Safe and Stable Lithium Metal Batteries Enabled by an Amide-Based Electrolyte
Corresponding Author: Jiaheng Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 44
Abstract
The formation of lithium dendrites and the safety hazards arising from flammable liquid electrolytes have seriously hindered the development of high-energy-density lithium metal batteries. Herein, an emerging amide-based electrolyte is proposed, containing LiTFSI and butyrolactam in different molar ratios. 1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropylether and fluoroethylene carbonate are introduced into the amide-based electrolyte as counter solvent and additives. The well-designed amide-based electrolyte possesses nonflammability, high ionic conductivity, high thermal stability and electrochemical stability (> 4.7 V). Besides, an inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li3N and Li–N–C is in situ formed, leading to spherical lithium deposition. The formation mechanism and solvation chemistry of amide-based electrolyte are further investigated by molecular dynamics simulations and density functional theory. When applied in Li metal batteries with LiFePO4 and LiMn2O4 cathode, the amide-based electrolyte can enable stable cycling performance at room temperature and 60 ℃. This study provides a new insight into the development of amide-based electrolytes for lithium metal batteries.
Highlights:
1 A novel amide-based nonflammable electrolyte is proposed. The formation mechanism and solvation chemistry are investigated by molecular dynamics simulations and density functional theory.
2 An inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li3N and Li–N–C is in situ formed, leading to spherical lithium deposition.
3 The amide-based electrolyte can enable stable cycling performance at room temperature and 60 ℃.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
- S. Chu, Y. Cu, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan et al., Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11, 2000962 (2020). https://doi.org/10.1002/aenm.202000962
- C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019). https://doi.org/10.1016/j.trechm.2019.02.015
- J. Zhu, P. Li, X. Chen, D. Legut, Y. Fan et al., Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Mater. 16, 426–433 (2019). https://doi.org/10.1016/j.ensm.2018.06.023
- C. Cui, C. Yang, N. Eidson, J. Chen, F. Han et al., A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 32, 1906427 (2020). https://doi.org/10.1002/adma.201906427
- R. Xu, X.Q. Zhang, X.B. Cheng, H.J. Peng, C.Z. Zhao et al., Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28, 1705838 (2018). https://doi.org/10.1002/adfm.201705838
- L. Yang, Y. Song, H. Liu, Z. Wang, K. Yang et al., Stable interface between lithium and electrolyte facilitated by a nanocomposite protective layer. Small Methods 4, 1900751 (2020). https://doi.org/10.1002/smtd.201900751
- D. Kang, N. Hart, J. Koh, L. Ma, W. Liang et al., Rearrange sei with artificial organic layer for stable lithium metal anode. Energy Storage Mater. 24, 618–625 (2020). https://doi.org/10.1016/j.ensm.2019.06.014
- X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT: PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13, 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
- S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60, 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
- S. Li, Z. Luo, L. Li, J. Hu, G. Zou et al., Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 32, 306–319 (2020). https://doi.org/10.1016/j.ensm.2020.07.008
- D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen et al., Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low n/p ratio lithium metal batteries. Nat. Commun. 12, 186 (2021). https://doi.org/10.1038/s41467-020-20339-1
- P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10, 2001257 (2020). https://doi.org/10.1002/aenm.202001257
- X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ. Sci. 13, 1318–1325 (2020). https://doi.org/10.1039/d0ee00342e
- J. Bae, Y. Qian, Y. Li, X. Zhou, J.B. Goodenough et al., Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12, 3319–3327 (2019). https://doi.org/10.1039/c9ee02558h
- Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12, 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
- T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
- S. Zhang, Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries. Nano-Micro Lett. 12, 158 (2020). https://doi.org/10.1007/s40820-020-00501-6
- L. Zheng, F. Guo, T. Kang, Y. Fan, W. Gu et al., Stable lithium-carbon composite enabled by dual-salt additives. Nano-Micro Lett. 13, 111 (2021). https://doi.org/10.1007/s40820-021-00633-3
- H. Wu, H. Jia, C. Wang, J.G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11, 2003092 (2020). https://doi.org/10.1002/aenm.202003092
- J.I. Lee, G. Song, S. Cho, D.Y. Han, S. Park, Lithium metal interface modification for high-energy batteries: approaches and characterization. Batter Supercaps 3, 828–859 (2020). https://doi.org/10.1002/batt.202000016
- H. Zhou, S. Yu, H. Liu, P. Liu, Protective coatings for lithium metal anodes: recent progress and future perspectives. J. Power Sources 450, 227632 (2020). https://doi.org/10.1016/j.jpowsour.2019.227632
- C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui et al., Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6, 1901036 (2019). https://doi.org/10.1002/advs.201901036
- X.Q. Zhang, X. Chen, X.B. Cheng, B.Q. Li, X. Shen et al., Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. Int. Ed. 57, 5301–5305 (2018). https://doi.org/10.1002/anie.201801513
- F. Li, J. He, J. Liu, M. Wu, Y. Hou et al., Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem. Int. Ed. 60, 6600–6608 (2021). https://doi.org/10.1002/anie.202013993
- S. Ye, L. Wang, F. Liu, P. Shi, H. Wang et al., g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 10, 2002647 (2020). https://doi.org/10.1002/aenm.202002647
- H. Wu, Y. Xu, X. Ren, B. Liu, M.H. Engelhard et al., Polymer-in- “quasi-ionic liquid” electrolytes for high-voltage lithium metal batteries. Adv. Energy Mater. 9, 1902108 (2019). https://doi.org/10.1002/aenm.201902108
- S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia et al., Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018). https://doi.org/10.1002/adma.201706375
- O. Borodin, J. Self, K.A. Persson, C. Wang, K. Xu, Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020). https://doi.org/10.1016/j.joule.2019.09.022
- Z. Wang, F. Zhang, Y. Sun, L. Zheng, Y. Shen et al., Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy Mater. 11, 2003752 (2021). https://doi.org/10.1002/aenm.202003752
- K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, 2000399 (2020). https://doi.org/10.1002/adma.202000399
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004). https://doi.org/10.1002/jcc.20035
- C.I. Bayly, P. Cieplak, W. Cornell, P.A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993). https://doi.org/10.1021/j100142a004
- B. Hess, C. Kutzner, D.V.D. Spoel, E. Lindahl, Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008). https://doi.org/10.1021/ct700301q
- Berendsen HJ, Gunsteren WFV (1986) Practical algorithms for dynamic simulations. Molecular-dynamics Simulation of Statistical-mechanical Systems 43–65
- U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995). https://doi.org/10.1063/1.470117
- L.G. Astrakas, C. Gousias, M. Tzaphlidou, Structural destabilization of chignolin under the influence of oscillating electric fields. J. Appl. Phys. 111, 074702 (2012). https://doi.org/10.1063/1.3699389
- B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, Lincs: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H
- W.F.V. Gunsteren, H.J. Berendsen, A leap-frog algorithm for stochastic dynamics. Mol. Simulat. 1, 173–185 (1988). https://doi.org/10.1080/08927028808080941
- M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb et al., Gaussian (Gaussian Inc, Wallingford, 2004)
- T. Lu, F. Chen, Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J. Mol. Graph. Model. 38, 314–323 (2012). https://doi.org/10.1016/j.jmgm.2012.07.004
- E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen et al., Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010). https://doi.org/10.1021/ja100936w
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- R. Chen, F. Wu, L. Li, B. Xu, X. Qiu et al., Novel binary room-temperature complex system based on LiTFSI and 2-oxazolidinone and its characterization as electrolyte. J. Phys. Chem. C 111, 5184–5194 (2007). https://doi.org/10.1021/jp066429f
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
- D. Brouillette, D.E. Irish, N.J. Taylor, G. Perron, M. Odziemkowski et al., Stable solvates in solution of lithium bis (trifluoromethylsulfone) imide in glymes and other aprotic solvents: phase diagrams, crystallography and Raman spectroscopy. Phys. Chem. Chem. Phys. 4, 6063–6071 (2002). https://doi.org/10.1039/B203776A
- N. Piao, X. Ji, H. Xu, X. Fan, L. Chen et al., Countersolvent electrolytes for lithium-metal batteries. Adv. Energy Mater. 10, 1903568 (2020). https://doi.org/10.1002/aenm.201903568
- G. Yang, C. Chanthad, H. Oh, I.A. Ayhan, Q. Wang, Organic–inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. J. Mater. Chem. A 5, 18012–18019 (2017). https://doi.org/10.1039/c7ta04599a
- S. Lee, K. Park, B. Koo, C. Park, M. Jang et al., Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes. Adv. Funct. Mater. 30, 2003132 (2020). https://doi.org/10.1002/adfm.202003132
- Z. Pan, Y. Bo, Y. Liang, B. Lu, J. Zhan et al., Intermolecular interactions in natural deep eutectic solvents and their effects on the ultrasound-assisted extraction of artemisinin from Artemisia annua. J. Mol. Liq. 326, 115283 (2021). https://doi.org/10.1016/j.molliq.2021.115283
- X. Zhao, G. Zhu, L. Jiao, F. Yu, C. Xie, Formation and extractive desulfurization mechanisms of aromatic acid based deep eutectic solvents: an experimental and theoretical study. Chemistry 24, 11021–11032 (2018). https://doi.org/10.1002/chem.201801631
- N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li et al., A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018). https://doi.org/10.1002/anie.201710806
- S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
- D. Ensling, M. Stjerndahl, A. Nytén, T. Gustafsson, J.O. Thomas, A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes. J. Mater. Chem. 19, 82–88 (2009). https://doi.org/10.1039/b813099j
- X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989
- C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018). https://doi.org/10.1002/anie.201807034
- J. Fu, X. Ji, J. Chen, L. Chen, X. Fan et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 132, 22378–22385 (2020). https://doi.org/10.1002/ange.202009575
- Q. Wang, Z. Yao, C. Zhao, T. Verhallen, D.P. Tabor et al., Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 11, 4188 (2020). https://doi.org/10.1038/s41467-020-17976-x
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
S. Chu, Y. Cu, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan et al., Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11, 2000962 (2020). https://doi.org/10.1002/aenm.202000962
C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019). https://doi.org/10.1016/j.trechm.2019.02.015
J. Zhu, P. Li, X. Chen, D. Legut, Y. Fan et al., Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Mater. 16, 426–433 (2019). https://doi.org/10.1016/j.ensm.2018.06.023
C. Cui, C. Yang, N. Eidson, J. Chen, F. Han et al., A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 32, 1906427 (2020). https://doi.org/10.1002/adma.201906427
R. Xu, X.Q. Zhang, X.B. Cheng, H.J. Peng, C.Z. Zhao et al., Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28, 1705838 (2018). https://doi.org/10.1002/adfm.201705838
L. Yang, Y. Song, H. Liu, Z. Wang, K. Yang et al., Stable interface between lithium and electrolyte facilitated by a nanocomposite protective layer. Small Methods 4, 1900751 (2020). https://doi.org/10.1002/smtd.201900751
D. Kang, N. Hart, J. Koh, L. Ma, W. Liang et al., Rearrange sei with artificial organic layer for stable lithium metal anode. Energy Storage Mater. 24, 618–625 (2020). https://doi.org/10.1016/j.ensm.2019.06.014
X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT: PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13, 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60, 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
S. Li, Z. Luo, L. Li, J. Hu, G. Zou et al., Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 32, 306–319 (2020). https://doi.org/10.1016/j.ensm.2020.07.008
D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen et al., Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low n/p ratio lithium metal batteries. Nat. Commun. 12, 186 (2021). https://doi.org/10.1038/s41467-020-20339-1
P. Zhai, L. Liu, X. Gu, T. Wang, Y. Gong, Interface engineering for lithium metal anodes in liquid electrolyte. Adv. Energy Mater. 10, 2001257 (2020). https://doi.org/10.1002/aenm.202001257
X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ. Sci. 13, 1318–1325 (2020). https://doi.org/10.1039/d0ee00342e
J. Bae, Y. Qian, Y. Li, X. Zhou, J.B. Goodenough et al., Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12, 3319–3327 (2019). https://doi.org/10.1039/c9ee02558h
Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12, 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
S. Zhang, Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries. Nano-Micro Lett. 12, 158 (2020). https://doi.org/10.1007/s40820-020-00501-6
L. Zheng, F. Guo, T. Kang, Y. Fan, W. Gu et al., Stable lithium-carbon composite enabled by dual-salt additives. Nano-Micro Lett. 13, 111 (2021). https://doi.org/10.1007/s40820-021-00633-3
H. Wu, H. Jia, C. Wang, J.G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11, 2003092 (2020). https://doi.org/10.1002/aenm.202003092
J.I. Lee, G. Song, S. Cho, D.Y. Han, S. Park, Lithium metal interface modification for high-energy batteries: approaches and characterization. Batter Supercaps 3, 828–859 (2020). https://doi.org/10.1002/batt.202000016
H. Zhou, S. Yu, H. Liu, P. Liu, Protective coatings for lithium metal anodes: recent progress and future perspectives. J. Power Sources 450, 227632 (2020). https://doi.org/10.1016/j.jpowsour.2019.227632
C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui et al., Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6, 1901036 (2019). https://doi.org/10.1002/advs.201901036
X.Q. Zhang, X. Chen, X.B. Cheng, B.Q. Li, X. Shen et al., Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. Int. Ed. 57, 5301–5305 (2018). https://doi.org/10.1002/anie.201801513
F. Li, J. He, J. Liu, M. Wu, Y. Hou et al., Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem. Int. Ed. 60, 6600–6608 (2021). https://doi.org/10.1002/anie.202013993
S. Ye, L. Wang, F. Liu, P. Shi, H. Wang et al., g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 10, 2002647 (2020). https://doi.org/10.1002/aenm.202002647
H. Wu, Y. Xu, X. Ren, B. Liu, M.H. Engelhard et al., Polymer-in- “quasi-ionic liquid” electrolytes for high-voltage lithium metal batteries. Adv. Energy Mater. 9, 1902108 (2019). https://doi.org/10.1002/aenm.201902108
S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia et al., Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018). https://doi.org/10.1002/adma.201706375
O. Borodin, J. Self, K.A. Persson, C. Wang, K. Xu, Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020). https://doi.org/10.1016/j.joule.2019.09.022
Z. Wang, F. Zhang, Y. Sun, L. Zheng, Y. Shen et al., Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy Mater. 11, 2003752 (2021). https://doi.org/10.1002/aenm.202003752
K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, 2000399 (2020). https://doi.org/10.1002/adma.202000399
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004). https://doi.org/10.1002/jcc.20035
C.I. Bayly, P. Cieplak, W. Cornell, P.A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993). https://doi.org/10.1021/j100142a004
B. Hess, C. Kutzner, D.V.D. Spoel, E. Lindahl, Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008). https://doi.org/10.1021/ct700301q
Berendsen HJ, Gunsteren WFV (1986) Practical algorithms for dynamic simulations. Molecular-dynamics Simulation of Statistical-mechanical Systems 43–65
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995). https://doi.org/10.1063/1.470117
L.G. Astrakas, C. Gousias, M. Tzaphlidou, Structural destabilization of chignolin under the influence of oscillating electric fields. J. Appl. Phys. 111, 074702 (2012). https://doi.org/10.1063/1.3699389
B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, Lincs: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H
W.F.V. Gunsteren, H.J. Berendsen, A leap-frog algorithm for stochastic dynamics. Mol. Simulat. 1, 173–185 (1988). https://doi.org/10.1080/08927028808080941
M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb et al., Gaussian (Gaussian Inc, Wallingford, 2004)
T. Lu, F. Chen, Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J. Mol. Graph. Model. 38, 314–323 (2012). https://doi.org/10.1016/j.jmgm.2012.07.004
E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen et al., Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010). https://doi.org/10.1021/ja100936w
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
R. Chen, F. Wu, L. Li, B. Xu, X. Qiu et al., Novel binary room-temperature complex system based on LiTFSI and 2-oxazolidinone and its characterization as electrolyte. J. Phys. Chem. C 111, 5184–5194 (2007). https://doi.org/10.1021/jp066429f
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
D. Brouillette, D.E. Irish, N.J. Taylor, G. Perron, M. Odziemkowski et al., Stable solvates in solution of lithium bis (trifluoromethylsulfone) imide in glymes and other aprotic solvents: phase diagrams, crystallography and Raman spectroscopy. Phys. Chem. Chem. Phys. 4, 6063–6071 (2002). https://doi.org/10.1039/B203776A
N. Piao, X. Ji, H. Xu, X. Fan, L. Chen et al., Countersolvent electrolytes for lithium-metal batteries. Adv. Energy Mater. 10, 1903568 (2020). https://doi.org/10.1002/aenm.201903568
G. Yang, C. Chanthad, H. Oh, I.A. Ayhan, Q. Wang, Organic–inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. J. Mater. Chem. A 5, 18012–18019 (2017). https://doi.org/10.1039/c7ta04599a
S. Lee, K. Park, B. Koo, C. Park, M. Jang et al., Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes. Adv. Funct. Mater. 30, 2003132 (2020). https://doi.org/10.1002/adfm.202003132
Z. Pan, Y. Bo, Y. Liang, B. Lu, J. Zhan et al., Intermolecular interactions in natural deep eutectic solvents and their effects on the ultrasound-assisted extraction of artemisinin from Artemisia annua. J. Mol. Liq. 326, 115283 (2021). https://doi.org/10.1016/j.molliq.2021.115283
X. Zhao, G. Zhu, L. Jiao, F. Yu, C. Xie, Formation and extractive desulfurization mechanisms of aromatic acid based deep eutectic solvents: an experimental and theoretical study. Chemistry 24, 11021–11032 (2018). https://doi.org/10.1002/chem.201801631
N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li et al., A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018). https://doi.org/10.1002/anie.201710806
S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
D. Ensling, M. Stjerndahl, A. Nytén, T. Gustafsson, J.O. Thomas, A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes. J. Mater. Chem. 19, 82–88 (2009). https://doi.org/10.1039/b813099j
X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989
C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018). https://doi.org/10.1002/anie.201807034
J. Fu, X. Ji, J. Chen, L. Chen, X. Fan et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 132, 22378–22385 (2020). https://doi.org/10.1002/ange.202009575
Q. Wang, Z. Yao, C. Zhao, T. Verhallen, D.P. Tabor et al., Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 11, 4188 (2020). https://doi.org/10.1038/s41467-020-17976-x