Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review
Corresponding Author: Yunchen Du
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 208
Abstract
Magnetic carbon-based composites are the most attractive candidates for electromagnetic (EM) absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches. Metal-organic frameworks (MOFs) have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites, because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix. Nevertheless, the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption, which more or less discount the superiority of MOFs-derived strategy. It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites effectively. This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein. In addition, some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.
Highlights:
1 This review introduces recent advances to optimize electromagnetic properties of metal-organic frameworks (MOFs)-derived magnetic carbon-based composites through rational microstructure design and composition optimization in detail.
2 The challenges and outlooks in MOFs-derived magnetic carbon-based microwave absorbers are also proposed and analyzed, including low-frequency absorption, diversified MOFs precursors, structure-activity relationships, environmental tolerance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Shahzad, M. Alhabeb, C. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang et al., Ultraflexible and mechanically strong double layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- F. Oliveira, R. Gusmao, Recent advances in the electromagnetic interference shielding of 2D materials beyond graphene. ACS Appl. Electron. Mater. 2(10), 3048–3071 (2020). https://doi.org/10.1021/acsaelm.0c00545
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei et al., A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 8, 8899–8909 (2016). https://doi.org/10.1039/c6nr01863g
- H.H. Zhao, X.J. Han, Z.N. Li, D.W. Liu, Y.H. Wang et al., Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. J. Colloid Interface Sci. 528, 174–183 (2018). https://doi.org/10.1016/j.jcis.2018.05.046
- M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- B. Han, W. Chu, X. Han, P. Xu, D. Liu et al., Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon 168, 404–414 (2020). https://doi.org/10.1016/j.carbon.2020.07.005
- W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao et al., Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 67, 265–272 (2021). https://doi.org/10.1016/j.jmst.2020.06.054
- J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152, 545–555 (2019). https://doi.org/10.1016/j.carbon.2019.06.064
- L. Liu, F. Wang, X. Zhang, J. Qiao, C. Liu et al., CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 172, 488–496 (2021). https://doi.org/10.1016/j.carbon.2020.10.021
- V. Sunny, D.S. Kumar, P. Mohanan, M.R. Anantharaman, Nickel/carbon hybrid nanostructures as microwave absorbers. Mater. Lett. 64(10), 1130–1132 (2010). https://doi.org/10.1016/j.matlet.2010.02.010
- B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao et al., From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2021). https://doi.org/10.1007/s12274-020-3208-8
- B. Quan, X. Liang, G. Ji, J. Lv, S. Dai et al., Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 129, 310–320 (2018). https://doi.org/10.1016/j.carbon.2017.12.026
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- L. Sha, P. Gao, T. Wu, Y. Chen, Chemical Ni-C bonding in Ni-carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(46), 40412–40419 (2017). https://doi.org/10.1021/acsami.7b07136
- C. Li, J. Sui, X. Jiang, Z. Zhang, L. Yu, Efficient broadband electromagnetic wave absorption of flower-like nickel/carbon composites in 2–40 GHz. Chem. Eng. J. 385, 123882 (2020). https://doi.org/10.1016/j.cej.2019.123882
- G. Tong, F. Liu, W. Wu, F. Du, J. Guan, Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2(20), 7373–7382 (2014). https://doi.org/10.1039/c4ta00117f
- L. Chen, H. Wang, C. Li, Q. Xu, Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 11(21), 5369–5403 (2020). https://doi.org/10.1039/d0sc01432j
- S. Lee, E. Kapustin, O. Yaghi, Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353(6301), 808–811 (2016). https://doi.org/10.1126/science.aaf9135
- A. Kirchon, L. Feng, H. Drake, E. Josepha, H. Zhou, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 47(23), 8611–8638 (2018). https://doi.org/10.1039/c8cs00688a
- B. Liu, H.S. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
- J. Zhou, Y. Dou, A. Zhou, R. Guo, M. Zhao et al., MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 7(12), 1602643 (2017). https://doi.org/10.1002/aenm.201602643
- J. Sun, Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7, 2071–2100 (2014). https://doi.org/10.1039/c4ee00517a
- X. Li, X. Huang, S. Xi, S. Miao, J. Ding et al., Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 140(39), 12469–12475 (2018). https://doi.org/10.1021/jacs.8b05992
- W. Zhan, Q. Zhu, S. Dang, Z. Liu, M. Kitta et al., Synthesis of highly active sub-nanometer Pt@Rh core-shell nanocatalyst via a photochemical route: porous titania nanoplates as a superior photoactive support. Small 13(16), 1603879 (2017). https://doi.org/10.1002/smll.201603879
- X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46(10), 2660–2677 (2017). https://doi.org/10.1039/c6cs00426a
- Y. Lv, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7(24), 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
- L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1-xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- R. Qiang, Y.C. Du, H.T. Zhao, Y. Wang, C.H. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/c5ta01457c
- Y. Qiu, Y. Lin, H. Yang, L. Wang, M. Wang et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 383, 123207 (2020). https://doi.org/10.1016/j.cej.2019.123207
- G. Liu, J. Tu, C. Wu, Y. Fu, C. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13(17), 20459–20466 (2021). https://doi.org/10.1021/acsami.1c00281
- Y. Qiu, H. Yang, Y. Cheng, X. Bai, B. Wen et al., Constructing a nitrogen-doped carbon and nickel composite derived from a mixed ligand nickel-based a metal-organic framework toward adjustable microwave absorption. Nanoscale 13(20), 9204–9216 (2021). https://doi.org/10.1039/d1nr01607e
- P. Yi, Z. Yao, J. Zhou, B. Wei, L. Lei et al., Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based mofs towards lightweight and efficient microwave absorbers. Nanoscale 13(5), 3119–3135 (2021). https://doi.org/10.1039/d0nr07991j
- J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces 11(43), 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850
- N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
- W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10(10), 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
- J. Yan, Y. Huang, Y.H. Yan, L. Ding, P.B. Liu, Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 538, 148051 (2021). https://doi.org/10.1016/j.apsusc.2020.148051
- D.W. Liu, Y.C. Du, P. Xu, N. Liu, Y.H. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7(17), 5037–5046 (2019). https://doi.org/10.1039/c9tc00771g
- F. Wang, P. Xu, N. Shi, L. Cui, Y. Wang et al., Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. J. Mater. Sci. Technol. 93, 7–16 (2021). https://doi.org/10.1016/j.jmst.2021.03.048
- L. Guo, Q. An, Z. Xiao, S. Zhai, L. Cui, Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment. ACS Sustain. Chem. Eng. 7(10), 9237–9248 (2019). https://doi.org/10.1021/acssuschemeng.9b00067
- T. Nakamura, Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites. J. Appl. Phys. 88(1), 348 (2000). https://doi.org/10.1063/1.373666
- H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- P. Wang, X. Wang, L. Qiao, J. Zhang, G. Wang et al., High-frequency magnetic properties and microwave absorption performance of oxidized Pr2Co17 flakes/epoxy composite in x-band. J. Magn. Magn. Mater. 468, 193–199 (2018). https://doi.org/10.1016/j.jmmm.2018.08.012
- J. Huo, L. Wang, H. Yu, Polymeric nanocomposites for electromagnetic wave absorption. J. Mater. Sci. 44, 3917–3927 (2009). https://doi.org/10.1007/s10853-009-3561-1
- C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang et al., Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
- H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
- J. Tao, J. Zhou, Z. Yao, Z. Jiao, B. Wei et al., Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 172, 542–555 (2020). https://doi.org/10.1016/j.carbon.2020.10.062
- D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
- Y.Z. Chen, C. Wang, Z.Y. Wu, Y. Xiong, Q. Xu et al., From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27(34), 5010–5016 (2015). https://doi.org/10.1002/adma.201502315
- X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11(14), 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
- S. Wang, X. Ke, S. Zhong, Y. Lai, D. Qian et al., Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: the role of calcining temperature. RSC Adv. 7(73), 46436–46444 (2017). https://doi.org/10.1039/c7ra08882e
- W. Liu, L. Liu, G. Ji, D. Li, Y. Zhang et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustain. Chem. Eng. 5(9), 7961–7971 (2017). https://doi.org/10.1021/acssuschemeng.7b01514
- W. Liu, J. Pan, G. Ji, X. Liang, Y. Cheng et al., Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal-organic frameworks: effect of composition. Dalton Trans. 46(11), 3700–3709 (2017). https://doi.org/10.1039/c7dt00156h
- X. Zeng, B. Yang, L. Zhu, H. Yang, R. Yu, Structure evolution of prussian blue analogues to CoFe@C core-shell nanocomposites with good microwave absorbing performances. RSC Adv. 6(107), 105644–105652 (2016). https://doi.org/10.1039/c6ra18928h
- C. Liu, J. Qiao, X. Zhang, D. Xu, N. Wu et al., Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 43(42), 16546–16554 (2019). https://doi.org/10.1039/c9nj04115j
- J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096
- L. Li, G. Li, W. Ouyang, Y. Zhang, F. Zeng et al., Bimetallic MOFs derived Fe(II)-alloy@C composites with high-performance electromagnetic wave absorption. Chem. Eng. J. 420, 127609 (2021). https://doi.org/10.1016/j.cej.2020.127609
- Y. Liu, Z. Chen, W. Xie, F. Qiu, Y. Zhang et al., Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J. Alloys Compd. 809, 151837 (2019). https://doi.org/10.1016/j.jallcom.2019.151837
- L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
- Y.P. Duan, Y.H. Zhang, T.M. Wang, S.C. Guo, X. Li et al., Evolution study of microstructure and electromagnetic behaviors of Fe–Co–Ni alloy with mechanical alloying. Mater. Sci. Eng. B 185, 86–93 (2014). https://doi.org/10.1016/j.mseb.2014.02.014
- D.W. Liu, R. Qiang, Y.C. Du, Y.H. Wang, C.H. Tian et al., Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013
- Z. Xu, Y.C. Du, D.W. Liu, Y.H. Wang, W.J. Ma et al., Pea-like Fe/Fe3C nanoparticles embedded in carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 11(4), 4268–4277 (2019). https://doi.org/10.1021/acsami.8b19201
- D. Ding, Y. Wang, X.D. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
- Y.H. Wang, X.J. Han, P. Xu, D.W. Liu, L.R. Cui et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
- X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- J. Ouyang, Z.L. He, Y. Zhang, H.M. Yang, Q.H. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 11(42), 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430
- X.Y. Zhu, H.F. Qiu, P. Chen, G.Z. Chen, W.X. Min, Anemone-shaped ZIF-67@CNTs as effective electromagnetic absorbent covered the whole X-band. Carbon 173, 1–10 (2021). https://doi.org/10.1016/j.carbon.2020.10.055
- L.X. Wang, Y.K. Guan, X. Qiu, H.L. Zhu, S.B. Pan et al., Efficient Ferrite/Co/porous carbon microwave absorbing material based on Ferrite@metal-organic framework. Chem. Eng. J. 326, 945–955 (2017). https://doi.org/10.1016/j.cej.2017.06.006
- Y.J. Sun, N. Wang, H.Y. Yu, X.Z. Jiang, Metal-organic framework-based Fe/C@Co3O4 core-shell nanocomposites with outstanding microwave absorption properties in low frequencies. J. Mater. Sci. 55, 7304–7320 (2020). https://doi.org/10.1007/s10853-020-04521-w
- H.C. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces 9(48), 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796
- X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang et al., Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/c5nr03176a
- X.K. Wang, P.P. Zhou, G.H. Qiu, X.Y. Zhang, L.X. Wang et al., Excellent electromagnetic wave absorption properties of porous core-shell CoO/Co@C nanocomposites derived from a needle-shaped Co(OH)2@ZIF-67 template. J. Alloys Compd. 842, 155807 (2020). https://doi.org/10.1016/j.jallcom.2020.155807
- J. Yan, Y. Huang, Y.H. Yan, X.X. Zhao, P.B. Liu, The composition design of MOF-derived Co–Fe bimetallic autocatalysis carbon with controllable electromagnetic properties. Compos. Part A Appl. Sci. Manuf. 139, 106107 (2020). https://doi.org/10.1016/j.compositesa.2020.106107
- B.C. Wang, W.J. Ruan, C.P. Mu, A. Nie, F.S. Wen et al., Direct one-step synthesis of CoFex@Co@C hybrids derived from a metal organic framework for a lightweight and high-performance microwave absorber. Nanotechnology 31, 095703 (2020). https://doi.org/10.1088/1361-6528/ab5620
- B. Quan, X.H. Liang, G.B. Ji, J.N. Ma, P.Y. Ouyang et al., Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces 9(11), 9964–9974 (2017). https://doi.org/10.1021/acsami.6b15788
- Z. Yang, H. Lv, R. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9, 3671–3682 (2016). https://doi.org/10.1007/s12274-016-1238-z
- J. Yuan, Q. Liu, S. Li, Y. Lu, S. Jin et al., Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synth. Met. 228, 32–40 (2017). https://doi.org/10.1016/j.synthmet.2017.03.020
- H. Qiu, X. Zhu, P. Chen, S. Yang, X. Guo et al., Magnetic dodecahedral CoC-decorated reduced graphene oxide as excellent electromagnetic wave absorber. J. Electron. Mater. 49, 1204–1214 (2019). https://doi.org/10.1007/s11664-019-07837-9
- Y. Wang, X. Di, X. Gao, X. Wu, Design of MOF-derived hierarchical Co@C@RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent. Nanotechnology 31, 395710 (2020). https://doi.org/10.1088/1361-6528/ab97d1
- K. Zhang, A. Xie, M. Sun, W. Jiang, F. Wu et al., Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys. 199, 340–347 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.026
- X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv et al., Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 12(15), 17870–17880 (2020). https://doi.org/10.1021/acsami.0c01572
- Y. Zhao, W. Wang, J. Wang, J. Zhai, X. Lei et al., Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and RGO for excellent microwave absorption performance. Carbon 173, 1059–1072 (2021). https://doi.org/10.1016/j.carbon.2020.11.090
- S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped Carbon/RGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
- K. Zhang, J. Li, F. Wu, M. Sun, Y. Xia et al., Sandwich CoFe2O4/RGO/CoFe2O4 nanostructures for high-performance electromagnetic absorption. ACS Appl. Nano Mater. 2(1), 315–324 (2018). https://doi.org/10.1021/acsanm.8b01927
- H. Chen, R. Hong, Q. Liu, S. Li, F. Huang et al., CNFs@carbonaceous Co/CoO composite derived from cnfs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd. 752, 115–122 (2018). https://doi.org/10.1016/j.jallcom.2018.04.142
- J.X. Wang, J.F. Yang, J. Yang, H. Zhang, Design of a novel carbon nanotube and metal-organic framework interpenetrated structure with enhanced microwave absorption properties. Nanotechnology 31, 394002 (2020). https://doi.org/10.1088/1361-6528/ab967c
- S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan et al., Great enhancement of electromagnetic wave absorption of MWCNTs@carbonaceous CoO composites derived from MWCNT-sinterconnected zeolitic imidazole framework. Appl. Surf. Sci. 481, 99–107 (2019). https://doi.org/10.1016/j.apsusc.2019.03.018
- K. Zhang, F. Wu, J. Li, M. Sun, A. Xie et al., Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (mCNTs) for excellent electromagnetic waves absorption. Mater. Chem. Phys. 208, 198–206 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.008
- Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
- R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
- L. Huang, S. Huang, Z. Yang, A. Zhao, C. Liu et al., In-situ conversion of ZnO/Ni3ZnC0.7/CNT composite from NiZn bimetallic MOF precursor with enhanced electromagnetic property. Nanomaterials 8(8), 600 (2018). https://doi.org/10.3390/nano8080600
- Y. Qiu, H. Yang, L. Ma, Y. Lin, H. Zong et al., In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 581, 783–793 (2021). https://doi.org/10.1016/j.jcis.2020.07.151
- X. Zhu, H. Qiu, P. Chen, G. Chen, W. Min, Graphitic carbon nitride (g-C3N4) in situ polymerization to synthesize MOF-Co@CNTs as efficient electromagnetic microwave absorption materials. Carbon 176, 530–539 (2021). https://doi.org/10.1016/j.carbon.2021.02.044
- D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9(8), 5086–5096 (2021). https://doi.org/10.1039/d0ta10942h
- W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 10(37), 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
- X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao et al., A novel Co/TiO2 nanocomposite derived from a metal-organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C 4(9), 1860–1870 (2016). https://doi.org/10.1039/c6tc00248j
- Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039
- R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang et al., Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 156, 378–388 (2020). https://doi.org/10.1016/j.carbon.2019.09.063
- M. Liu, R. Tian, H. Chen, S. Li, F. Huang et al., One-dimensional chain-like MnO@Co/C composites for high-efficient electromagnetic wave absorbent. J. Magn. Magn. Mater. 499, 166289 (2020). https://doi.org/10.1016/j.jmmm.2019.166289
- W. Xue, G. Yang, S. Bi, J. Zhang, Z.L. Hou, Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 173, 521–527 (2021). https://doi.org/10.1016/j.carbon.2020.11.016
- W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO@N-doped porous carbon/Co3 ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018). https://doi.org/10.1016/j.cej.2018.02.078
- C. Zhou, C. Wu, D. Liu, M. Yan, Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber. Chem. Eur. J. 25(9), 2234–2241 (2019). https://doi.org/10.1002/chem.201805565
- C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
- Y. Wang, C. Li, X. Han, D. Liu, H. Zhao et al., Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1(9), 5366–5376 (2018). https://doi.org/10.1021/acsanm.8b01479
- S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 10(15), 6945–6953 (2018). https://doi.org/10.1039/c8nr01244j
- X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
- Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9(38), 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
- R. Yang, J. Yuan, C. Yu, K. Yan, Y. Fu et al., Efficient electromagnetic wave absorption by SiC/Ni/NiO/C nanocomposites. J. Alloys Compd. 816, 152519 (2020). https://doi.org/10.1016/j.jallcom.2019.152519
- M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. B Eng. 179, 107525 (2019). https://doi.org/10.1016/j.compositesb.2019.107525
- L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng et al., In situ growth of core-sheath heterostructural sic nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 9(7), 6320–6331 (2017). https://doi.org/10.1021/acsami.6b15795
- B. Deng, L. Wang, Z. Xiang, Z. Liu, F. Pan et al., Rational construction of MXene/Ferrite@C hybrids with improved impedance matching for high-performance electromagnetic absorption applications. Mater. Lett. 284, 129029 (2021). https://doi.org/10.1016/j.matlet.2020.129029
- Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang et al., Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 34(51), 15854–15863 (2018). https://doi.org/10.1021/acs.langmuir.8b03238
- B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
- Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
- P. Liu, S. Gao, Y. Wang, Y. Huang, F. Zhou et al., Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 173, 655–666 (2021). https://doi.org/10.1016/j.carbon.2020.11.043
- J. Xu, Y. Cui, J. Wang, Y. Fan, T. Shah et al., Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties. Chem. Eng. J. 401, 126027 (2020). https://doi.org/10.1016/j.cej.2020.126027
- X. Sun, X. Lv, M. Sui, X. Weng, X. Li et al., Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: a lightweight material with excellent electromagnetic absorption. Materials 11(5), 781 (2018). https://doi.org/10.3390/ma11050781
- R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
- C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang et al., Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 7(36), 20090–20099 (2015). https://doi.org/10.1021/acsami.5b05259
- C. Avci, J. Arinez-Soriano, A. Carne-Sanchez, V. Guillerm, C. Carbonell et al., Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew. Chem. Int. Ed. 54(48), 14417–14421 (2015). https://doi.org/10.1002/anie.201507588
- A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
- H. Ejima, J.J. Richardson, K. Liang, J.P. Best, M.P. Koeverden et al., One-step assembly of coordination complexes for versatile film and particle engineering. Science 341(6142), 154–157 (2013). https://doi.org/10.1126/science.1237265
- J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner et al., Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. 53(22), 5546–5551 (2014). https://doi.org/10.1002/anie.201311136
- Z. Zhang, Y. Tao, H. Tian, Q. Yue, S. Liu et al., Chelation-assisted selective etching construction of hierarchical polyoxometalate-based metal-organic framework. Chem. Mater. 32(13), 5550–5557 (2020). https://doi.org/10.1021/acs.chemmater.0c00440
- N. Wang, W. Ma, Y. Du, Z. Ren, B. Han et al., Prussian blue microcrystals with morphology evolution as a high-performance photo-fenton catalyst for degradation of organic pollutants. ACS Appl. Mater. Interfaces 11(1), 1174–1184 (2019). https://doi.org/10.1021/acsami.8b14987
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- M. Hu, Y. Ju, K. Liang, T. Suma, J. Cui et al., Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 26(32), 5827–5834 (2016). https://doi.org/10.1002/adfm.201601193
- B. Lee, D. Moon, J. Park, Microscopic and mesoscopic dual postsynthetic modifications of metal-organic frameworks. Angew. Chem. Int. Ed. 59(33), 13793–13799 (2020). https://doi.org/10.1002/anie.202000278
- W. Liu, J. Huang, Q. Yang, S. Wang, X. Sun et al., Multi-shelled hollow metal-organic frameworks. Angew. Chem. Int. Ed. 56(20), 5512–5516 (2017). https://doi.org/10.1002/anie.201701604
- L. Han, X.Y. Yu, X.W. Lou, Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 28(23), 4601–4605 (2016). https://doi.org/10.1002/adma.201506315
- L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2020). https://doi.org/10.1016/j.carbon.2020.10.070
- W. Tian, H. Hu, Y. Wang, P. Li, J. Liu et al., Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano 12(2), 1990–2000 (2018). https://doi.org/10.1021/acsnano.7b09175
- Z.N. Shan, Y.B. Lou, J.X. Chen, Triblock copolymer-assisted synthesis of hierarchical ZIF-67 in the presence of 1,3,5-trimenthylbenzene. Inorg. Chem. Commun. 78, 74–77 (2017). https://doi.org/10.1016/j.inoche.2017.03.009
- X. Cao, L. Dai, L. Wang, J. Liu, J. Lei, A surfactant template-assisted strategy for synthesis of ZIF-8 hollow nanospheres. Mater. Lett. 161, 682–685 (2015). https://doi.org/10.1016/j.matlet.2015.09.061
- M.L. Hu, M.Y. Masoomi, A. Morsali, Template strategies with MOFs. Coord. Chem. Rev. 387, 415–435 (2019). https://doi.org/10.1016/j.ccr.2019.02.021
- Z.D. Huang, Z. Gong, Q. Kang, Y. Fang, X.S. Yang et al., High rate Li-ion storage properties of MOF-carbonized derivatives coated on MnO nanowires. Mater. Chem. Front. 1(10), 1975–1981 (2017). https://doi.org/10.1039/c7qm00178a
- L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1-xCox@Carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- L. Wang, X. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk-shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
- P. Miao, J. Cao, J. Kong, J. Li, T. Wang et al., Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption. Nanoscale 12(25), 13311–13315 (2020). https://doi.org/10.1039/d0nr03104f
- Z.N. Li, X.J. Han, Y. Ma, D.W. Liu, Y.H. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
- Y.C. Tan, H.C. Zeng, Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures. Chem. Commun. 52(77), 11591–11594 (2016). https://doi.org/10.1039/c6cc05699g
- Z. Yang, Y. Zhang, M. Li, L. Yang, J. Liu et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater. 2(12), 7888–7897 (2019). https://doi.org/10.1021/acsanm.9b01881
- P. Miao, J. Chen, Y. Tang, K.J. Chen, J. Kong, Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks. Sci. China Mater. 63, 2050–2061 (2020). https://doi.org/10.1007/s40843-020-1333-9
- W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12(25), 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
- Z. Zhang, J. Tan, W. Gua, H. Zhao, J. Zheng et al., Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 395, 125190 (2020). https://doi.org/10.1016/j.cej.2020.125190
- N. Yang, Z.X. Luo, G.R. Zhu, S.C. Chen, X.L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 11(39), 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
- X. Sun, M. Yang, S. Yang, S. Wang, W. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15(43), 1902974 (2019). https://doi.org/10.1002/smll.201902974
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- Y. Wang, X. Di, Z. Lu, X. Wu, Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. J. Colloid Interface Sci. 589, 462–471 (2021). https://doi.org/10.1016/j.jcis.2021.01.013
- M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
- Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 8(36), 18863–18871 (2020). https://doi.org/10.1039/d0ta05540a
- M.K. Aslam, S.S.A. Shah, S. Li, C. Chen, Kinetically controlled synthesis of MOF nanostructures: single-holed hollow core-shell ZnCoS@Co9S8/NC for ultra-high performance lithium-ion batteries. J. Mater. Chem. A 6(29), 14083–14090 (2018). https://doi.org/10.1039/c8ta04676j
- P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang et al., Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11(28), 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525
- Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X. Sun et al., Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020). https://doi.org/10.1016/j.carbon.2020.06.014
- X. Zhang, F. Yan, S. Zhang, H. Yuan, C. Zhu et al., Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10(29), 24920–24929 (2018). https://doi.org/10.1021/acsami.8b07107
- Z. Zhao, K. Kou, H. Wu, 2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber. J. Colloid Interface Sci. 574, 1–10 (2020). https://doi.org/10.1016/j.jcis.2020.04.037
- X.Y. Yu, L. Yu, H.B. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. Int. Ed. 54(18), 5331–5335 (2015). https://doi.org/10.1002/anie.201500267
- Z.F. Huang, J. Song, K. Li, M. Tahir, Y.T. Wang et al., Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-PH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138(4), 1359–1365 (2016). https://doi.org/10.1021/jacs.5b11986
- S. Wang, B.Y. Guan, Y. Lu, X.W. Lou, Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139(48), 17305–17308 (2017). https://doi.org/10.1021/jacs.7b10733
- X. Liu, C. Hao, L. He, C. Yang, Y. Chen et al., Yolk–shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 11, 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z
- Y. Yang, C. Li, H. Shi, T. Chen, Z. Wang et al., A PH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta 192, 325–330 (2019). https://doi.org/10.1016/j.talanta.2018.09.067
- Y. Liang, J. Wei, Y.X. Hu, X.F. Chen, J. Zhang et al., Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale 9(16), 5323–5328 (2017). https://doi.org/10.1039/c7nr00978j
- F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
- S. Gao, Y. Zhang, H. Xing, H. Li, Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 387, 124149 (2020). https://doi.org/10.1016/j.cej.2020.124149
- H. Qiu, X. Zhu, P. Chen, J. Liu, X. Zhu, Self-etching template method to synthesize hollow dodecahedral carbon capsules embedded with Ni–Co alloy for high-performance electromagnetic microwave absorption. Compos. Commun. 20, 100354 (2020). https://doi.org/10.1016/j.coco.2020.04.020
- S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 3, 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75
- Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu et al., Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29, 1604898 (2017). https://doi.org/10.1002/adma.201604898
- H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16(43), 2003407 (2020). https://doi.org/10.1002/smll.202003407
- H. Yang, S.J. Bradley, A. Chan, G.I. Waterhouse, T. Nann et al., Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites. J. Am. Chem. Soc. 138(36), 11872–11881 (2016). https://doi.org/10.1021/jacs.6b06736
- M.J. Wang, Z.X. Mao, L. Liu, L.S. Peng, N. Yang et al., Paration of hollow nitrogen doped carbon via stresses induced orientation contraction. Small 14(52), 1804183 (2018). https://doi.org/10.1002/smll.201804183
- C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 59(19), 7384–7389 (2020). https://doi.org/10.1002/anie.202002665
- S. Wang, L. Shang, L. Li, Y. Yu, C. Chi et al., Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Adv. Mater. 28(38), 8379–8387 (2016). https://doi.org/10.1002/adma.201602197
- C. Liu, X. Huang, J. Wang, H. Song, Y. Yang et al., Hollow mesoporous carbon nanocubes: rigid-interface-induced outward contraction of metal-organic frameworks. Adv. Funct. Mater. 28(6), 1705253 (2017). https://doi.org/10.1002/adfm.201705253
- L. Wang, J. Wu, Y. Chen, X. Wang, R. Zhou et al., Hollow nitrogen-doped Fe3O4/carbon nanocages with hierarchical porosities as anode materials for lithium-ion batteries. Electrochim. Acta 186, 50–57 (2015). https://doi.org/10.1016/j.electacta.2015.10.134
- W. Huang, X. Zhang, Y. Zhao, J. Zhang, P. Liu, Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption. Carbon 167, 19–30 (2020). https://doi.org/10.1016/j.carbon.2020.05.073
- P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
- S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu et al., Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29(31), 1700874 (2017). https://doi.org/10.1002/adma.201700874
- S. Li, L. Lin, L. Yao, H. Zheng, Q. Luo et al., MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption. J. Alloys Compd. 856, 158183 (2021). https://doi.org/10.1016/j.jallcom.2020.158183
- J. Xiong, Z. Xiang, B. Deng, M. Wu, L. Yu et al., Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 513, 145778 (2020). https://doi.org/10.1016/j.apsusc.2020.145778
- B. Kuang, W. Song, M. Ning, J. Li, Z. Zhao et al., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018). https://doi.org/10.1016/j.carbon.2017.10.092
- W. Feng, H. Luo, Y. Wang, S. Zeng, L. Deng et al., Ti3C2 MXene: a promising microwave absorbing material. RSC Adv. 8(5), 2398–2403 (2018). https://doi.org/10.1039/c7ra12616f
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- G.Z. Wang, Z. Gao, G.P. Wan, S.W. Lin, P. Yang et al., High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014). https://doi.org/10.1007/s12274-014-0432-0
- X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao et al., Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013). https://doi.org/10.1038/srep03421
- W. Feng, H. Luo, S. Zeng, C. Chen, L. Deng et al., Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability. Mater. Chem. Front. 2(12), 2320–2326 (2018). https://doi.org/10.1039/c8qm00436f
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- G. Sun, H. Wu, Q. Liao, Y. Zhang, Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 11, 2689–2704 (2018). https://doi.org/10.1007/s12274-017-1899-2
- J. He, D. Shan, S. Yan, H. Luo, C. Cao et al., Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 492, 165639 (2019). https://doi.org/10.1016/j.jmmm.2019.165639
References
F. Shahzad, M. Alhabeb, C. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang et al., Ultraflexible and mechanically strong double layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
F. Oliveira, R. Gusmao, Recent advances in the electromagnetic interference shielding of 2D materials beyond graphene. ACS Appl. Electron. Mater. 2(10), 3048–3071 (2020). https://doi.org/10.1021/acsaelm.0c00545
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei et al., A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 8, 8899–8909 (2016). https://doi.org/10.1039/c6nr01863g
H.H. Zhao, X.J. Han, Z.N. Li, D.W. Liu, Y.H. Wang et al., Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. J. Colloid Interface Sci. 528, 174–183 (2018). https://doi.org/10.1016/j.jcis.2018.05.046
M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
B. Han, W. Chu, X. Han, P. Xu, D. Liu et al., Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon 168, 404–414 (2020). https://doi.org/10.1016/j.carbon.2020.07.005
W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao et al., Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 67, 265–272 (2021). https://doi.org/10.1016/j.jmst.2020.06.054
J. Yan, Y. Huang, C. Chen, X. Liu, H. Liu, The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152, 545–555 (2019). https://doi.org/10.1016/j.carbon.2019.06.064
L. Liu, F. Wang, X. Zhang, J. Qiao, C. Liu et al., CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 172, 488–496 (2021). https://doi.org/10.1016/j.carbon.2020.10.021
V. Sunny, D.S. Kumar, P. Mohanan, M.R. Anantharaman, Nickel/carbon hybrid nanostructures as microwave absorbers. Mater. Lett. 64(10), 1130–1132 (2010). https://doi.org/10.1016/j.matlet.2010.02.010
B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao et al., From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2021). https://doi.org/10.1007/s12274-020-3208-8
B. Quan, X. Liang, G. Ji, J. Lv, S. Dai et al., Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 129, 310–320 (2018). https://doi.org/10.1016/j.carbon.2017.12.026
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
L. Sha, P. Gao, T. Wu, Y. Chen, Chemical Ni-C bonding in Ni-carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(46), 40412–40419 (2017). https://doi.org/10.1021/acsami.7b07136
C. Li, J. Sui, X. Jiang, Z. Zhang, L. Yu, Efficient broadband electromagnetic wave absorption of flower-like nickel/carbon composites in 2–40 GHz. Chem. Eng. J. 385, 123882 (2020). https://doi.org/10.1016/j.cej.2019.123882
G. Tong, F. Liu, W. Wu, F. Du, J. Guan, Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2(20), 7373–7382 (2014). https://doi.org/10.1039/c4ta00117f
L. Chen, H. Wang, C. Li, Q. Xu, Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 11(21), 5369–5403 (2020). https://doi.org/10.1039/d0sc01432j
S. Lee, E. Kapustin, O. Yaghi, Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353(6301), 808–811 (2016). https://doi.org/10.1126/science.aaf9135
A. Kirchon, L. Feng, H. Drake, E. Josepha, H. Zhou, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 47(23), 8611–8638 (2018). https://doi.org/10.1039/c8cs00688a
B. Liu, H.S. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
J. Zhou, Y. Dou, A. Zhou, R. Guo, M. Zhao et al., MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 7(12), 1602643 (2017). https://doi.org/10.1002/aenm.201602643
J. Sun, Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7, 2071–2100 (2014). https://doi.org/10.1039/c4ee00517a
X. Li, X. Huang, S. Xi, S. Miao, J. Ding et al., Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 140(39), 12469–12475 (2018). https://doi.org/10.1021/jacs.8b05992
W. Zhan, Q. Zhu, S. Dang, Z. Liu, M. Kitta et al., Synthesis of highly active sub-nanometer Pt@Rh core-shell nanocatalyst via a photochemical route: porous titania nanoplates as a superior photoactive support. Small 13(16), 1603879 (2017). https://doi.org/10.1002/smll.201603879
X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46(10), 2660–2677 (2017). https://doi.org/10.1039/c6cs00426a
Y. Lv, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7(24), 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1-xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
R. Qiang, Y.C. Du, H.T. Zhao, Y. Wang, C.H. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3(25), 13426–13434 (2015). https://doi.org/10.1039/c5ta01457c
Y. Qiu, Y. Lin, H. Yang, L. Wang, M. Wang et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 383, 123207 (2020). https://doi.org/10.1016/j.cej.2019.123207
G. Liu, J. Tu, C. Wu, Y. Fu, C. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13(17), 20459–20466 (2021). https://doi.org/10.1021/acsami.1c00281
Y. Qiu, H. Yang, Y. Cheng, X. Bai, B. Wen et al., Constructing a nitrogen-doped carbon and nickel composite derived from a mixed ligand nickel-based a metal-organic framework toward adjustable microwave absorption. Nanoscale 13(20), 9204–9216 (2021). https://doi.org/10.1039/d1nr01607e
P. Yi, Z. Yao, J. Zhou, B. Wei, L. Lei et al., Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based mofs towards lightweight and efficient microwave absorbers. Nanoscale 13(5), 3119–3135 (2021). https://doi.org/10.1039/d0nr07991j
J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces 11(43), 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850
N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10(10), 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
J. Yan, Y. Huang, Y.H. Yan, L. Ding, P.B. Liu, Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 538, 148051 (2021). https://doi.org/10.1016/j.apsusc.2020.148051
D.W. Liu, Y.C. Du, P. Xu, N. Liu, Y.H. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7(17), 5037–5046 (2019). https://doi.org/10.1039/c9tc00771g
F. Wang, P. Xu, N. Shi, L. Cui, Y. Wang et al., Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. J. Mater. Sci. Technol. 93, 7–16 (2021). https://doi.org/10.1016/j.jmst.2021.03.048
L. Guo, Q. An, Z. Xiao, S. Zhai, L. Cui, Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment. ACS Sustain. Chem. Eng. 7(10), 9237–9248 (2019). https://doi.org/10.1021/acssuschemeng.9b00067
T. Nakamura, Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites. J. Appl. Phys. 88(1), 348 (2000). https://doi.org/10.1063/1.373666
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
P. Wang, X. Wang, L. Qiao, J. Zhang, G. Wang et al., High-frequency magnetic properties and microwave absorption performance of oxidized Pr2Co17 flakes/epoxy composite in x-band. J. Magn. Magn. Mater. 468, 193–199 (2018). https://doi.org/10.1016/j.jmmm.2018.08.012
J. Huo, L. Wang, H. Yu, Polymeric nanocomposites for electromagnetic wave absorption. J. Mater. Sci. 44, 3917–3927 (2009). https://doi.org/10.1007/s10853-009-3561-1
C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang et al., Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
J. Tao, J. Zhou, Z. Yao, Z. Jiao, B. Wei et al., Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 172, 542–555 (2020). https://doi.org/10.1016/j.carbon.2020.10.062
D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
Y.Z. Chen, C. Wang, Z.Y. Wu, Y. Xiong, Q. Xu et al., From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27(34), 5010–5016 (2015). https://doi.org/10.1002/adma.201502315
X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11(14), 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
S. Wang, X. Ke, S. Zhong, Y. Lai, D. Qian et al., Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: the role of calcining temperature. RSC Adv. 7(73), 46436–46444 (2017). https://doi.org/10.1039/c7ra08882e
W. Liu, L. Liu, G. Ji, D. Li, Y. Zhang et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustain. Chem. Eng. 5(9), 7961–7971 (2017). https://doi.org/10.1021/acssuschemeng.7b01514
W. Liu, J. Pan, G. Ji, X. Liang, Y. Cheng et al., Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal-organic frameworks: effect of composition. Dalton Trans. 46(11), 3700–3709 (2017). https://doi.org/10.1039/c7dt00156h
X. Zeng, B. Yang, L. Zhu, H. Yang, R. Yu, Structure evolution of prussian blue analogues to CoFe@C core-shell nanocomposites with good microwave absorbing performances. RSC Adv. 6(107), 105644–105652 (2016). https://doi.org/10.1039/c6ra18928h
C. Liu, J. Qiao, X. Zhang, D. Xu, N. Wu et al., Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 43(42), 16546–16554 (2019). https://doi.org/10.1039/c9nj04115j
J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096
L. Li, G. Li, W. Ouyang, Y. Zhang, F. Zeng et al., Bimetallic MOFs derived Fe(II)-alloy@C composites with high-performance electromagnetic wave absorption. Chem. Eng. J. 420, 127609 (2021). https://doi.org/10.1016/j.cej.2020.127609
Y. Liu, Z. Chen, W. Xie, F. Qiu, Y. Zhang et al., Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J. Alloys Compd. 809, 151837 (2019). https://doi.org/10.1016/j.jallcom.2019.151837
L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
Y.P. Duan, Y.H. Zhang, T.M. Wang, S.C. Guo, X. Li et al., Evolution study of microstructure and electromagnetic behaviors of Fe–Co–Ni alloy with mechanical alloying. Mater. Sci. Eng. B 185, 86–93 (2014). https://doi.org/10.1016/j.mseb.2014.02.014
D.W. Liu, R. Qiang, Y.C. Du, Y.H. Wang, C.H. Tian et al., Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013
Z. Xu, Y.C. Du, D.W. Liu, Y.H. Wang, W.J. Ma et al., Pea-like Fe/Fe3C nanoparticles embedded in carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 11(4), 4268–4277 (2019). https://doi.org/10.1021/acsami.8b19201
D. Ding, Y. Wang, X.D. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
Y.H. Wang, X.J. Han, P. Xu, D.W. Liu, L.R. Cui et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019). https://doi.org/10.1016/j.cej.2019.04.153
X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
J. Ouyang, Z.L. He, Y. Zhang, H.M. Yang, Q.H. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 11(42), 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430
X.Y. Zhu, H.F. Qiu, P. Chen, G.Z. Chen, W.X. Min, Anemone-shaped ZIF-67@CNTs as effective electromagnetic absorbent covered the whole X-band. Carbon 173, 1–10 (2021). https://doi.org/10.1016/j.carbon.2020.10.055
L.X. Wang, Y.K. Guan, X. Qiu, H.L. Zhu, S.B. Pan et al., Efficient Ferrite/Co/porous carbon microwave absorbing material based on Ferrite@metal-organic framework. Chem. Eng. J. 326, 945–955 (2017). https://doi.org/10.1016/j.cej.2017.06.006
Y.J. Sun, N. Wang, H.Y. Yu, X.Z. Jiang, Metal-organic framework-based Fe/C@Co3O4 core-shell nanocomposites with outstanding microwave absorption properties in low frequencies. J. Mater. Sci. 55, 7304–7320 (2020). https://doi.org/10.1007/s10853-020-04521-w
H.C. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces 9(48), 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796
X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang et al., Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/c5nr03176a
X.K. Wang, P.P. Zhou, G.H. Qiu, X.Y. Zhang, L.X. Wang et al., Excellent electromagnetic wave absorption properties of porous core-shell CoO/Co@C nanocomposites derived from a needle-shaped Co(OH)2@ZIF-67 template. J. Alloys Compd. 842, 155807 (2020). https://doi.org/10.1016/j.jallcom.2020.155807
J. Yan, Y. Huang, Y.H. Yan, X.X. Zhao, P.B. Liu, The composition design of MOF-derived Co–Fe bimetallic autocatalysis carbon with controllable electromagnetic properties. Compos. Part A Appl. Sci. Manuf. 139, 106107 (2020). https://doi.org/10.1016/j.compositesa.2020.106107
B.C. Wang, W.J. Ruan, C.P. Mu, A. Nie, F.S. Wen et al., Direct one-step synthesis of CoFex@Co@C hybrids derived from a metal organic framework for a lightweight and high-performance microwave absorber. Nanotechnology 31, 095703 (2020). https://doi.org/10.1088/1361-6528/ab5620
B. Quan, X.H. Liang, G.B. Ji, J.N. Ma, P.Y. Ouyang et al., Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces 9(11), 9964–9974 (2017). https://doi.org/10.1021/acsami.6b15788
Z. Yang, H. Lv, R. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9, 3671–3682 (2016). https://doi.org/10.1007/s12274-016-1238-z
J. Yuan, Q. Liu, S. Li, Y. Lu, S. Jin et al., Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synth. Met. 228, 32–40 (2017). https://doi.org/10.1016/j.synthmet.2017.03.020
H. Qiu, X. Zhu, P. Chen, S. Yang, X. Guo et al., Magnetic dodecahedral CoC-decorated reduced graphene oxide as excellent electromagnetic wave absorber. J. Electron. Mater. 49, 1204–1214 (2019). https://doi.org/10.1007/s11664-019-07837-9
Y. Wang, X. Di, X. Gao, X. Wu, Design of MOF-derived hierarchical Co@C@RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent. Nanotechnology 31, 395710 (2020). https://doi.org/10.1088/1361-6528/ab97d1
K. Zhang, A. Xie, M. Sun, W. Jiang, F. Wu et al., Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys. 199, 340–347 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.026
X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv et al., Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 12(15), 17870–17880 (2020). https://doi.org/10.1021/acsami.0c01572
Y. Zhao, W. Wang, J. Wang, J. Zhai, X. Lei et al., Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and RGO for excellent microwave absorption performance. Carbon 173, 1059–1072 (2021). https://doi.org/10.1016/j.carbon.2020.11.090
S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped Carbon/RGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
K. Zhang, J. Li, F. Wu, M. Sun, Y. Xia et al., Sandwich CoFe2O4/RGO/CoFe2O4 nanostructures for high-performance electromagnetic absorption. ACS Appl. Nano Mater. 2(1), 315–324 (2018). https://doi.org/10.1021/acsanm.8b01927
H. Chen, R. Hong, Q. Liu, S. Li, F. Huang et al., CNFs@carbonaceous Co/CoO composite derived from cnfs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J. Alloys Compd. 752, 115–122 (2018). https://doi.org/10.1016/j.jallcom.2018.04.142
J.X. Wang, J.F. Yang, J. Yang, H. Zhang, Design of a novel carbon nanotube and metal-organic framework interpenetrated structure with enhanced microwave absorption properties. Nanotechnology 31, 394002 (2020). https://doi.org/10.1088/1361-6528/ab967c
S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan et al., Great enhancement of electromagnetic wave absorption of MWCNTs@carbonaceous CoO composites derived from MWCNT-sinterconnected zeolitic imidazole framework. Appl. Surf. Sci. 481, 99–107 (2019). https://doi.org/10.1016/j.apsusc.2019.03.018
K. Zhang, F. Wu, J. Li, M. Sun, A. Xie et al., Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (mCNTs) for excellent electromagnetic waves absorption. Mater. Chem. Phys. 208, 198–206 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.008
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
L. Huang, S. Huang, Z. Yang, A. Zhao, C. Liu et al., In-situ conversion of ZnO/Ni3ZnC0.7/CNT composite from NiZn bimetallic MOF precursor with enhanced electromagnetic property. Nanomaterials 8(8), 600 (2018). https://doi.org/10.3390/nano8080600
Y. Qiu, H. Yang, L. Ma, Y. Lin, H. Zong et al., In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 581, 783–793 (2021). https://doi.org/10.1016/j.jcis.2020.07.151
X. Zhu, H. Qiu, P. Chen, G. Chen, W. Min, Graphitic carbon nitride (g-C3N4) in situ polymerization to synthesize MOF-Co@CNTs as efficient electromagnetic microwave absorption materials. Carbon 176, 530–539 (2021). https://doi.org/10.1016/j.carbon.2021.02.044
D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9(8), 5086–5096 (2021). https://doi.org/10.1039/d0ta10942h
W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 10(37), 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao et al., A novel Co/TiO2 nanocomposite derived from a metal-organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C 4(9), 1860–1870 (2016). https://doi.org/10.1039/c6tc00248j
Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039
R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang et al., Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 156, 378–388 (2020). https://doi.org/10.1016/j.carbon.2019.09.063
M. Liu, R. Tian, H. Chen, S. Li, F. Huang et al., One-dimensional chain-like MnO@Co/C composites for high-efficient electromagnetic wave absorbent. J. Magn. Magn. Mater. 499, 166289 (2020). https://doi.org/10.1016/j.jmmm.2019.166289
W. Xue, G. Yang, S. Bi, J. Zhang, Z.L. Hou, Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 173, 521–527 (2021). https://doi.org/10.1016/j.carbon.2020.11.016
W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO@N-doped porous carbon/Co3 ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018). https://doi.org/10.1016/j.cej.2018.02.078
C. Zhou, C. Wu, D. Liu, M. Yan, Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber. Chem. Eur. J. 25(9), 2234–2241 (2019). https://doi.org/10.1002/chem.201805565
C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
Y. Wang, C. Li, X. Han, D. Liu, H. Zhao et al., Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1(9), 5366–5376 (2018). https://doi.org/10.1021/acsanm.8b01479
S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 10(15), 6945–6953 (2018). https://doi.org/10.1039/c8nr01244j
X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9(38), 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
R. Yang, J. Yuan, C. Yu, K. Yan, Y. Fu et al., Efficient electromagnetic wave absorption by SiC/Ni/NiO/C nanocomposites. J. Alloys Compd. 816, 152519 (2020). https://doi.org/10.1016/j.jallcom.2019.152519
M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. B Eng. 179, 107525 (2019). https://doi.org/10.1016/j.compositesb.2019.107525
L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng et al., In situ growth of core-sheath heterostructural sic nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 9(7), 6320–6331 (2017). https://doi.org/10.1021/acsami.6b15795
B. Deng, L. Wang, Z. Xiang, Z. Liu, F. Pan et al., Rational construction of MXene/Ferrite@C hybrids with improved impedance matching for high-performance electromagnetic absorption applications. Mater. Lett. 284, 129029 (2021). https://doi.org/10.1016/j.matlet.2020.129029
Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang et al., Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 34(51), 15854–15863 (2018). https://doi.org/10.1021/acs.langmuir.8b03238
B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
P. Liu, S. Gao, Y. Wang, Y. Huang, F. Zhou et al., Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 173, 655–666 (2021). https://doi.org/10.1016/j.carbon.2020.11.043
J. Xu, Y. Cui, J. Wang, Y. Fan, T. Shah et al., Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties. Chem. Eng. J. 401, 126027 (2020). https://doi.org/10.1016/j.cej.2020.126027
X. Sun, X. Lv, M. Sui, X. Weng, X. Li et al., Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: a lightweight material with excellent electromagnetic absorption. Materials 11(5), 781 (2018). https://doi.org/10.3390/ma11050781
R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang et al., Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 7(36), 20090–20099 (2015). https://doi.org/10.1021/acsami.5b05259
C. Avci, J. Arinez-Soriano, A. Carne-Sanchez, V. Guillerm, C. Carbonell et al., Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew. Chem. Int. Ed. 54(48), 14417–14421 (2015). https://doi.org/10.1002/anie.201507588
A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
H. Ejima, J.J. Richardson, K. Liang, J.P. Best, M.P. Koeverden et al., One-step assembly of coordination complexes for versatile film and particle engineering. Science 341(6142), 154–157 (2013). https://doi.org/10.1126/science.1237265
J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner et al., Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. 53(22), 5546–5551 (2014). https://doi.org/10.1002/anie.201311136
Z. Zhang, Y. Tao, H. Tian, Q. Yue, S. Liu et al., Chelation-assisted selective etching construction of hierarchical polyoxometalate-based metal-organic framework. Chem. Mater. 32(13), 5550–5557 (2020). https://doi.org/10.1021/acs.chemmater.0c00440
N. Wang, W. Ma, Y. Du, Z. Ren, B. Han et al., Prussian blue microcrystals with morphology evolution as a high-performance photo-fenton catalyst for degradation of organic pollutants. ACS Appl. Mater. Interfaces 11(1), 1174–1184 (2019). https://doi.org/10.1021/acsami.8b14987
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
M. Hu, Y. Ju, K. Liang, T. Suma, J. Cui et al., Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 26(32), 5827–5834 (2016). https://doi.org/10.1002/adfm.201601193
B. Lee, D. Moon, J. Park, Microscopic and mesoscopic dual postsynthetic modifications of metal-organic frameworks. Angew. Chem. Int. Ed. 59(33), 13793–13799 (2020). https://doi.org/10.1002/anie.202000278
W. Liu, J. Huang, Q. Yang, S. Wang, X. Sun et al., Multi-shelled hollow metal-organic frameworks. Angew. Chem. Int. Ed. 56(20), 5512–5516 (2017). https://doi.org/10.1002/anie.201701604
L. Han, X.Y. Yu, X.W. Lou, Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 28(23), 4601–4605 (2016). https://doi.org/10.1002/adma.201506315
L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2020). https://doi.org/10.1016/j.carbon.2020.10.070
W. Tian, H. Hu, Y. Wang, P. Li, J. Liu et al., Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano 12(2), 1990–2000 (2018). https://doi.org/10.1021/acsnano.7b09175
Z.N. Shan, Y.B. Lou, J.X. Chen, Triblock copolymer-assisted synthesis of hierarchical ZIF-67 in the presence of 1,3,5-trimenthylbenzene. Inorg. Chem. Commun. 78, 74–77 (2017). https://doi.org/10.1016/j.inoche.2017.03.009
X. Cao, L. Dai, L. Wang, J. Liu, J. Lei, A surfactant template-assisted strategy for synthesis of ZIF-8 hollow nanospheres. Mater. Lett. 161, 682–685 (2015). https://doi.org/10.1016/j.matlet.2015.09.061
M.L. Hu, M.Y. Masoomi, A. Morsali, Template strategies with MOFs. Coord. Chem. Rev. 387, 415–435 (2019). https://doi.org/10.1016/j.ccr.2019.02.021
Z.D. Huang, Z. Gong, Q. Kang, Y. Fang, X.S. Yang et al., High rate Li-ion storage properties of MOF-carbonized derivatives coated on MnO nanowires. Mater. Chem. Front. 1(10), 1975–1981 (2017). https://doi.org/10.1039/c7qm00178a
L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1-xCox@Carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
L. Wang, X. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk-shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
P. Miao, J. Cao, J. Kong, J. Li, T. Wang et al., Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption. Nanoscale 12(25), 13311–13315 (2020). https://doi.org/10.1039/d0nr03104f
Z.N. Li, X.J. Han, Y. Ma, D.W. Liu, Y.H. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6(7), 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
Y.C. Tan, H.C. Zeng, Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures. Chem. Commun. 52(77), 11591–11594 (2016). https://doi.org/10.1039/c6cc05699g
Z. Yang, Y. Zhang, M. Li, L. Yang, J. Liu et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater. 2(12), 7888–7897 (2019). https://doi.org/10.1021/acsanm.9b01881
P. Miao, J. Chen, Y. Tang, K.J. Chen, J. Kong, Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks. Sci. China Mater. 63, 2050–2061 (2020). https://doi.org/10.1007/s40843-020-1333-9
W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12(25), 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
Z. Zhang, J. Tan, W. Gua, H. Zhao, J. Zheng et al., Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 395, 125190 (2020). https://doi.org/10.1016/j.cej.2020.125190
N. Yang, Z.X. Luo, G.R. Zhu, S.C. Chen, X.L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 11(39), 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
X. Sun, M. Yang, S. Yang, S. Wang, W. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15(43), 1902974 (2019). https://doi.org/10.1002/smll.201902974
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
Y. Wang, X. Di, Z. Lu, X. Wu, Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. J. Colloid Interface Sci. 589, 462–471 (2021). https://doi.org/10.1016/j.jcis.2021.01.013
M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 8(36), 18863–18871 (2020). https://doi.org/10.1039/d0ta05540a
M.K. Aslam, S.S.A. Shah, S. Li, C. Chen, Kinetically controlled synthesis of MOF nanostructures: single-holed hollow core-shell ZnCoS@Co9S8/NC for ultra-high performance lithium-ion batteries. J. Mater. Chem. A 6(29), 14083–14090 (2018). https://doi.org/10.1039/c8ta04676j
P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang et al., Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11(28), 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525
Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X. Sun et al., Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020). https://doi.org/10.1016/j.carbon.2020.06.014
X. Zhang, F. Yan, S. Zhang, H. Yuan, C. Zhu et al., Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10(29), 24920–24929 (2018). https://doi.org/10.1021/acsami.8b07107
Z. Zhao, K. Kou, H. Wu, 2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber. J. Colloid Interface Sci. 574, 1–10 (2020). https://doi.org/10.1016/j.jcis.2020.04.037
X.Y. Yu, L. Yu, H.B. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. Int. Ed. 54(18), 5331–5335 (2015). https://doi.org/10.1002/anie.201500267
Z.F. Huang, J. Song, K. Li, M. Tahir, Y.T. Wang et al., Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-PH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138(4), 1359–1365 (2016). https://doi.org/10.1021/jacs.5b11986
S. Wang, B.Y. Guan, Y. Lu, X.W. Lou, Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139(48), 17305–17308 (2017). https://doi.org/10.1021/jacs.7b10733
X. Liu, C. Hao, L. He, C. Yang, Y. Chen et al., Yolk–shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 11, 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z
Y. Yang, C. Li, H. Shi, T. Chen, Z. Wang et al., A PH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta 192, 325–330 (2019). https://doi.org/10.1016/j.talanta.2018.09.067
Y. Liang, J. Wei, Y.X. Hu, X.F. Chen, J. Zhang et al., Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale 9(16), 5323–5328 (2017). https://doi.org/10.1039/c7nr00978j
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
S. Gao, Y. Zhang, H. Xing, H. Li, Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 387, 124149 (2020). https://doi.org/10.1016/j.cej.2020.124149
H. Qiu, X. Zhu, P. Chen, J. Liu, X. Zhu, Self-etching template method to synthesize hollow dodecahedral carbon capsules embedded with Ni–Co alloy for high-performance electromagnetic microwave absorption. Compos. Commun. 20, 100354 (2020). https://doi.org/10.1016/j.coco.2020.04.020
S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 3, 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75
Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu et al., Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29, 1604898 (2017). https://doi.org/10.1002/adma.201604898
H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16(43), 2003407 (2020). https://doi.org/10.1002/smll.202003407
H. Yang, S.J. Bradley, A. Chan, G.I. Waterhouse, T. Nann et al., Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites. J. Am. Chem. Soc. 138(36), 11872–11881 (2016). https://doi.org/10.1021/jacs.6b06736
M.J. Wang, Z.X. Mao, L. Liu, L.S. Peng, N. Yang et al., Paration of hollow nitrogen doped carbon via stresses induced orientation contraction. Small 14(52), 1804183 (2018). https://doi.org/10.1002/smll.201804183
C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 59(19), 7384–7389 (2020). https://doi.org/10.1002/anie.202002665
S. Wang, L. Shang, L. Li, Y. Yu, C. Chi et al., Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Adv. Mater. 28(38), 8379–8387 (2016). https://doi.org/10.1002/adma.201602197
C. Liu, X. Huang, J. Wang, H. Song, Y. Yang et al., Hollow mesoporous carbon nanocubes: rigid-interface-induced outward contraction of metal-organic frameworks. Adv. Funct. Mater. 28(6), 1705253 (2017). https://doi.org/10.1002/adfm.201705253
L. Wang, J. Wu, Y. Chen, X. Wang, R. Zhou et al., Hollow nitrogen-doped Fe3O4/carbon nanocages with hierarchical porosities as anode materials for lithium-ion batteries. Electrochim. Acta 186, 50–57 (2015). https://doi.org/10.1016/j.electacta.2015.10.134
W. Huang, X. Zhang, Y. Zhao, J. Zhang, P. Liu, Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption. Carbon 167, 19–30 (2020). https://doi.org/10.1016/j.carbon.2020.05.073
P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu et al., Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29(31), 1700874 (2017). https://doi.org/10.1002/adma.201700874
S. Li, L. Lin, L. Yao, H. Zheng, Q. Luo et al., MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption. J. Alloys Compd. 856, 158183 (2021). https://doi.org/10.1016/j.jallcom.2020.158183
J. Xiong, Z. Xiang, B. Deng, M. Wu, L. Yu et al., Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 513, 145778 (2020). https://doi.org/10.1016/j.apsusc.2020.145778
B. Kuang, W. Song, M. Ning, J. Li, Z. Zhao et al., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018). https://doi.org/10.1016/j.carbon.2017.10.092
W. Feng, H. Luo, Y. Wang, S. Zeng, L. Deng et al., Ti3C2 MXene: a promising microwave absorbing material. RSC Adv. 8(5), 2398–2403 (2018). https://doi.org/10.1039/c7ra12616f
M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
G.Z. Wang, Z. Gao, G.P. Wan, S.W. Lin, P. Yang et al., High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014). https://doi.org/10.1007/s12274-014-0432-0
X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao et al., Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013). https://doi.org/10.1038/srep03421
W. Feng, H. Luo, S. Zeng, C. Chen, L. Deng et al., Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability. Mater. Chem. Front. 2(12), 2320–2326 (2018). https://doi.org/10.1039/c8qm00436f
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
G. Sun, H. Wu, Q. Liao, Y. Zhang, Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 11, 2689–2704 (2018). https://doi.org/10.1007/s12274-017-1899-2
J. He, D. Shan, S. Yan, H. Luo, C. Cao et al., Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 492, 165639 (2019). https://doi.org/10.1016/j.jmmm.2019.165639