, A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin. Phys. Lett. 29, 038401 (2012). https://doi.org/10.1088/0256-307x/29/3/038401