Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance
Corresponding Author: Yunchen Du
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 167
Abstract
Microwave absorbing materials (MAMs) characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications. Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions, while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals. Herein, we have successfully implemented compositional and structural engineering to fabricate hollow SiC/C microspheres with controllable composition. The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites. The formation of hollow structure not only favors lightweight feature, but also generates considerable contribution to microwave attenuation capacity. With the synergistic effect of composition and structure, the optimized SiC/C composite exhibits excellent performance, whose the strongest reflection loss intensity and broadest effective absorption reach − 60.8 dB and 5.1 GHz, respectively, and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies. In addition, the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
Highlights:
1 Hollow SiC/C microspheres with controllable composition have been successfully synthesized by simultaneously implementing compositional and structural engineering.
2 The optimum dielectric properties (i.e., conductivity loss and polarization loss) and impedance matching characteristics can achieve outstanding microwave absorption performance.
3 Broadband wave absorption (5.1 GHz with only 1.8 mm thickness), high efficiency loss (− 60.8 dB at 10.4 GHz) combined with good environmental tolerance, demonstrate their bright prospects in practice.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang et al., Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 32, 2205160 (2022). https://doi.org/10.1002/adfm.202205160
- B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, 2210243 (2023). https://doi.org/10.1002/adma.202210243
- L. Gai, H. Zhao, F. Wang, P. Wang, Y. Liu et al., Advances in core—shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 15, 9410–9439 (2022). https://doi.org/10.1007/s12274-022-4695-6
- J. Lin, J. Qiao, H. Tian, L. Li, W. Liu et al., Ultralight, hierarchical metal–organic framework derivative/graphene hybrid aerogel for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 6, 177 (2023). https://doi.org/10.1007/s42114-023-00762-w
- B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
- M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022). https://doi.org/10.1002/advs.202105553
- J. Liu, J. Tao, L. Gao, X. He, B. Wei et al., Morphology-size synergy strategy of SiC@C nanops towards lightweight and efficient microwave absorption. Chem. Eng. J. 433, 134484 (2022). https://doi.org/10.1016/j.cej.2021.134484
- C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
- Y. Du, Z. Yan, W. You, Q. Men, G. Chen et al., Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 33, 2301449 (2023). https://doi.org/10.1002/adfm.202301449
- F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 450, 138160 (2022). https://doi.org/10.1016/j.cej.2022.138160
- D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9, 5086–5096 (2021). https://doi.org/10.1039/D0TA10942H
- Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 8, 18863–18871 (2020). https://doi.org/10.1039/D0TA05540A
- L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131
- Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2021). https://doi.org/10.1007/s40820-021-00750-z
- C. Zheng, M. Ning, Z. Zou, G. Lv, Q. Wu et al., Two birds with one stone: broadband electromagnetic wave absorption and anticorrosion performance in 2–18 GHz for Prussian blue analog derivatives aimed for practical applications. Small 19, 2208211 (2023). https://doi.org/10.1002/smll.202208211
- S. Chen, W. Li, X. Li, W. Yang, One-dimensional SiC nanostructures: designed growth, properties, and applications. Prog. Mater. Sci. 104, 138–214 (2019). https://doi.org/10.1016/j.pmatsci.2019.04.004
- B. Hu, L. Gai, Y. Liu, P. Wang, S. Yu et al., State-of-the-art in carbides/carbon composites for electromagnetic wave absorption. iScience 26, 107876 (2023). https://doi.org/10.1016/j.isci.2023.107876
- Z. Cai, L. Su, H. Wang, M. Niu, H. Gao et al., Hydrophobic SiC@C nanowire foam with broad-band and mechanically controlled electromagnetic wave absorption. ACS Appl. Mater. Interfaces 12, 8555–8562 (2020). https://doi.org/10.1021/acsami.9b20636
- Y. Du, Advances in carbon-based microwave absorbing materials. Materials 15, 1359 (2022). https://doi.org/10.3390/ma15041359
- Y. Cheng, L. Hu, K. Zhang, J. Fan, Facile synthesis of hollow SiC/C nanospheres for high-performance electromagnetic wave absorption. Carbon 215, 118391 (2023). https://doi.org/10.1016/j.carbon.2023.118391
- B. Huang, J. Yue, B. Fan, Y. Liu, X. Huang, Vertical carbon nanotubes arrays with controlled morphology on silicon carbide fibers for electromagnetic wave absorption. Ceram. Int. 48, 19375–19381 (2022). https://doi.org/10.1016/j.ceramint.2022.03.232
- Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
- C. Zhang, Z. Wu, C. Xu, B. Yang, L. Wang et al., Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 18, 2104380 (2022). https://doi.org/10.1002/smll.202104380
- Y. Hou, H. Yuan, X. Qu, H. Chen, L. Li, Synthesis and high-performance electromagnetic wave absorption of SiC@C composites. Mater. Lett. 209, 90–93 (2017). https://doi.org/10.1016/j.matlet.2017.07.114
- H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14, 102 (2022). https://doi.org/10.1007/s40820-022-00841-5
- H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
- H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16, 2003407 (2020). https://doi.org/10.1002/smll.202003407
- X.-F. Zhang, Z. Chen, Y. Feng, J. Qiu, J. Yao, Low-temperature transformation of C/SiO2 nanocomposites to β-SiC with high surface area. ACS Sustainable Chem. Eng. 6, 1068–1073 (2018). https://doi.org/10.1021/acssuschemeng.7b03375
- Y. Du, J. Wang, C. Cui, X. Liu, X. Wang et al., Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synth. Met. 160, 2191–2196 (2010). https://doi.org/10.1016/j.synthmet.2010.08.008
- J.-P. Chen, Y.-F. Du, Z.-F. Wang, L.-L. Liang, H. Jia et al., Anchoring of SiC whiskers on the hollow carbon microspheres inducing interfacial polarization to promote electromagnetic wave attenuation capability. Carbon 175, 11–19 (2021). https://doi.org/10.1016/j.carbon.2020.12.073
- M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. Part B Eng. 179, 107525 (2019). https://doi.org/10.1016/j.compositesb.2019.107525
- F. Wang, Y. Liu, R. Feng, X. Wang, X. Han et al., A “win–win” strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics. Small 19, 2303597 (2023). https://doi.org/10.1002/smll.202303597
- N. Wang, W. Ma, Z. Ren, Y. Du, P. Xu et al., Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants. J. Mater. Chem. A 6, 884–895 (2018). https://doi.org/10.1039/C7TA08472B
- Y. Du, T. Liu, B. Yu, H. Gao, P. Xu et al., The electromagnetic properties and microwave absorption of mesoporous carbon. Mater. Chem. Phys. 135, 884–891 (2012). https://doi.org/10.1016/j.matchemphys.2012.05.074
- S. Hou, Y. Wang, F. Gao, H. Yang, F. Jin et al., A novel approach to electromagnetic wave absorbing material design: Utilizing nano-antenna arrays for efficient electromagnetic wave capture. Chem. Eng. J. 471, 144779 (2023). https://doi.org/10.1016/j.cej.2023.144779
- H. Wang, Q. An, Z. Xiao, Y. Tong, L. Guo et al., Marine polysaccharide-based electromagnetic absorbing/shielding materials: design principles, structure, and properties. J. Mater. Chem. A 10, 17023–17052 (2022). https://doi.org/10.1039/D2TA03529D
- L. Gai, Y. Zhao, G. Song, Q. An, Z. Xiao et al., Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: assembly and enhanced mechanism. Compos. Part A Appl. Sci. Manuf. 136, 105965 (2020). https://doi.org/10.1016/j.compositesa.2020.105965
- M. Han, X. Yin, Z. Hou, C. Song, X. Li et al., Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803–11810 (2017). https://doi.org/10.1021/acsami.7b00951
- Y. Jiang, Y. Chen, Y. J. Liu, G. X. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 337, 522–531 (2018). https://doi.org/10.1016/j.cej.2017.12.131
- J. Qian, B. Du, M. Cai, C. He, X. Wang et al., Preparation of SiC nanowire/carbon fiber composites with enhanced electromagnetic wave absorption performance. Adv. Eng. Mater. 23, 2100434 (2021). https://doi.org/10.1002/adem.202100434
- S. Xiao, H. Mei, D. Han, K.G. Dassios, L. Cheng, Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon 122, 718–725 (2017). https://doi.org/10.1016/j.carbon.2017.07.023
- S. Xie, G. Q. Jin, S. Meng, Y. W. Wang, Y. Qin et al., Microwave absorption properties of in situ grown CNTs/SiC composites. J. Alloys Compd. 520, 295–300 (2012). https://doi.org/10.1016/j.jallcom.2012.01.050
- X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio. ACS Sustain. Chem. Eng. 7, 2774–2783 (2019). https://doi.org/10.1021/acssuschemeng.8b05966
- K. Zhao, F. Ye, L. Cheng, R. Liu, J. Liang et al., Synthesis of embedded ZrC-SiC-C microspheres via carbothermal reduction for thermal stability and electromagnetic wave absorption. Appl. Surf. Sci. 591, 153105 (2022). https://doi.org/10.1016/j.apsusc.2022.153105
- B. Mao, X. Xia, R. Qin, D. Xu, X. Wang et al., Synthesis and microwave absorption properties of multilayer SiC/C foam with alternating distribution of C and SiC. J. Alloys Compd. 879, 160440 (2021). https://doi.org/10.1016/j.jallcom.2021.160440
- Z. Hou, J. Xue, H. Wei, X. Fan, F. Ye et al., Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure. Ceram. Int. 46, 18160–18167 (2020). https://doi.org/10.1016/j.ceramint.2020.04.137
- S. Singh, A. Kumar, D. Singh, Enhanced microwave absorption performance of SWCNT/SiC composites. J. Electron. Mater. 49, 7279–7291 (2020). https://doi.org/10.1007/s11664-020-08460-9
- R. Wu, Z. Yang, M. Fu, K. Zhou, In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd. 687, 833–838 (2016). https://doi.org/10.1016/j.jallcom.2016.06.106
- X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. J. Adv. Ceram. 8, 479–488 (2019). https://doi.org/10.1007/s40145-019-0328-2
- X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Synthesis and microwave absorption properties of novel reticulation SiC/Porous melamine-derived carbon foam. J. Alloys Compd. 791, 883–891 (2019). https://doi.org/10.1016/j.jallcom.2019.03.384
- Y. Zhang, J. Chen, D. Yan, S. Wang, G. Li et al., Conversion of silicon carbide fibers to continuous graphene fibers by vacuum annealing. Carbon 182, 435–444 (2021). https://doi.org/10.1016/j.carbon.2021.06.043
- Y. Zhang, Y. Zhao, Q. Chen, Y. Hou, Q. Zhang et al., Flexible SiC-CNTs hybrid fiber mats for tunable and broadband microwave absorption. Ceram. Int. 47, 8123–8132 (2021). https://doi.org/10.1016/j.ceramint.2020.11.167
- P. Wang, L. Gai, B. Hu, Y. Liu, F. Wang et al., Topological MOFs deformation for the direct preparation of electromagnetic functionalized Ni/C aerogels with good hydrophobicity and thermal insulation. Carbon 212, 118132 (2023). https://doi.org/10.1016/j.carbon.2023.118132
- L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2021). https://doi.org/10.1016/j.carbon.2020.10.070
- D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian et al., Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013
- Z.N. Wing, B. Wang, J.W. Halloran, Permittivity of porous titanate dielectrics. J. Am. Ceram. Soc. 89, 3696–3700 (2006). https://doi.org/10.1111/j.1551-2916.2006.01323.x
- D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
- T. Zhao, Z. Jia, Y. Zhang, G. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption. Small 19, e2206323 (2023). https://doi.org/10.1002/smll.202206323
- R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
- Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32, 2112294 (2022). https://doi.org/10.1002/adfm.202112294
- K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I: alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906
- B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. 33, 2302172 (2023). https://doi.org/10.1002/adfm.202302172
- Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu et al., Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 461, 141867 (2023). https://doi.org/10.1016/j.cej.2023.141867
- D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7, 5037–5046 (2019). https://doi.org/10.1039/C9TC00771G
References
Z. Cheng, R. Wang, Y. Cao, Z. Cai, Z. Zhang et al., Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 32, 2205160 (2022). https://doi.org/10.1002/adfm.202205160
B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, 2210243 (2023). https://doi.org/10.1002/adma.202210243
L. Gai, H. Zhao, F. Wang, P. Wang, Y. Liu et al., Advances in core—shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 15, 9410–9439 (2022). https://doi.org/10.1007/s12274-022-4695-6
J. Lin, J. Qiao, H. Tian, L. Li, W. Liu et al., Ultralight, hierarchical metal–organic framework derivative/graphene hybrid aerogel for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 6, 177 (2023). https://doi.org/10.1007/s42114-023-00762-w
B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022). https://doi.org/10.1002/advs.202105553
J. Liu, J. Tao, L. Gao, X. He, B. Wei et al., Morphology-size synergy strategy of SiC@C nanops towards lightweight and efficient microwave absorption. Chem. Eng. J. 433, 134484 (2022). https://doi.org/10.1016/j.cej.2021.134484
C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
Y. Du, Z. Yan, W. You, Q. Men, G. Chen et al., Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 33, 2301449 (2023). https://doi.org/10.1002/adfm.202301449
F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 450, 138160 (2022). https://doi.org/10.1016/j.cej.2022.138160
D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9, 5086–5096 (2021). https://doi.org/10.1039/D0TA10942H
Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 8, 18863–18871 (2020). https://doi.org/10.1039/D0TA05540A
L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131
Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2021). https://doi.org/10.1007/s40820-021-00750-z
C. Zheng, M. Ning, Z. Zou, G. Lv, Q. Wu et al., Two birds with one stone: broadband electromagnetic wave absorption and anticorrosion performance in 2–18 GHz for Prussian blue analog derivatives aimed for practical applications. Small 19, 2208211 (2023). https://doi.org/10.1002/smll.202208211
S. Chen, W. Li, X. Li, W. Yang, One-dimensional SiC nanostructures: designed growth, properties, and applications. Prog. Mater. Sci. 104, 138–214 (2019). https://doi.org/10.1016/j.pmatsci.2019.04.004
B. Hu, L. Gai, Y. Liu, P. Wang, S. Yu et al., State-of-the-art in carbides/carbon composites for electromagnetic wave absorption. iScience 26, 107876 (2023). https://doi.org/10.1016/j.isci.2023.107876
Z. Cai, L. Su, H. Wang, M. Niu, H. Gao et al., Hydrophobic SiC@C nanowire foam with broad-band and mechanically controlled electromagnetic wave absorption. ACS Appl. Mater. Interfaces 12, 8555–8562 (2020). https://doi.org/10.1021/acsami.9b20636
Y. Du, Advances in carbon-based microwave absorbing materials. Materials 15, 1359 (2022). https://doi.org/10.3390/ma15041359
Y. Cheng, L. Hu, K. Zhang, J. Fan, Facile synthesis of hollow SiC/C nanospheres for high-performance electromagnetic wave absorption. Carbon 215, 118391 (2023). https://doi.org/10.1016/j.carbon.2023.118391
B. Huang, J. Yue, B. Fan, Y. Liu, X. Huang, Vertical carbon nanotubes arrays with controlled morphology on silicon carbide fibers for electromagnetic wave absorption. Ceram. Int. 48, 19375–19381 (2022). https://doi.org/10.1016/j.ceramint.2022.03.232
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
C. Zhang, Z. Wu, C. Xu, B. Yang, L. Wang et al., Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 18, 2104380 (2022). https://doi.org/10.1002/smll.202104380
Y. Hou, H. Yuan, X. Qu, H. Chen, L. Li, Synthesis and high-performance electromagnetic wave absorption of SiC@C composites. Mater. Lett. 209, 90–93 (2017). https://doi.org/10.1016/j.matlet.2017.07.114
H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14, 102 (2022). https://doi.org/10.1007/s40820-022-00841-5
H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16, 2003407 (2020). https://doi.org/10.1002/smll.202003407
X.-F. Zhang, Z. Chen, Y. Feng, J. Qiu, J. Yao, Low-temperature transformation of C/SiO2 nanocomposites to β-SiC with high surface area. ACS Sustainable Chem. Eng. 6, 1068–1073 (2018). https://doi.org/10.1021/acssuschemeng.7b03375
Y. Du, J. Wang, C. Cui, X. Liu, X. Wang et al., Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synth. Met. 160, 2191–2196 (2010). https://doi.org/10.1016/j.synthmet.2010.08.008
J.-P. Chen, Y.-F. Du, Z.-F. Wang, L.-L. Liang, H. Jia et al., Anchoring of SiC whiskers on the hollow carbon microspheres inducing interfacial polarization to promote electromagnetic wave attenuation capability. Carbon 175, 11–19 (2021). https://doi.org/10.1016/j.carbon.2020.12.073
M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. Part B Eng. 179, 107525 (2019). https://doi.org/10.1016/j.compositesb.2019.107525
F. Wang, Y. Liu, R. Feng, X. Wang, X. Han et al., A “win–win” strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics. Small 19, 2303597 (2023). https://doi.org/10.1002/smll.202303597
N. Wang, W. Ma, Z. Ren, Y. Du, P. Xu et al., Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants. J. Mater. Chem. A 6, 884–895 (2018). https://doi.org/10.1039/C7TA08472B
Y. Du, T. Liu, B. Yu, H. Gao, P. Xu et al., The electromagnetic properties and microwave absorption of mesoporous carbon. Mater. Chem. Phys. 135, 884–891 (2012). https://doi.org/10.1016/j.matchemphys.2012.05.074
S. Hou, Y. Wang, F. Gao, H. Yang, F. Jin et al., A novel approach to electromagnetic wave absorbing material design: Utilizing nano-antenna arrays for efficient electromagnetic wave capture. Chem. Eng. J. 471, 144779 (2023). https://doi.org/10.1016/j.cej.2023.144779
H. Wang, Q. An, Z. Xiao, Y. Tong, L. Guo et al., Marine polysaccharide-based electromagnetic absorbing/shielding materials: design principles, structure, and properties. J. Mater. Chem. A 10, 17023–17052 (2022). https://doi.org/10.1039/D2TA03529D
L. Gai, Y. Zhao, G. Song, Q. An, Z. Xiao et al., Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: assembly and enhanced mechanism. Compos. Part A Appl. Sci. Manuf. 136, 105965 (2020). https://doi.org/10.1016/j.compositesa.2020.105965
M. Han, X. Yin, Z. Hou, C. Song, X. Li et al., Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803–11810 (2017). https://doi.org/10.1021/acsami.7b00951
Y. Jiang, Y. Chen, Y. J. Liu, G. X. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 337, 522–531 (2018). https://doi.org/10.1016/j.cej.2017.12.131
J. Qian, B. Du, M. Cai, C. He, X. Wang et al., Preparation of SiC nanowire/carbon fiber composites with enhanced electromagnetic wave absorption performance. Adv. Eng. Mater. 23, 2100434 (2021). https://doi.org/10.1002/adem.202100434
S. Xiao, H. Mei, D. Han, K.G. Dassios, L. Cheng, Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon 122, 718–725 (2017). https://doi.org/10.1016/j.carbon.2017.07.023
S. Xie, G. Q. Jin, S. Meng, Y. W. Wang, Y. Qin et al., Microwave absorption properties of in situ grown CNTs/SiC composites. J. Alloys Compd. 520, 295–300 (2012). https://doi.org/10.1016/j.jallcom.2012.01.050
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio. ACS Sustain. Chem. Eng. 7, 2774–2783 (2019). https://doi.org/10.1021/acssuschemeng.8b05966
K. Zhao, F. Ye, L. Cheng, R. Liu, J. Liang et al., Synthesis of embedded ZrC-SiC-C microspheres via carbothermal reduction for thermal stability and electromagnetic wave absorption. Appl. Surf. Sci. 591, 153105 (2022). https://doi.org/10.1016/j.apsusc.2022.153105
B. Mao, X. Xia, R. Qin, D. Xu, X. Wang et al., Synthesis and microwave absorption properties of multilayer SiC/C foam with alternating distribution of C and SiC. J. Alloys Compd. 879, 160440 (2021). https://doi.org/10.1016/j.jallcom.2021.160440
Z. Hou, J. Xue, H. Wei, X. Fan, F. Ye et al., Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure. Ceram. Int. 46, 18160–18167 (2020). https://doi.org/10.1016/j.ceramint.2020.04.137
S. Singh, A. Kumar, D. Singh, Enhanced microwave absorption performance of SWCNT/SiC composites. J. Electron. Mater. 49, 7279–7291 (2020). https://doi.org/10.1007/s11664-020-08460-9
R. Wu, Z. Yang, M. Fu, K. Zhou, In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd. 687, 833–838 (2016). https://doi.org/10.1016/j.jallcom.2016.06.106
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. J. Adv. Ceram. 8, 479–488 (2019). https://doi.org/10.1007/s40145-019-0328-2
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Synthesis and microwave absorption properties of novel reticulation SiC/Porous melamine-derived carbon foam. J. Alloys Compd. 791, 883–891 (2019). https://doi.org/10.1016/j.jallcom.2019.03.384
Y. Zhang, J. Chen, D. Yan, S. Wang, G. Li et al., Conversion of silicon carbide fibers to continuous graphene fibers by vacuum annealing. Carbon 182, 435–444 (2021). https://doi.org/10.1016/j.carbon.2021.06.043
Y. Zhang, Y. Zhao, Q. Chen, Y. Hou, Q. Zhang et al., Flexible SiC-CNTs hybrid fiber mats for tunable and broadband microwave absorption. Ceram. Int. 47, 8123–8132 (2021). https://doi.org/10.1016/j.ceramint.2020.11.167
P. Wang, L. Gai, B. Hu, Y. Liu, F. Wang et al., Topological MOFs deformation for the direct preparation of electromagnetic functionalized Ni/C aerogels with good hydrophobicity and thermal insulation. Carbon 212, 118132 (2023). https://doi.org/10.1016/j.carbon.2023.118132
L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2021). https://doi.org/10.1016/j.carbon.2020.10.070
D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian et al., Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 514, 10–20 (2018). https://doi.org/10.1016/j.jcis.2017.12.013
Z.N. Wing, B. Wang, J.W. Halloran, Permittivity of porous titanate dielectrics. J. Am. Ceram. Soc. 89, 3696–3700 (2006). https://doi.org/10.1111/j.1551-2916.2006.01323.x
D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
T. Zhao, Z. Jia, Y. Zhang, G. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption. Small 19, e2206323 (2023). https://doi.org/10.1002/smll.202206323
R. Qiang, Y. Du, Y. Wang, N. Wang, C. Tian et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054
Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32, 2112294 (2022). https://doi.org/10.1002/adfm.202112294
K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I: alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906
B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. 33, 2302172 (2023). https://doi.org/10.1002/adfm.202302172
Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu et al., Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 461, 141867 (2023). https://doi.org/10.1016/j.cej.2023.141867
D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7, 5037–5046 (2019). https://doi.org/10.1039/C9TC00771G