Novel Even Beam Splitters Based on Subwavelength Binary Simple Periodic Rectangular Structure
Corresponding Author: Ping Xu
Nano-Micro Letters,
Vol. 7 No. 2 (2015), Article Number: 177-182
Abstract
In this paper, a novel method of a subwavelength binary simple periodic rectangular structure is presented to realize even beam splitting by combining the rigorous couple-wave analysis with the genetic algorithm. Several even splitters in the terahertz region were designed and one of the silicon-based beam splitters designed to separate one incident beam into four emergent beams has total efficiency up to 92.23 %. Zero-order diffraction efficiency was reduced to less than 0.192 % and the error of uniformity decreased to 6.51 × 10−6. These results break the limitation of even beam splitting based on the traditional scalar theory. In addition, the effects of the incident angle, wavelength, as well as the polarizing angle on the diffraction efficiency and uniformity were also investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Bass M, MacDonald C, Fang L, Handbook of Optics (McGraw-Hill Professional Publishing, New York, 2009)
- P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, A transmission polarizing beam splitter grating. J. Opt. A: Pure Appl. Opt. 1(2), 215–219 (1999). doi:10.1088/1464-4258/1/2/018
- J.J. Zheng, C.H. Zhou, J.J. Feng, H.C. Cao, P. Lu, Polarizing beam splitter of two-layer dielectric rectangular transmission gratings in Littrow mounting. Opt. Commun. 282(15), 3069–3075 (2009). doi:10.1016/j.optcom.2009.05.011
- B. Wang, L. Chen, L. Lei, J.Y. Zhou, Metal-based phase grating for high-efficiency polarizing beam splitter. Opt. Commun. 296(1), 149–152 (2013). doi:10.1016/j.optcom.2013.01.037
- X.W. Guan, H. Wu, Y.C. Shi, D.X. Dai, Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Opt. Lett. 39(2), 259–262 (2014). doi:10.1364/OL.39.000259
- L.W. Guo, J.Y. Ma, Broad band beam splitter based on the double-groove fused silica grating. Optik 125(1), 232–234 (2014). doi:10.1016/j.ijleo.2013.06.093
- J.H. Hsu, C.H. Lee, R.S. Chen, A high-efficiency multi-beam splitter for optical pickups using ultra-precision manufacturing. Microelectron. Eng. 113, 74–79 (2014). doi:10.1016/j.mee.2013.07.010
- J.J. Feng, C.H. Zhou, B. Wang, J.J. Zheng, W. Jia, H.C. Cao, P. Lv, Three-port beam splitter of a binary fused-silica grating. Appl. Opt. 47(35), 6638–6643 (2008). doi:10.1364/AO.47.006638
- H.P. Herzig, Micro-optics Elements, Systems and Applications (CRC Press, Boca Raton, 1997)
- J. Tang, J. Shi, L. Zhou, Z. Ma, Fabrication and optical properties of silicon nanowires arrays by electroless Ag-catalyzed etching. Nano-Micro Lett. 3(2), 129–134 (2011). doi:10.3786/nml.v3i2.p129-134
- Z. Ma, C. Jiang, W. Yuan, Y. He, Large-scale patterning of hydrophobic silicon nanostructure arrays fabricated by dual lithography and deep reactive ion etching. Nano-Micro Lett. 5(1), 7–12 (2013). doi:10.3786/nml.v5i1.p7-12
- M.X. Wang, G.H. Yue, Y.D. Lin, X. Wen, D.L. Peng, Z.R. Geng, Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional, nanostructures. Nano-Micro Lett. 5(1), 1–6 (2013). doi:10.3786/nml.v5i1.p1-6
- P. Xu, Y.Y. Huang, X.L. Zhang, J.F. Huang, B.B. Li, E. Ye, S.F. Duan, Z.J. Su, Integrated micro-optical light guide plate. Opt. Express 21(17), 20159–20170 (2013). doi:10.1364/OE.21.020159
- P. Xu, H.X. Huang, K.W. Wang, S.C. Ruan, J. Yang, L.L. Wan, X.X. Chen, J.Y. Liu, Realization of optical perfect shuffle with microoptical array element. Opt. Express 15(3), 809–816 (2007). doi:10.1364/OE.15.000809
- P. Xu, Y.Y. Huang, Z.J. Su, X.L. Zhang, Algorithm research on microstructure distribution on the bottom surface of an integrated micro-optical light guide plate. Appl. Opt. 53(7), 1322–1327 (2014). doi:10.1364/AO.53.001322
- P. Xu, C.Q. Hong, Z.L. Sun, F. Han, G.X. Cheng, Integrated zigzag Vander Lugt correlators incorporating an optimal trade-off synthetic discriminant filter for invariant pattern recognition. Opt. Commun. 315(15), 97–102 (2014). doi:10.1016/j.optcom.2013.10.061
- P. Xu, X. Zhou, X.C. Zhang, Y.K. Guo, L.R. Guo, H. Tang, S.D. Wu, L.X. Yang, Y. Chen, Optical perfect shuffle interconnection using computer-generated blazed grating array. Opt. Rev. 2(5), 362–365 (1995). doi:10.1007/s10043-995-0362-x
- H.X. Huang, P. Xu, J. Yang, X.D. Gong, L.L. Wan, K. Wang, Y.Y. Zheng, X. Han, Method of state code matrixes in the realization of optical switching using perfect shuffle. Opt. Commun. 282(21), 4198–4202 (2009). doi:10.1007/s10043-995-0362-x
- C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation, Rochester, 2011)
- J.R. Marciante, N.O. Farmiga, J.I. Hirsh, M.S. Evans, H.T. Ta, Optical measurement of depth and duty cycle for binary diffraction gratings with sub-wavelength features. Appl. Opt. 43(16), 3234–3240 (2003). doi:10.1364/AO.42.003234
- M.G. Moharam, E.B. Grann, D.A. Pommet, T.K. Gaylord, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). doi:10.1364/JOSAA.12.001068
- G. Cormier, R. Boudreau, S. Thériault, Real-coded genetic algorithm for Bragg grating parameter synthesis. J. Opt. Soc. Am. B 18(12), 1771–1776 (2001). doi:10.1364/JOSAB.18.001771
- E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning (Assion-Wesley Publishing Company, New York, 1987)
References
Bass M, MacDonald C, Fang L, Handbook of Optics (McGraw-Hill Professional Publishing, New York, 2009)
P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, A transmission polarizing beam splitter grating. J. Opt. A: Pure Appl. Opt. 1(2), 215–219 (1999). doi:10.1088/1464-4258/1/2/018
J.J. Zheng, C.H. Zhou, J.J. Feng, H.C. Cao, P. Lu, Polarizing beam splitter of two-layer dielectric rectangular transmission gratings in Littrow mounting. Opt. Commun. 282(15), 3069–3075 (2009). doi:10.1016/j.optcom.2009.05.011
B. Wang, L. Chen, L. Lei, J.Y. Zhou, Metal-based phase grating for high-efficiency polarizing beam splitter. Opt. Commun. 296(1), 149–152 (2013). doi:10.1016/j.optcom.2013.01.037
X.W. Guan, H. Wu, Y.C. Shi, D.X. Dai, Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Opt. Lett. 39(2), 259–262 (2014). doi:10.1364/OL.39.000259
L.W. Guo, J.Y. Ma, Broad band beam splitter based on the double-groove fused silica grating. Optik 125(1), 232–234 (2014). doi:10.1016/j.ijleo.2013.06.093
J.H. Hsu, C.H. Lee, R.S. Chen, A high-efficiency multi-beam splitter for optical pickups using ultra-precision manufacturing. Microelectron. Eng. 113, 74–79 (2014). doi:10.1016/j.mee.2013.07.010
J.J. Feng, C.H. Zhou, B. Wang, J.J. Zheng, W. Jia, H.C. Cao, P. Lv, Three-port beam splitter of a binary fused-silica grating. Appl. Opt. 47(35), 6638–6643 (2008). doi:10.1364/AO.47.006638
H.P. Herzig, Micro-optics Elements, Systems and Applications (CRC Press, Boca Raton, 1997)
J. Tang, J. Shi, L. Zhou, Z. Ma, Fabrication and optical properties of silicon nanowires arrays by electroless Ag-catalyzed etching. Nano-Micro Lett. 3(2), 129–134 (2011). doi:10.3786/nml.v3i2.p129-134
Z. Ma, C. Jiang, W. Yuan, Y. He, Large-scale patterning of hydrophobic silicon nanostructure arrays fabricated by dual lithography and deep reactive ion etching. Nano-Micro Lett. 5(1), 7–12 (2013). doi:10.3786/nml.v5i1.p7-12
M.X. Wang, G.H. Yue, Y.D. Lin, X. Wen, D.L. Peng, Z.R. Geng, Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional, nanostructures. Nano-Micro Lett. 5(1), 1–6 (2013). doi:10.3786/nml.v5i1.p1-6
P. Xu, Y.Y. Huang, X.L. Zhang, J.F. Huang, B.B. Li, E. Ye, S.F. Duan, Z.J. Su, Integrated micro-optical light guide plate. Opt. Express 21(17), 20159–20170 (2013). doi:10.1364/OE.21.020159
P. Xu, H.X. Huang, K.W. Wang, S.C. Ruan, J. Yang, L.L. Wan, X.X. Chen, J.Y. Liu, Realization of optical perfect shuffle with microoptical array element. Opt. Express 15(3), 809–816 (2007). doi:10.1364/OE.15.000809
P. Xu, Y.Y. Huang, Z.J. Su, X.L. Zhang, Algorithm research on microstructure distribution on the bottom surface of an integrated micro-optical light guide plate. Appl. Opt. 53(7), 1322–1327 (2014). doi:10.1364/AO.53.001322
P. Xu, C.Q. Hong, Z.L. Sun, F. Han, G.X. Cheng, Integrated zigzag Vander Lugt correlators incorporating an optimal trade-off synthetic discriminant filter for invariant pattern recognition. Opt. Commun. 315(15), 97–102 (2014). doi:10.1016/j.optcom.2013.10.061
P. Xu, X. Zhou, X.C. Zhang, Y.K. Guo, L.R. Guo, H. Tang, S.D. Wu, L.X. Yang, Y. Chen, Optical perfect shuffle interconnection using computer-generated blazed grating array. Opt. Rev. 2(5), 362–365 (1995). doi:10.1007/s10043-995-0362-x
H.X. Huang, P. Xu, J. Yang, X.D. Gong, L.L. Wan, K. Wang, Y.Y. Zheng, X. Han, Method of state code matrixes in the realization of optical switching using perfect shuffle. Opt. Commun. 282(21), 4198–4202 (2009). doi:10.1007/s10043-995-0362-x
C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation, Rochester, 2011)
J.R. Marciante, N.O. Farmiga, J.I. Hirsh, M.S. Evans, H.T. Ta, Optical measurement of depth and duty cycle for binary diffraction gratings with sub-wavelength features. Appl. Opt. 43(16), 3234–3240 (2003). doi:10.1364/AO.42.003234
M.G. Moharam, E.B. Grann, D.A. Pommet, T.K. Gaylord, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). doi:10.1364/JOSAA.12.001068
G. Cormier, R. Boudreau, S. Thériault, Real-coded genetic algorithm for Bragg grating parameter synthesis. J. Opt. Soc. Am. B 18(12), 1771–1776 (2001). doi:10.1364/JOSAB.18.001771
E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning (Assion-Wesley Publishing Company, New York, 1987)