Self-Supporting Nanoporous Copper Film with High Porosity and Broadband Light Absorption for Efficient Solar Steam Generation
Corresponding Author: Zhonghua Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 94
Abstract
Solar steam generation (SSG) is a potential technology for freshwater production, which is expected to address the global water shortage problem. Some noble metals with good photothermal conversion performance have received wide concerns in SSG, while high cost limits their practical applications for water purification. Herein, a self-supporting nanoporous copper (NP-Cu) film was fabricated by one-step dealloying of a specially designed Al98Cu2 precursor with a dilute solid solution structure. In-situ and ex-situ characterizations were performed to reveal the phase and microstructure evolutions during dealloying. The NP-Cu film shows a unique three-dimensional bicontinuous ligament-channel structure with high porosity (94.8%), multi scale-channels and nanoscale ligaments (24.2 ± 4.4 nm), leading to its strong broadband absorption over the 200–2500 nm wavelength More importantly, the NP-Cu film exhibits excellent SSG performance with high evaporation rate, superior efficiency and good stability. The strong desalination ability of NP-Cu also manifests its potential applications in seawater desalination. The related mechanism has been rationalized based upon the nanoporous network, localized surface plasmon resonance effect and hydrophilicity.
Highlights:
1 Self-supporting Cu film with high porosity was obtained by dealloying of Al98Cu2.
2 Nanoporous Cu (NP-Cu) film shows good hydrophilicity and strong broadband light absorption.
3 NP-Cu film exhibits outstanding solar steam generation and desalination performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Priyantha Ranjan, S. Kazama, M. Sawamoto, Effects of climate and land use changes on groundwater resources in coastal aquifers. J. Environ. Manag. 80(1), 25–35 (2006). https://doi.org/10.1016/j.jenvman.2005.08.008
- H. Li, Z. Yan, Y. Li, W. Hong, Latest development in salt removal from solar-driven interfacial saline water evaporators: advanced strategies and challenges. Water Res. 177(15), 115770 (2020). https://doi.org/10.1016/j.watres.2020.115770
- H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
- W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14(1), 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
- Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14(1), 176 (2022). https://doi.org/10.1007/s40820-022-00897-3
- X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14(1), 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
- R.M. Morris, The development of the multi-stage flash distillation process: a designer’s viewpoint. Desalination 93(1), 57–68 (1993). https://doi.org/10.1016/0011-9164(93)80096-6
- I.G. Wenten, Khoiruddin, reverse osmosis applications: prospect and challenges. Desalination 391, 112–125 (2016). https://doi.org/10.1016/j.desal.2015.12.011
- C. Xu, J. Zhang, M. Shahriari-Khalaji, M. Gao, X. Yu et al., Fibrous aerogels for solar vapor generation. Front. Chem. 10, 843070 (2022). https://doi.org/10.3389/fchem.2022.843070
- A. Zhang, S. Zhao, L. Wang, X. Yang, Q. Zhao et al., Polycyclic aromatic hydrocarbons (PAHs) in seawater and sediments from the northern Liaodong Bay, China. Mar. Pollut. Bull. 113(1), 592–599 (2016). https://doi.org/10.1016/j.marpolbul.2016.09.005
- P. Zhang, J. Li, M.B. Chan-Park, Hierarchical porous carbon for high-performance capacitive desalination of brackish water. ACS Sustain. Chem. Eng. 8(25), 9291–9300 (2020). https://doi.org/10.1021/acssuschemeng.0c00515
- N.A.A. Qasem, S.M. Zubair, B.A. Qureshi, M.M. Generous, The impact of thermodynamic potentials on the design of electrodialysis desalination plants. Energy Convers. Manag. 205, 112448 (2020). https://doi.org/10.1016/j.enconman.2019.112448
- M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
- P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3(12), 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
- J. Zhou, Y. Gu, P. Liu, P. Wang, L. Miao et al., Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions. Adv. Funct. Mater. 29(50), 1903255 (2019). https://doi.org/10.1002/adfm.201903255
- T. Ding, Y. Zhou, W.L. Ong, G.W. Ho, Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization. Mater. Today 42, 178–191 (2021). https://doi.org/10.1016/j.mattod.2020.10.022
- T. Ding, G.W. Ho, Using the sun to co-generate electricity and freshwater. Joule 5(7), 1639–1641 (2021). https://doi.org/10.1016/j.joule.2021.06.021
- D. Van-Duong, H.-S. Choi, Carbon-based sunlight absorbers in solar-driven steam generation devices. Glob. Chall. 2(2), 1700094 (2018). https://doi.org/10.1002/gch2.201700094
- J. Li, M. Du, G. Lv, L. Zhou, X. Li et al., Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 30(49), 1805159 (2018). https://doi.org/10.1002/adma.201805159
- G. Chen, Z. Jiang, A. Li, X. Chen, Z. Ma et al., Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation. J. Mater. Chem. A 9(31), 16805–16813 (2021). https://doi.org/10.1039/D1TA03695E
- D. Ding, H. Wu, X. He, F. Yang, C. Gao et al., A metal nanop assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation. J. Mater. Chem. A 9(18), 11241–11247 (2021). https://doi.org/10.1039/d1ta01045j
- M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai et al., Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8(4), 1701028 (2018). https://doi.org/10.1002/aenm.201701028
- L. Zhang, J. Xing, X. Wen, J. Chai, S. Wang et al., Plasmonic heating from indium nanops on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale 9(35), 12843–12849 (2017). https://doi.org/10.1039/c7nr05149b
- Z. Guo, J. Wang, Y. Wang, J. Wang, J. Li et al., Achieving steam and electrical power from solar energy by MoS2-based composites. Chem. Eng. J. 427, 131008 (2022). https://doi.org/10.1016/j.cej.2021.131008
- M.S. Irshad, X. Wang, M.S. Abbasi, N. Arshad, Z. Chen et al., Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustain. Chem. Eng. 9(10), 3887–3900 (2021). https://doi.org/10.1021/acssuschemeng.0c08981
- X. Yang, Y. Yang, L. Fu, M. Zou, Z. Li et al., An ultrathin flexible 2D membrane based on single-walled nanotube–MoS2 hybrid film for high-performance solar steam generation. Adv. Funct. Mater. 28(3), 1704505 (2018). https://doi.org/10.1002/adfm.201704505
- Y. Xu, H. Mu, X. Han, T. Sun, X. Fan et al., A simple, flexible, and porous polypyrrole-wax gourd evaporator with excellent light absorption for efficient solar steam generation. Int. J. Energy Res. 45(15), 21476–21486 (2021). https://doi.org/10.1002/er.7195
- Y. Zou, X. Chen, W. Guo, X. Liu, Y. Li, Flexible and robust polyaniline composites for highly efficient and durable solar desalination. ACS Appl. Energy Mater. 3(3), 2634–2642 (2020). https://doi.org/10.1021/acsaem.9b02341
- F. Wang, Y. Su, Y. Li, D. Wei, H. Sun et al., Salt-resistant photothermal materials based on monolithic porous ionic polymers for efficient solar steam generation. ACS Appl. Energy Mater. 3(9), 8746–8754 (2020). https://doi.org/10.1021/acsaem.0c01292
- P. Sun, W. Zhang, I. Zada, Y. Zhang, J. Gu et al., 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation. ACS Appl. Mater. Interfaces 12(2), 2171–2179 (2020). https://doi.org/10.1021/acsami.9b11738
- J. Fang, J. Liu, J. Gu, Q. Liu, W. Zhang et al., Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation. Chem. Mater. 30(18), 6217–6221 (2018). https://doi.org/10.1021/acs.chemmater.8b01702
- N. Xu, X. Hu, W. Xu, X. Li, L. Zhou et al., Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29(28), 1606762 (2017). https://doi.org/10.1002/adma.201606762
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- H. Li, D. Jia, M. Ding, L. Zhou, K. Wang et al., Robust 3D graphene/cellulose nanocrystals hybrid lamella network for stable and highly efficient solar desalination. Sol. RRL 5(8), 2100317 (2021). https://doi.org/10.1002/solr.202100317
- J. Tian, X. Huang, W. Wu, Graphene-based stand-alone networks for efficient solar steam generation. Ind. Eng. Chem. Res. 59(3), 1135–1141 (2020). https://doi.org/10.1021/acs.iecr.9b03523
- Y. Yang, R. Zhao, T. Zhang, K. Zhao, P. Xiao et al., Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1), 829–835 (2018). https://doi.org/10.1021/acsnano.7b08196
- Y. Zhang, Y. Wang, B. Yu, K. Yin, Z. Zhang, Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 34(21), 2200108 (2022). https://doi.org/10.1002/adma.202200108
- H. Wang, R. Zhang, D. Yuan, S. Xu, L. Wang, Gas foaming guided fabrication of 3D porous plasmonic nanoplatform with broadband absorption, tunable shape, excellent stability, and high photothermal efficiency for solar water purification. Adv. Funct. Mater. 30(46), 2003995 (2020). https://doi.org/10.1002/adfm.202003995
- Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao et al., Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. ACS Energy Lett. 3(5), 1165–1171 (2018). https://doi.org/10.1021/acsenergylett.8b00433
- B. Yu, Y. Wang, Y. Zhang, Z. Zhang, Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Res. (2022). https://doi.org/10.1007/s12274-022-5068-x
- C. Xiao, W. Liang, Q.-M. Hasi, L. Chen, J. He et al., Ag/polypyrrole co-modified poly(ionic liquid)s hydrogels as efficient solar generators for desalination. Mater. Today Energy 16, 100417 (2020). https://doi.org/10.1016/j.mtener.2020.100417
- A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo et al., Photothermal membrane distillation for seawater desalination. Adv. Mater. 29(2), 1603504 (2017). https://doi.org/10.1002/adma.201603504
- M.M. Ghafurian, H. Niazmand, E.K. Goharshadi, B.B. Zahmatkesh, A.E. Moallemi et al., Enhanced solar desalination by delignified wood coated with bimetallic Fe/Pd nanops. Desalination 493, 114657 (2020). https://doi.org/10.1016/j.desal.2020.114657
- Y. Fan, S. Wang, F. Wang, J. He, Z. Tian et al., The assembly of a polymer and metal nanop coated glass capillary array for efficient solar desalination. J. Mater. Chem. A 8(48), 25904–25912 (2020). https://doi.org/10.1039/D0TA08950H
- M. Wang, P. Wang, J. Zhang, C. Li, Y. Jin, A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. Chemsuschem 12(2), 467–472 (2019). https://doi.org/10.1002/cssc.201802485
- S. Kunwar, M. Sui, P. Pandey, Z. Gu, S. Pandit et al., Improved control on the morphology and LSPR properties of plasmonic Pt NPs through enhanced solid state dewetting by using a sacrificial indium layer. RSC Adv. 9(4), 2231–2243 (2019). https://doi.org/10.1039/C8RA09049A
- Z. Li, C. Wang, Novel advances in metal-based solar absorber for photothermal vapor generation. Chin. Chem. Lett. 31(9), 2159–2166 (2020). https://doi.org/10.1016/j.cclet.2019.09.030
- P. Wang, Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano 5(5), 1078–1089 (2018). https://doi.org/10.1039/c8en00156a
- F. Meng, B. Ju, S. Zhang, B. Tang, Nano/microstructured materials for solar-driven interfacial evaporators towards water purification. J. Mater. Chem. A 9(24), 13746–13769 (2021). https://doi.org/10.1039/D1TA02202D
- J. Yang, X. Suo, X. Chen, S. Cai, X. Ji et al., Water-light induced self-blacking system constituted by quinoa cellulose and graphene oxide for high performance of salt-rejecting solar desalination. Adv. Sustain. Syst. 6(1), 2100350 (2022). https://doi.org/10.1002/adsu.202100350
- I. McCue, E. Benn, B. Gaskey, J. Erlebacher, Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46(1), 263–286 (2016). https://doi.org/10.1146/annurev-matsci-070115-031739
- J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410(6827), 450–453 (2001). https://doi.org/10.1038/35068529
- Z. Deng, J. Zhou, L. Miao, C. Liu, Y. Peng et al., The emergence of solar thermal utilization: solar-driven steam generation. J. Mater. Chem. A 5(17), 7691–7709 (2017). https://doi.org/10.1039/c7ta01361b
- F. Meng, Z. Ding, Z. Chen, K. Wang, X. Liu et al., N-doped carbon@Cu core–shell nanostructure with nearly full solar spectrum absorption and enhanced solar evaporation efficiency. J. Mater. Chem. A 10(17), 9575–9581 (2022). https://doi.org/10.1039/D1TA10591D
- S. Zhao, M. Xia, Y. Zhang, Q.-M. Hasi, J. Xu et al., Novel oil-repellent photothermal materials based on copper foam for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 225, 111058 (2021). https://doi.org/10.1016/j.solmat.2021.111058
- Y. Wang, Q. Zhang, Y. Wang, L.V. Besteiro, Y. Liu et al., Ultrastable plasmonic Cu-based core–shell nanops. Chem. Mater. 33(2), 695–705 (2021). https://doi.org/10.1021/acs.chemmater.0c04059
- X. Liu, Y. Tian, F. Chen, A. Caratenuto, J.A. DeGiorgis et al., An easy-to-fabricate 2.5D evaporator for efficient solar desalination. Adv. Funct. Mater. 31(27), 2100911 (2021). https://doi.org/10.1002/adfm.202100911
- N. Ponweiser, C.L. Lengauer, K.W. Richter, Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1−δCu. Intermetallics 19(11), 1737–1746 (2011). https://doi.org/10.1016/j.intermet.2011.07.007
- J.L. Murray, The aluminium-copper system. Int. Met. Rev. 30(1), 211–234 (1985). https://doi.org/10.1179/imtr.1985.30.1.211
- I. Najdovski, P.R. Selvakannan, S.K. Bhargava, A.P. O’Mullane, Formation of nanostructured porous Cu–Au surfaces: the influence of cationic sites on (electro)-catalysis. Nanoscale 4(20), 6298–6306 (2012). https://doi.org/10.1039/C2NR31409F
- M.F. Al-Kuhaili, Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum 82(6), 623–629 (2008). https://doi.org/10.1016/j.vacuum.2007.10.004
- P. Motamedi, K. Cadien, XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 315, 104–109 (2014). https://doi.org/10.1016/j.apsusc.2014.07.105
- N. Kumar, K. Biswas, Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanops. J. Mater. Res. Technol. 8(1), 63–74 (2019). https://doi.org/10.1016/j.jmrt.2017.05.017
- X. Li, H. Wu, G. Bin, W. Wu, D. Wu et al., Electrode-induced digital-to-analog resistive switching in TaOx-based RRAM devices. Nanotechnology 27(30), 305201 (2016). https://doi.org/10.1088/0957-4484/27/30/305201
- J. Liu, W. Shi, X. Wang, Cluster-nuclei coassembled into two-dimensional hybrid CuO-PMA sub-1 nm nanosheets. J. Am. Chem. Soc. 141(47), 18754–18758 (2019). https://doi.org/10.1021/jacs.9b08818
- M. Wang, J. Zhang, P. Wang, C. Li, X. Xu et al., Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 11(7), 3854–3863 (2018). https://doi.org/10.1007/s12274-017-1959-7
- M. Chen, Y. Wu, W. Song, Y. Mo, X. Lin et al., Plasmonic nanop-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale 10(13), 6186–6193 (2018). https://doi.org/10.1039/c8nr01017j
- World Health Organization (WHO), Safe drinking-water from desalination (World Health Organization, Geneva, 2011)
- C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
- R. Li, C. Zhou, L. Yang, J. Li, G. Zhang et al., Multifunctional cotton with PANI-Ag NPs heterojunction for solar-driven water evaporation. J. Hazard. Mater. 424, 127367 (2022). https://doi.org/10.1016/j.jhazmat.2021.127367
- B. Yuan, C. Zhang, Y. Liang, L. Yang, H. Yang et al., Defect-induced self-cleaning solar absorber with full-spectrum light absorption for efficient dye wastewater purification. Sol. RRL 5(5), 2100105 (2021). https://doi.org/10.1002/solr.202100105
- S. Wang, Y. Fan, F. Wang, Y. Su, X. Zhou et al., Potentially scalable fabrication of salt-rejection evaporator based on electrogenerated polypyrrole-coated nickel foam for efficient solar steam generation. Desalination 505, 114982 (2021). https://doi.org/10.1016/j.desal.2021.114982
- S. Ai, M. Ma, Y.-Z. Chen, X.-H. Gao, G. Liu, Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanops for water evaporation and desalination. Chem. Eng. J. 429, 132014 (2022). https://doi.org/10.1016/j.cej.2021.132014
- Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu et al., A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27(17), 2768–2774 (2015). https://doi.org/10.1002/adma.201500135
- A. Ebrahimi, E.K. Goharshadi, M. Mohammadi, Reduced graphene oxide/silver/wood as a salt-resistant photoabsorber in solar steam generation and a strong antibacterial agent. Mater. Chem. Phys. 275, 125258 (2022). https://doi.org/10.1016/j.matchemphys.2021.125258
- Z. Deng, P.-F. Liu, J. Zhou, L. Miao, Y. Peng et al., A novel ink-stained paper for solar heavy metal treatment and desalination. Sol. RRL 2(10), 1800073 (2018). https://doi.org/10.1002/solr.201800073
- P. Qiao, J. Wu, H. Li, Y. Xu, L. Ren et al., Plasmon Ag-promoted solar–thermal conversion on floating carbon cloth for seawater desalination and sewage disposal. ACS Appl. Mater. Interfaces 11(7), 7066–7073 (2019). https://doi.org/10.1021/acsami.8b20665
- Y. Liu, Z. Liu, Q. Huang, X. Liang, X. Zhou et al., A high-absorption and self-driven salt-resistant black gold nanop-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination. J. Mater. Chem. A 7(6), 2581–2588 (2019). https://doi.org/10.1039/C8TA10227A
- L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang et al., Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2(4), e1501227 (2016). https://doi.org/10.1126/sciadv.1501227
- K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
- D. Jalas, R. Canchi, A.Y. Petrov, S. Lang, L. Shao et al., Effective medium model for the spectral properties of nanoporous gold in the visible. Appl. Phys. Lett. 105(24), 241906 (2014). https://doi.org/10.1063/1.4904714
References
S. Priyantha Ranjan, S. Kazama, M. Sawamoto, Effects of climate and land use changes on groundwater resources in coastal aquifers. J. Environ. Manag. 80(1), 25–35 (2006). https://doi.org/10.1016/j.jenvman.2005.08.008
H. Li, Z. Yan, Y. Li, W. Hong, Latest development in salt removal from solar-driven interfacial saline water evaporators: advanced strategies and challenges. Water Res. 177(15), 115770 (2020). https://doi.org/10.1016/j.watres.2020.115770
H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14(1), 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14(1), 176 (2022). https://doi.org/10.1007/s40820-022-00897-3
X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14(1), 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
R.M. Morris, The development of the multi-stage flash distillation process: a designer’s viewpoint. Desalination 93(1), 57–68 (1993). https://doi.org/10.1016/0011-9164(93)80096-6
I.G. Wenten, Khoiruddin, reverse osmosis applications: prospect and challenges. Desalination 391, 112–125 (2016). https://doi.org/10.1016/j.desal.2015.12.011
C. Xu, J. Zhang, M. Shahriari-Khalaji, M. Gao, X. Yu et al., Fibrous aerogels for solar vapor generation. Front. Chem. 10, 843070 (2022). https://doi.org/10.3389/fchem.2022.843070
A. Zhang, S. Zhao, L. Wang, X. Yang, Q. Zhao et al., Polycyclic aromatic hydrocarbons (PAHs) in seawater and sediments from the northern Liaodong Bay, China. Mar. Pollut. Bull. 113(1), 592–599 (2016). https://doi.org/10.1016/j.marpolbul.2016.09.005
P. Zhang, J. Li, M.B. Chan-Park, Hierarchical porous carbon for high-performance capacitive desalination of brackish water. ACS Sustain. Chem. Eng. 8(25), 9291–9300 (2020). https://doi.org/10.1021/acssuschemeng.0c00515
N.A.A. Qasem, S.M. Zubair, B.A. Qureshi, M.M. Generous, The impact of thermodynamic potentials on the design of electrodialysis desalination plants. Energy Convers. Manag. 205, 112448 (2020). https://doi.org/10.1016/j.enconman.2019.112448
M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3(12), 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
J. Zhou, Y. Gu, P. Liu, P. Wang, L. Miao et al., Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions. Adv. Funct. Mater. 29(50), 1903255 (2019). https://doi.org/10.1002/adfm.201903255
T. Ding, Y. Zhou, W.L. Ong, G.W. Ho, Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization. Mater. Today 42, 178–191 (2021). https://doi.org/10.1016/j.mattod.2020.10.022
T. Ding, G.W. Ho, Using the sun to co-generate electricity and freshwater. Joule 5(7), 1639–1641 (2021). https://doi.org/10.1016/j.joule.2021.06.021
D. Van-Duong, H.-S. Choi, Carbon-based sunlight absorbers in solar-driven steam generation devices. Glob. Chall. 2(2), 1700094 (2018). https://doi.org/10.1002/gch2.201700094
J. Li, M. Du, G. Lv, L. Zhou, X. Li et al., Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 30(49), 1805159 (2018). https://doi.org/10.1002/adma.201805159
G. Chen, Z. Jiang, A. Li, X. Chen, Z. Ma et al., Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation. J. Mater. Chem. A 9(31), 16805–16813 (2021). https://doi.org/10.1039/D1TA03695E
D. Ding, H. Wu, X. He, F. Yang, C. Gao et al., A metal nanop assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation. J. Mater. Chem. A 9(18), 11241–11247 (2021). https://doi.org/10.1039/d1ta01045j
M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai et al., Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8(4), 1701028 (2018). https://doi.org/10.1002/aenm.201701028
L. Zhang, J. Xing, X. Wen, J. Chai, S. Wang et al., Plasmonic heating from indium nanops on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale 9(35), 12843–12849 (2017). https://doi.org/10.1039/c7nr05149b
Z. Guo, J. Wang, Y. Wang, J. Wang, J. Li et al., Achieving steam and electrical power from solar energy by MoS2-based composites. Chem. Eng. J. 427, 131008 (2022). https://doi.org/10.1016/j.cej.2021.131008
M.S. Irshad, X. Wang, M.S. Abbasi, N. Arshad, Z. Chen et al., Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustain. Chem. Eng. 9(10), 3887–3900 (2021). https://doi.org/10.1021/acssuschemeng.0c08981
X. Yang, Y. Yang, L. Fu, M. Zou, Z. Li et al., An ultrathin flexible 2D membrane based on single-walled nanotube–MoS2 hybrid film for high-performance solar steam generation. Adv. Funct. Mater. 28(3), 1704505 (2018). https://doi.org/10.1002/adfm.201704505
Y. Xu, H. Mu, X. Han, T. Sun, X. Fan et al., A simple, flexible, and porous polypyrrole-wax gourd evaporator with excellent light absorption for efficient solar steam generation. Int. J. Energy Res. 45(15), 21476–21486 (2021). https://doi.org/10.1002/er.7195
Y. Zou, X. Chen, W. Guo, X. Liu, Y. Li, Flexible and robust polyaniline composites for highly efficient and durable solar desalination. ACS Appl. Energy Mater. 3(3), 2634–2642 (2020). https://doi.org/10.1021/acsaem.9b02341
F. Wang, Y. Su, Y. Li, D. Wei, H. Sun et al., Salt-resistant photothermal materials based on monolithic porous ionic polymers for efficient solar steam generation. ACS Appl. Energy Mater. 3(9), 8746–8754 (2020). https://doi.org/10.1021/acsaem.0c01292
P. Sun, W. Zhang, I. Zada, Y. Zhang, J. Gu et al., 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation. ACS Appl. Mater. Interfaces 12(2), 2171–2179 (2020). https://doi.org/10.1021/acsami.9b11738
J. Fang, J. Liu, J. Gu, Q. Liu, W. Zhang et al., Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation. Chem. Mater. 30(18), 6217–6221 (2018). https://doi.org/10.1021/acs.chemmater.8b01702
N. Xu, X. Hu, W. Xu, X. Li, L. Zhou et al., Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29(28), 1606762 (2017). https://doi.org/10.1002/adma.201606762
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
H. Li, D. Jia, M. Ding, L. Zhou, K. Wang et al., Robust 3D graphene/cellulose nanocrystals hybrid lamella network for stable and highly efficient solar desalination. Sol. RRL 5(8), 2100317 (2021). https://doi.org/10.1002/solr.202100317
J. Tian, X. Huang, W. Wu, Graphene-based stand-alone networks for efficient solar steam generation. Ind. Eng. Chem. Res. 59(3), 1135–1141 (2020). https://doi.org/10.1021/acs.iecr.9b03523
Y. Yang, R. Zhao, T. Zhang, K. Zhao, P. Xiao et al., Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1), 829–835 (2018). https://doi.org/10.1021/acsnano.7b08196
Y. Zhang, Y. Wang, B. Yu, K. Yin, Z. Zhang, Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 34(21), 2200108 (2022). https://doi.org/10.1002/adma.202200108
H. Wang, R. Zhang, D. Yuan, S. Xu, L. Wang, Gas foaming guided fabrication of 3D porous plasmonic nanoplatform with broadband absorption, tunable shape, excellent stability, and high photothermal efficiency for solar water purification. Adv. Funct. Mater. 30(46), 2003995 (2020). https://doi.org/10.1002/adfm.202003995
Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao et al., Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. ACS Energy Lett. 3(5), 1165–1171 (2018). https://doi.org/10.1021/acsenergylett.8b00433
B. Yu, Y. Wang, Y. Zhang, Z. Zhang, Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Res. (2022). https://doi.org/10.1007/s12274-022-5068-x
C. Xiao, W. Liang, Q.-M. Hasi, L. Chen, J. He et al., Ag/polypyrrole co-modified poly(ionic liquid)s hydrogels as efficient solar generators for desalination. Mater. Today Energy 16, 100417 (2020). https://doi.org/10.1016/j.mtener.2020.100417
A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo et al., Photothermal membrane distillation for seawater desalination. Adv. Mater. 29(2), 1603504 (2017). https://doi.org/10.1002/adma.201603504
M.M. Ghafurian, H. Niazmand, E.K. Goharshadi, B.B. Zahmatkesh, A.E. Moallemi et al., Enhanced solar desalination by delignified wood coated with bimetallic Fe/Pd nanops. Desalination 493, 114657 (2020). https://doi.org/10.1016/j.desal.2020.114657
Y. Fan, S. Wang, F. Wang, J. He, Z. Tian et al., The assembly of a polymer and metal nanop coated glass capillary array for efficient solar desalination. J. Mater. Chem. A 8(48), 25904–25912 (2020). https://doi.org/10.1039/D0TA08950H
M. Wang, P. Wang, J. Zhang, C. Li, Y. Jin, A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. Chemsuschem 12(2), 467–472 (2019). https://doi.org/10.1002/cssc.201802485
S. Kunwar, M. Sui, P. Pandey, Z. Gu, S. Pandit et al., Improved control on the morphology and LSPR properties of plasmonic Pt NPs through enhanced solid state dewetting by using a sacrificial indium layer. RSC Adv. 9(4), 2231–2243 (2019). https://doi.org/10.1039/C8RA09049A
Z. Li, C. Wang, Novel advances in metal-based solar absorber for photothermal vapor generation. Chin. Chem. Lett. 31(9), 2159–2166 (2020). https://doi.org/10.1016/j.cclet.2019.09.030
P. Wang, Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano 5(5), 1078–1089 (2018). https://doi.org/10.1039/c8en00156a
F. Meng, B. Ju, S. Zhang, B. Tang, Nano/microstructured materials for solar-driven interfacial evaporators towards water purification. J. Mater. Chem. A 9(24), 13746–13769 (2021). https://doi.org/10.1039/D1TA02202D
J. Yang, X. Suo, X. Chen, S. Cai, X. Ji et al., Water-light induced self-blacking system constituted by quinoa cellulose and graphene oxide for high performance of salt-rejecting solar desalination. Adv. Sustain. Syst. 6(1), 2100350 (2022). https://doi.org/10.1002/adsu.202100350
I. McCue, E. Benn, B. Gaskey, J. Erlebacher, Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46(1), 263–286 (2016). https://doi.org/10.1146/annurev-matsci-070115-031739
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410(6827), 450–453 (2001). https://doi.org/10.1038/35068529
Z. Deng, J. Zhou, L. Miao, C. Liu, Y. Peng et al., The emergence of solar thermal utilization: solar-driven steam generation. J. Mater. Chem. A 5(17), 7691–7709 (2017). https://doi.org/10.1039/c7ta01361b
F. Meng, Z. Ding, Z. Chen, K. Wang, X. Liu et al., N-doped carbon@Cu core–shell nanostructure with nearly full solar spectrum absorption and enhanced solar evaporation efficiency. J. Mater. Chem. A 10(17), 9575–9581 (2022). https://doi.org/10.1039/D1TA10591D
S. Zhao, M. Xia, Y. Zhang, Q.-M. Hasi, J. Xu et al., Novel oil-repellent photothermal materials based on copper foam for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 225, 111058 (2021). https://doi.org/10.1016/j.solmat.2021.111058
Y. Wang, Q. Zhang, Y. Wang, L.V. Besteiro, Y. Liu et al., Ultrastable plasmonic Cu-based core–shell nanops. Chem. Mater. 33(2), 695–705 (2021). https://doi.org/10.1021/acs.chemmater.0c04059
X. Liu, Y. Tian, F. Chen, A. Caratenuto, J.A. DeGiorgis et al., An easy-to-fabricate 2.5D evaporator for efficient solar desalination. Adv. Funct. Mater. 31(27), 2100911 (2021). https://doi.org/10.1002/adfm.202100911
N. Ponweiser, C.L. Lengauer, K.W. Richter, Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1−δCu. Intermetallics 19(11), 1737–1746 (2011). https://doi.org/10.1016/j.intermet.2011.07.007
J.L. Murray, The aluminium-copper system. Int. Met. Rev. 30(1), 211–234 (1985). https://doi.org/10.1179/imtr.1985.30.1.211
I. Najdovski, P.R. Selvakannan, S.K. Bhargava, A.P. O’Mullane, Formation of nanostructured porous Cu–Au surfaces: the influence of cationic sites on (electro)-catalysis. Nanoscale 4(20), 6298–6306 (2012). https://doi.org/10.1039/C2NR31409F
M.F. Al-Kuhaili, Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum 82(6), 623–629 (2008). https://doi.org/10.1016/j.vacuum.2007.10.004
P. Motamedi, K. Cadien, XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 315, 104–109 (2014). https://doi.org/10.1016/j.apsusc.2014.07.105
N. Kumar, K. Biswas, Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanops. J. Mater. Res. Technol. 8(1), 63–74 (2019). https://doi.org/10.1016/j.jmrt.2017.05.017
X. Li, H. Wu, G. Bin, W. Wu, D. Wu et al., Electrode-induced digital-to-analog resistive switching in TaOx-based RRAM devices. Nanotechnology 27(30), 305201 (2016). https://doi.org/10.1088/0957-4484/27/30/305201
J. Liu, W. Shi, X. Wang, Cluster-nuclei coassembled into two-dimensional hybrid CuO-PMA sub-1 nm nanosheets. J. Am. Chem. Soc. 141(47), 18754–18758 (2019). https://doi.org/10.1021/jacs.9b08818
M. Wang, J. Zhang, P. Wang, C. Li, X. Xu et al., Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Res. 11(7), 3854–3863 (2018). https://doi.org/10.1007/s12274-017-1959-7
M. Chen, Y. Wu, W. Song, Y. Mo, X. Lin et al., Plasmonic nanop-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale 10(13), 6186–6193 (2018). https://doi.org/10.1039/c8nr01017j
World Health Organization (WHO), Safe drinking-water from desalination (World Health Organization, Geneva, 2011)
C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
R. Li, C. Zhou, L. Yang, J. Li, G. Zhang et al., Multifunctional cotton with PANI-Ag NPs heterojunction for solar-driven water evaporation. J. Hazard. Mater. 424, 127367 (2022). https://doi.org/10.1016/j.jhazmat.2021.127367
B. Yuan, C. Zhang, Y. Liang, L. Yang, H. Yang et al., Defect-induced self-cleaning solar absorber with full-spectrum light absorption for efficient dye wastewater purification. Sol. RRL 5(5), 2100105 (2021). https://doi.org/10.1002/solr.202100105
S. Wang, Y. Fan, F. Wang, Y. Su, X. Zhou et al., Potentially scalable fabrication of salt-rejection evaporator based on electrogenerated polypyrrole-coated nickel foam for efficient solar steam generation. Desalination 505, 114982 (2021). https://doi.org/10.1016/j.desal.2021.114982
S. Ai, M. Ma, Y.-Z. Chen, X.-H. Gao, G. Liu, Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanops for water evaporation and desalination. Chem. Eng. J. 429, 132014 (2022). https://doi.org/10.1016/j.cej.2021.132014
Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu et al., A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27(17), 2768–2774 (2015). https://doi.org/10.1002/adma.201500135
A. Ebrahimi, E.K. Goharshadi, M. Mohammadi, Reduced graphene oxide/silver/wood as a salt-resistant photoabsorber in solar steam generation and a strong antibacterial agent. Mater. Chem. Phys. 275, 125258 (2022). https://doi.org/10.1016/j.matchemphys.2021.125258
Z. Deng, P.-F. Liu, J. Zhou, L. Miao, Y. Peng et al., A novel ink-stained paper for solar heavy metal treatment and desalination. Sol. RRL 2(10), 1800073 (2018). https://doi.org/10.1002/solr.201800073
P. Qiao, J. Wu, H. Li, Y. Xu, L. Ren et al., Plasmon Ag-promoted solar–thermal conversion on floating carbon cloth for seawater desalination and sewage disposal. ACS Appl. Mater. Interfaces 11(7), 7066–7073 (2019). https://doi.org/10.1021/acsami.8b20665
Y. Liu, Z. Liu, Q. Huang, X. Liang, X. Zhou et al., A high-absorption and self-driven salt-resistant black gold nanop-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination. J. Mater. Chem. A 7(6), 2581–2588 (2019). https://doi.org/10.1039/C8TA10227A
L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang et al., Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2(4), e1501227 (2016). https://doi.org/10.1126/sciadv.1501227
K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
D. Jalas, R. Canchi, A.Y. Petrov, S. Lang, L. Shao et al., Effective medium model for the spectral properties of nanoporous gold in the visible. Appl. Phys. Lett. 105(24), 241906 (2014). https://doi.org/10.1063/1.4904714