In Situ Preparation and Analysis of Bimetal Co-doped Mesoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Activity
Corresponding Author: Kaifeng Lin
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 10
Abstract
A novel photocatalyst of mesoporous graphitic carbon nitride (g-C3N4) co-doped with Co and Mo (Co/Mo-MCN) has been one-pot synthesized via a simple template-free method; cobalt chloride and molybdenum disulfide were used as the Co and Mo sources, respectively. The characterization results evidently indicate that molybdenum disulfide functions as Mo sources to incorporate Mo atoms in the framework of g-C3N4 and as a catalyst for promoting the decomposition of g-C3N4, resulting in the creation of mesopores. The obtained Co/Mo-MCN exhibited a significant enhancement of the photocatalytic activity in H2 evolution (8.6 times) and Rhodamine B degradation (10.1 times) under visible light irradiation compared to pristine g-C3N4. Furthermore, density functional theory calculations were applied to further understand the photocatalytic enhancement mechanism of the optical absorption properties at the atomic level after Co- or Mo-doping. Finite-difference time-domain simulations were performed to evaluate the effect of the mesopore structures on the light absorption capability. The results revealed that both the bimetal doping and the mesoporous architectures resulted in an enhanced optical absorption; this phenomenon was considered to have played a critical role in the improvement in the photocatalytic performance of Co/Mo-MCN.
Highlights
1 Co/Mo co-doped mesoporous graphitic carbon nitride (g-C3N4) exhibited enhanced photocatalytic performances with regard to H2 generation (8.6 times) and Rhodamine B degradation (10.1 times) compared with pristine g-C3N4.
2 The density functional theory calculations and optical simulation illustrate that Co/Mo co-doping and the created mesoporous structure can enhance light absorption.
3 The enhanced activity depends on the synergistic effect of Co and Mo co-doping.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Yin, Z. Tang, Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 45, 4873–4891 (2016). https://doi.org/10.1039/C6CS00343E
- V.W. Lau, M.B. Mesch, V. Duppel, V. Blum, J. Senker, B.V. Lotsch, Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc. 137, 1064–1072 (2015). https://doi.org/10.1021/ja511802c
- H. Yu, L. Shang, T. Bian, R. Shi, G.I. Waterhouse et al., Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28, 5080–5086 (2016). https://doi.org/10.1002/adma.201600398
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
- K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water-enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440, 295 (2006). https://doi.org/10.1038/440295a
- D. Zheng, X.N. Cao, X. Wang, Precise formation of a hollow carbon nitride structure with a janus surface to promote water splitting by photoredox catalysis. Angew. Chem. Int. Ed. 55, 11512–11516 (2016). https://doi.org/10.1002/anie.201606102
- X.H. Li, X.C. Wang, M. Antonietti, Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: nanostructure boosts the catalytic selectivity. ACS Catal. 2, 2082–2086 (2012). https://doi.org/10.1021/cs300413x
- A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9, 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
- D. Lu, P. Fang, W. Wu, J. Ding, L. Jiang, X. Zhao, C. Li, M. Yang, Y. Li, D. Wang, Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(VI) and Rhodamine B under visible light irradiation. Nanoscale 9, 3231–3245 (2017). https://doi.org/10.1039/C6NR09137G
- S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Cost-effective and eco-friendly synthesis of novel and stable n-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6, 4830–4842 (2014). https://doi.org/10.1039/c3nr05271k
- G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B-Environ. 198, 347–377 (2016). https://doi.org/10.1016/j.apcatb.2016.05.052
- S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
- S. Sun, S. Liang, Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 9, 10544–10578 (2017). https://doi.org/10.1039/C7NR03656F
- S. Kumar, S. Karthikeyan, A. Lee, G-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8, 74 (2018). https://doi.org/10.3390/catal8020074
- S. Patnaik, S. Martha, S. Acharya, K.M. Parida, An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications. Inorg. Chem. Front. 3, 336–347 (2016). https://doi.org/10.1039/C5QI00255A
- F.Z. Su, S.C. Mathew, G. Lipner, X.Z. Fu, M. Antonietti, S. Blechert, X.C. Wang, Mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132, 16299–16301 (2010). https://doi.org/10.1021/ja102866p
- W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity. Nanoscale 8, 3711–3719 (2016). https://doi.org/10.1039/C5NR07695A
- T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2-tin heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 10, 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
- Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B.D. Fahlman, Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl. Mater. Interfaces 9, 12427–12435 (2017). https://doi.org/10.1021/acsami.7b00370
- J. Wang, L. Tang, G. Zeng, Y. Deng, Y. Liu et al., Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl. Catal. B-Environ. 209, 285–294 (2017). https://doi.org/10.1016/j.apcatb.2017.03.019
- L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B-Environ. 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003
- C. Zhang, Y. Zhou, L. Tang, G. Zeng, J. Zhang et al., Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride/self-doped polyaniline nanofibers and square wave anodic stripping voltammetry. Nanomaterials 6, 7 (2016). https://doi.org/10.3390/nano6010007
- J.W. Xiao, Y.Y. Xu, Y.T. Xia, J.B. Xi, S. Wang, Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 24, 121–129 (2016). https://doi.org/10.1016/j.nanoen.2016.04.026
- F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew. Chem. Int. Ed. 45, 4467–4471 (2006). https://doi.org/10.1002/anie.200600412
- Y. Wang, X. Wang, M. Antonietti, Y. Zhang, Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. Chemsuschem 3, 435–439 (2010). https://doi.org/10.1002/cssc.200900284
- Z. Yang, Y. Zhang, Z. Schnepp, Soft and hard templating of graphitic carbon nitride. J. Mater. Chem. A 3, 14081–14092 (2015). https://doi.org/10.1039/C5TA02156A
- H. Zhang, A. Yu, Photophysics and photocatalysis of carbon nitride synthesized at different temperatures. J. Phys. Chem. C 118, 11628–11635 (2014). https://doi.org/10.1021/jp503477x
- R. Godin, Y. Wang, M.A. Zwijnenburg, J. Tang, J.R. Durrant, Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 139, 5216–5224 (2017). https://doi.org/10.1021/jacs.7b01547
- Q. Yu, S. Guo, X. Li, M. Zhang, Template free fabrication of porous g-C3N4/graphene hybrid with enhanced photocatalytic capability under visible light. Mater. Technol. 29, 172–178 (2014). https://doi.org/10.1179/1753555714Y.0000000126
- Z.H. Chen, P. Sun, B. Fan, Z.G. Zhang, X.M. Fang, In situ template-free ion-exchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity. J. Phys. Chem. C 118, 7801–7807 (2014). https://doi.org/10.1021/jp5000232
- H. Huang, K. Xiao, N. Tian, F. Dong, T. Zhang, X. Du, Y. Zhang, Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A 5, 17452–17463 (2017). https://doi.org/10.1039/C7TA04639A
- W.D. Oh, V.W.C. Chang, Z.T. Hu, R. Goei, T.T. Lim, Enhancing the catalytic activity of g-C3N4 through Me doping (Me = Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J. 323, 260–269 (2017). https://doi.org/10.1016/j.cej.2017.04.107
- D. Ghosh, G. Periyasamy, S.K. Pati, Transition metal embedded two-dimensional C3N4-graphene nanocomposite: a multifunctional material. J. Phys. Chem. C 118, 15487–15494 (2014). https://doi.org/10.1021/jp503367v
- Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff et al., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100
- Z. Ding, X. Chen, M. Antonietti, X. Wang, Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. Chemsuschem 4, 274–281 (2011). https://doi.org/10.1002/cssc.201000149
- X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv. Mater. 21, 1609–1612 (2009). https://doi.org/10.1002/adma.200802627
- C. Han, X. Bo, J. Liu, M. Li, M. Zhou, L. Guo, Fe, Co bimetal activated N-doped graphitic carbon layers as noble metal-free electrocatalysts for high-performance oxygen reduction reaction. J. Alloys Compd. 710, 57–65 (2017). https://doi.org/10.1016/j.jallcom.2017.03.241
- S.G. Rashid, M.A. Gondal, A. Hameed, M. Aslam, M.A. Dastageer, Z.H. Yamani, D.H. Anjum, Synthesis, characterization and visible light photocatalytic activity of Cr3+, Ce3+ and N co-doped TiO2 for the degradation of humic acid. RSC Adv. 5, 32323–32332 (2015). https://doi.org/10.1039/C5RA00714C
- G. Zhang, C. Huang, X. Wang, Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11, 1215–1221 (2015). https://doi.org/10.1002/smll.201402636
- M.L. Li, L.X. Zhang, M.Y. Wu, Y.Y. Du, X.Q. Fan et al., Mesostructured CeO2/g-C3N4 nanocomposites: remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 19, 145–155 (2016). https://doi.org/10.1016/j.nanoen.2015.11.010
- J. Xiao, Y. Xie, F. Nawaz, S. Jin, F. Duan, M. Li, H. Cao, Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: a potential sunlight/O3/g-C3N4 method for efficient water decontamination. Appl. Catal. B- Environ. 181, 420–428 (2016). https://doi.org/10.1016/j.apcatb.2015.08.020
- F. Guo, W. Shi, H. Wang, M. Han, H. Li, H. Huang, Y. Liu, Z. Kang, Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal. Sci. Technol. 7, 3325–3331 (2017). https://doi.org/10.1039/C7CY00960G
- L.F. Gao, T. Wen, J.Y. Xu, X.P. Zhai, M. Zhao et al., Iron-doped carbon nitride-type polymers as homogeneous organocatalysts for visible light-driven hydrogen evolution. ACS Appl. Mater. Interfaces. 8, 617–624 (2016). https://doi.org/10.1021/acsami.5b09684
- Y. Hou, J.Y. Li, Z.H. Wen, S.M. Cui, C. Yuan, J.H. Chen, N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy 8, 157–164 (2014). https://doi.org/10.1016/j.nanoen.2014.06.003
- W. Fu, H. He, Z. Zhang, C. Wu, X. Wang et al., Strong interfacial coupling of MoS2/g-C3N4 van de waals solids for highly active water reduction. Nano Energy 27, 44–50 (2016). https://doi.org/10.1016/j.nanoen.2016.06.037
- Z.A. Lan, G.G. Zhang, X.C. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B-Environ. 192, 116–125 (2016). https://doi.org/10.1016/j.apcatb.2016.03.062
- F. Raziq, Y. Qu, M. Humayun, A. Zada, H. Yu, L. Jing, Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B-Environ. 201, 486–494 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057
- J. Xu, Q. Jiang, T. Chen, F. Wu, Y.X. Li, Vanadia supported on mesoporous carbon nitride as a highly efficient catalyst for hydroxylation of benzene to phenol. Catal. Sci. Technol. 5, 1504–1513 (2015). https://doi.org/10.1039/C4CY01373E
- K. Kailasam, A. Fischer, G. Zhang, J. Zhang, M. Schwarze, M. Schroder, X. Wang, R. Schomacker, A. Thomas, Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution. Chemsuschem 8, 1404–1410 (2015). https://doi.org/10.1002/cssc.201403278
- N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du, F. Dong, G.I.N. Waterhouse, T. Zhang, H. Huang, Precursor-reforming protocol to 3d mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38, 72–81 (2017). https://doi.org/10.1016/j.nanoen.2017.05.038
- Y. Wang, Y. Xu, Y. Wang, H. Qin, X. Li, Y. Zuo, S. Kang, L. Cui, Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O. Catal. Commun. 74, 75–79 (2016). https://doi.org/10.1016/j.catcom.2015.10.029
- H.J. Yu, L. Shang, T. Bian, R. Shi, G.I.N. Waterhouse et al., Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28, 5080–5086 (2016). https://doi.org/10.1002/adma.201600398
- F. He, G. Chen, J. Miao, Z. Wang, D. Su et al., Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2 evolution. ACS Energy Lett. 1, 969–975 (2016). https://doi.org/10.1021/acsenergylett.6b00398
- D. Qi, H. Lei, T. Wang, Z. Pei, J. Gong, C. Sun, Mechanical, microstructural and tribological properties of reactive magnetron sputtered Cr–Mo–N films. J. Mater. Sci. Technol. 31, 55–64 (2015). https://doi.org/10.1016/j.jmst.2014.10.001
- D. Das, D. Banerjee, B. Das, N.S. Das, K.K. Chattopadhyay, Effect of cobalt doping into graphitic carbon nitride on photo induced removal of dye from water. Mater. Res. Bull. 89, 170–179 (2017). https://doi.org/10.1016/j.materresbull.2017.01.034
- P.-W. Chen, K. Li, Y.-X. Yu, W.D. Zhang, Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Appl. Surf. Sci. 392, 608–615 (2017). https://doi.org/10.1016/j.apsusc.2016.09.086
- Y. Cui, J. Zhang, G. Zhang, J. Huang, P. Liu, M. Antonietti, X. Wang, Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J. Mater. Chem. 21, 13032 (2011). https://doi.org/10.1039/c1jm11961c
- S. Zhang, J. Li, M. Zeng, J. Li, J. Xu, X. Wang, Bandgap engineering and mechanism study of nonmetal and metal ion codoped carbon nitride: C + Fe as an example. Chemistry 20, 9805–9812 (2014). https://doi.org/10.1002/chem.201400060
- J. Gracia, P. Kroll, Corrugated layered heptazine-based carbon nitride: the lowest energy modifications of C3N4 ground state. J. Mater. Chem. 19, 9285 (2009). https://doi.org/10.1039/b821568e
- X.G. Ma, Y.H. Lv, J. Xu, Y.F. Liu, R.Q. Zhang, Y.F. Zhu, A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J. Phys. Chem. C 116, 23485–23493 (2012). https://doi.org/10.1021/jp308334x
- T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922
- Y. Li, Z. Ruan, Y. He, J. Li, K. Li et al., In situ fabrication of hierarchically porous g-C3N4 and understanding on its enhanced photocatalytic activity based on energy absorption. Appl. Catal. B-Environ. 236, 64–75 (2018). https://doi.org/10.1016/j.apcatb.2018.04.082
References
H. Yin, Z. Tang, Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 45, 4873–4891 (2016). https://doi.org/10.1039/C6CS00343E
V.W. Lau, M.B. Mesch, V. Duppel, V. Blum, J. Senker, B.V. Lotsch, Low-molecular-weight carbon nitrides for solar hydrogen evolution. J. Am. Chem. Soc. 137, 1064–1072 (2015). https://doi.org/10.1021/ja511802c
H. Yu, L. Shang, T. Bian, R. Shi, G.I. Waterhouse et al., Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28, 5080–5086 (2016). https://doi.org/10.1002/adma.201600398
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water-enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440, 295 (2006). https://doi.org/10.1038/440295a
D. Zheng, X.N. Cao, X. Wang, Precise formation of a hollow carbon nitride structure with a janus surface to promote water splitting by photoredox catalysis. Angew. Chem. Int. Ed. 55, 11512–11516 (2016). https://doi.org/10.1002/anie.201606102
X.H. Li, X.C. Wang, M. Antonietti, Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: nanostructure boosts the catalytic selectivity. ACS Catal. 2, 2082–2086 (2012). https://doi.org/10.1021/cs300413x
A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9, 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
D. Lu, P. Fang, W. Wu, J. Ding, L. Jiang, X. Zhao, C. Li, M. Yang, Y. Li, D. Wang, Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(VI) and Rhodamine B under visible light irradiation. Nanoscale 9, 3231–3245 (2017). https://doi.org/10.1039/C6NR09137G
S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Cost-effective and eco-friendly synthesis of novel and stable n-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6, 4830–4842 (2014). https://doi.org/10.1039/c3nr05271k
G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B-Environ. 198, 347–377 (2016). https://doi.org/10.1016/j.apcatb.2016.05.052
S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
S. Sun, S. Liang, Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 9, 10544–10578 (2017). https://doi.org/10.1039/C7NR03656F
S. Kumar, S. Karthikeyan, A. Lee, G-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8, 74 (2018). https://doi.org/10.3390/catal8020074
S. Patnaik, S. Martha, S. Acharya, K.M. Parida, An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications. Inorg. Chem. Front. 3, 336–347 (2016). https://doi.org/10.1039/C5QI00255A
F.Z. Su, S.C. Mathew, G. Lipner, X.Z. Fu, M. Antonietti, S. Blechert, X.C. Wang, Mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132, 16299–16301 (2010). https://doi.org/10.1021/ja102866p
W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity. Nanoscale 8, 3711–3719 (2016). https://doi.org/10.1039/C5NR07695A
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2-tin heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 10, 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B.D. Fahlman, Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution. ACS Appl. Mater. Interfaces 9, 12427–12435 (2017). https://doi.org/10.1021/acsami.7b00370
J. Wang, L. Tang, G. Zeng, Y. Deng, Y. Liu et al., Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl. Catal. B-Environ. 209, 285–294 (2017). https://doi.org/10.1016/j.apcatb.2017.03.019
L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B-Environ. 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003
C. Zhang, Y. Zhou, L. Tang, G. Zeng, J. Zhang et al., Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride/self-doped polyaniline nanofibers and square wave anodic stripping voltammetry. Nanomaterials 6, 7 (2016). https://doi.org/10.3390/nano6010007
J.W. Xiao, Y.Y. Xu, Y.T. Xia, J.B. Xi, S. Wang, Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 24, 121–129 (2016). https://doi.org/10.1016/j.nanoen.2016.04.026
F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew. Chem. Int. Ed. 45, 4467–4471 (2006). https://doi.org/10.1002/anie.200600412
Y. Wang, X. Wang, M. Antonietti, Y. Zhang, Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. Chemsuschem 3, 435–439 (2010). https://doi.org/10.1002/cssc.200900284
Z. Yang, Y. Zhang, Z. Schnepp, Soft and hard templating of graphitic carbon nitride. J. Mater. Chem. A 3, 14081–14092 (2015). https://doi.org/10.1039/C5TA02156A
H. Zhang, A. Yu, Photophysics and photocatalysis of carbon nitride synthesized at different temperatures. J. Phys. Chem. C 118, 11628–11635 (2014). https://doi.org/10.1021/jp503477x
R. Godin, Y. Wang, M.A. Zwijnenburg, J. Tang, J.R. Durrant, Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 139, 5216–5224 (2017). https://doi.org/10.1021/jacs.7b01547
Q. Yu, S. Guo, X. Li, M. Zhang, Template free fabrication of porous g-C3N4/graphene hybrid with enhanced photocatalytic capability under visible light. Mater. Technol. 29, 172–178 (2014). https://doi.org/10.1179/1753555714Y.0000000126
Z.H. Chen, P. Sun, B. Fan, Z.G. Zhang, X.M. Fang, In situ template-free ion-exchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity. J. Phys. Chem. C 118, 7801–7807 (2014). https://doi.org/10.1021/jp5000232
H. Huang, K. Xiao, N. Tian, F. Dong, T. Zhang, X. Du, Y. Zhang, Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A 5, 17452–17463 (2017). https://doi.org/10.1039/C7TA04639A
W.D. Oh, V.W.C. Chang, Z.T. Hu, R. Goei, T.T. Lim, Enhancing the catalytic activity of g-C3N4 through Me doping (Me = Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J. 323, 260–269 (2017). https://doi.org/10.1016/j.cej.2017.04.107
D. Ghosh, G. Periyasamy, S.K. Pati, Transition metal embedded two-dimensional C3N4-graphene nanocomposite: a multifunctional material. J. Phys. Chem. C 118, 15487–15494 (2014). https://doi.org/10.1021/jp503367v
Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff et al., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100
Z. Ding, X. Chen, M. Antonietti, X. Wang, Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. Chemsuschem 4, 274–281 (2011). https://doi.org/10.1002/cssc.201000149
X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv. Mater. 21, 1609–1612 (2009). https://doi.org/10.1002/adma.200802627
C. Han, X. Bo, J. Liu, M. Li, M. Zhou, L. Guo, Fe, Co bimetal activated N-doped graphitic carbon layers as noble metal-free electrocatalysts for high-performance oxygen reduction reaction. J. Alloys Compd. 710, 57–65 (2017). https://doi.org/10.1016/j.jallcom.2017.03.241
S.G. Rashid, M.A. Gondal, A. Hameed, M. Aslam, M.A. Dastageer, Z.H. Yamani, D.H. Anjum, Synthesis, characterization and visible light photocatalytic activity of Cr3+, Ce3+ and N co-doped TiO2 for the degradation of humic acid. RSC Adv. 5, 32323–32332 (2015). https://doi.org/10.1039/C5RA00714C
G. Zhang, C. Huang, X. Wang, Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11, 1215–1221 (2015). https://doi.org/10.1002/smll.201402636
M.L. Li, L.X. Zhang, M.Y. Wu, Y.Y. Du, X.Q. Fan et al., Mesostructured CeO2/g-C3N4 nanocomposites: remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 19, 145–155 (2016). https://doi.org/10.1016/j.nanoen.2015.11.010
J. Xiao, Y. Xie, F. Nawaz, S. Jin, F. Duan, M. Li, H. Cao, Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: a potential sunlight/O3/g-C3N4 method for efficient water decontamination. Appl. Catal. B- Environ. 181, 420–428 (2016). https://doi.org/10.1016/j.apcatb.2015.08.020
F. Guo, W. Shi, H. Wang, M. Han, H. Li, H. Huang, Y. Liu, Z. Kang, Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal. Sci. Technol. 7, 3325–3331 (2017). https://doi.org/10.1039/C7CY00960G
L.F. Gao, T. Wen, J.Y. Xu, X.P. Zhai, M. Zhao et al., Iron-doped carbon nitride-type polymers as homogeneous organocatalysts for visible light-driven hydrogen evolution. ACS Appl. Mater. Interfaces. 8, 617–624 (2016). https://doi.org/10.1021/acsami.5b09684
Y. Hou, J.Y. Li, Z.H. Wen, S.M. Cui, C. Yuan, J.H. Chen, N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy 8, 157–164 (2014). https://doi.org/10.1016/j.nanoen.2014.06.003
W. Fu, H. He, Z. Zhang, C. Wu, X. Wang et al., Strong interfacial coupling of MoS2/g-C3N4 van de waals solids for highly active water reduction. Nano Energy 27, 44–50 (2016). https://doi.org/10.1016/j.nanoen.2016.06.037
Z.A. Lan, G.G. Zhang, X.C. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B-Environ. 192, 116–125 (2016). https://doi.org/10.1016/j.apcatb.2016.03.062
F. Raziq, Y. Qu, M. Humayun, A. Zada, H. Yu, L. Jing, Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B-Environ. 201, 486–494 (2017). https://doi.org/10.1016/j.apcatb.2016.08.057
J. Xu, Q. Jiang, T. Chen, F. Wu, Y.X. Li, Vanadia supported on mesoporous carbon nitride as a highly efficient catalyst for hydroxylation of benzene to phenol. Catal. Sci. Technol. 5, 1504–1513 (2015). https://doi.org/10.1039/C4CY01373E
K. Kailasam, A. Fischer, G. Zhang, J. Zhang, M. Schwarze, M. Schroder, X. Wang, R. Schomacker, A. Thomas, Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution. Chemsuschem 8, 1404–1410 (2015). https://doi.org/10.1002/cssc.201403278
N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du, F. Dong, G.I.N. Waterhouse, T. Zhang, H. Huang, Precursor-reforming protocol to 3d mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38, 72–81 (2017). https://doi.org/10.1016/j.nanoen.2017.05.038
Y. Wang, Y. Xu, Y. Wang, H. Qin, X. Li, Y. Zuo, S. Kang, L. Cui, Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O. Catal. Commun. 74, 75–79 (2016). https://doi.org/10.1016/j.catcom.2015.10.029
H.J. Yu, L. Shang, T. Bian, R. Shi, G.I.N. Waterhouse et al., Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28, 5080–5086 (2016). https://doi.org/10.1002/adma.201600398
F. He, G. Chen, J. Miao, Z. Wang, D. Su et al., Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2 evolution. ACS Energy Lett. 1, 969–975 (2016). https://doi.org/10.1021/acsenergylett.6b00398
D. Qi, H. Lei, T. Wang, Z. Pei, J. Gong, C. Sun, Mechanical, microstructural and tribological properties of reactive magnetron sputtered Cr–Mo–N films. J. Mater. Sci. Technol. 31, 55–64 (2015). https://doi.org/10.1016/j.jmst.2014.10.001
D. Das, D. Banerjee, B. Das, N.S. Das, K.K. Chattopadhyay, Effect of cobalt doping into graphitic carbon nitride on photo induced removal of dye from water. Mater. Res. Bull. 89, 170–179 (2017). https://doi.org/10.1016/j.materresbull.2017.01.034
P.-W. Chen, K. Li, Y.-X. Yu, W.D. Zhang, Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Appl. Surf. Sci. 392, 608–615 (2017). https://doi.org/10.1016/j.apsusc.2016.09.086
Y. Cui, J. Zhang, G. Zhang, J. Huang, P. Liu, M. Antonietti, X. Wang, Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J. Mater. Chem. 21, 13032 (2011). https://doi.org/10.1039/c1jm11961c
S. Zhang, J. Li, M. Zeng, J. Li, J. Xu, X. Wang, Bandgap engineering and mechanism study of nonmetal and metal ion codoped carbon nitride: C + Fe as an example. Chemistry 20, 9805–9812 (2014). https://doi.org/10.1002/chem.201400060
J. Gracia, P. Kroll, Corrugated layered heptazine-based carbon nitride: the lowest energy modifications of C3N4 ground state. J. Mater. Chem. 19, 9285 (2009). https://doi.org/10.1039/b821568e
X.G. Ma, Y.H. Lv, J. Xu, Y.F. Liu, R.Q. Zhang, Y.F. Zhu, A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J. Phys. Chem. C 116, 23485–23493 (2012). https://doi.org/10.1021/jp308334x
T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922
Y. Li, Z. Ruan, Y. He, J. Li, K. Li et al., In situ fabrication of hierarchically porous g-C3N4 and understanding on its enhanced photocatalytic activity based on energy absorption. Appl. Catal. B-Environ. 236, 64–75 (2018). https://doi.org/10.1016/j.apcatb.2018.04.082