Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application
Corresponding Author: Wei Yang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 127
Abstract
Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree, operation frequency and power density, and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials. Compared to the conventional thermal management materials, flexible thermally conductive films with high in-plane thermal conductivity, as emerging candidates, have aroused greater interest in the last decade, which show great potential in thermal management applications of next-generation devices. However, a comprehensive review of flexible thermally conductive films is rarely reported. Thus, we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity, with deep understandings of heat transfer mechanism, processing methods to enhance thermal conductivity, optimization strategies to reduce interface thermal resistance and their potential applications. Lastly, challenges and opportunities for the future development of flexible thermally conductive films are also discussed.
Highlights:
1 The state-of-the-art progress of flexible thermally conductive films with ultrahigh in-plane isotropic thermal conductivity (k) and potential application are summarized.
2 The heat transfer mechanism, processing methods to enhance k, optimization strategies to reduce interface thermal resistance of flexible thermally conductive films are reviewed.
3 The limitations and opportunities for the future development of flexible thermally conductive films are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Xu, J. Chen, J. Zhou, B. Li, Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30(17), 1705544 (2018). https://doi.org/10.1002/adma.201705544
- B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
- R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. Wu et al., Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9, 1664 (2018). https://doi.org/10.1038/s41467-018-03978-3
- H. Fang, S.L. Bai, C.P. Wong, Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application. Compos. Part A Appl. Sci. Manuf. 100, 71–80 (2017). https://doi.org/10.1016/j.compositesa.2017.04.018
- W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
- H. Guo, R. Lv, S. Bai, Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 1(2), 101–115 (2019). https://doi.org/10.1016/j.nanoms.2019.03.003
- W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13(2), 1547–1554 (2019). https://doi.org/10.1021/acsnano.8b07337
- M. Qin, Y. Xu, R. Cao, W. Feng, L. Chen, Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 28(45), 1805053 (2018). https://doi.org/10.1002/adfm.201805053
- X. Wang, P. Wu, Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets. ACS Appl. Mater. Interfaces 9(23), 19934–19944 (2017). https://doi.org/10.1021/acsami.7b04768
- P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
- Z. Zhu, C. Li, E. Songfeng, L. Xie, R. Geng et al., Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol. 170, 93–100 (2019). https://doi.org/10.1016/j.compscitech.2018.11.035
- Y. Zhou, F. Liu, H. Wang, Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: a key issue review. Polym. Compos. 38(4), 803–813 (2017). https://doi.org/10.1002/pc.23641
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
- D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19(7), 075609 (2008). https://doi.org/10.1088/0957-4484/19/7/075609
- J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 1363–1369 (2018). https://doi.org/10.1039/c7tc04860b
- Y. Wu, Y. Xue, S. Qin, D. Liu, X. Wang et al., BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS Appl. Mater. Interfaces 9(49), 43163–43170 (2017). https://doi.org/10.1021/acsami.7b15264
- H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao et al., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4), 3606–3613 (2014). https://doi.org/10.1021/nn500134m
- X. Wang, P. Wu, Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films. ACS Appl. Mater. Interfaces 10(3), 2504–2514 (2018). https://doi.org/10.1021/acsami.7b15712
- N. Song, X. Hou, L. Chen, S. Cui, L. Shi et al., A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl. Mater. Interfaces 9(21), 17914–17922 (2017). https://doi.org/10.1021/acsami.7b02675
- C. Yuan, B. Duan, L. Li, B. Xie, M. Huang et al., Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl. Mater. Interfaces 7(23), 13000–13006 (2015). https://doi.org/10.1021/acsami.5b03007
- S. Ronca, T. Igarashi, G. Forte, S. Rastogi, Metallic-like thermal conductivity in a lightweight insulator: solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer 123, 203–210 (2017). https://doi.org/10.1016/j.polymer.2017.07.027
- X. Qian, J. Zhou, G. Chen, Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20(9), 1188–1202 (2021). https://doi.org/10.1038/s41563-021-00918-3
- Y. Xu, D. Kraemer, B. Song, Z. Jiang, J. Zhou et al., Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019). https://doi.org/10.1038/s41467-019-09697-7
- C.P. Feng, L.Y. Yang, J. Yang, L. Bai, R.Y. Bao et al., Recent advances in polymer-based thermal interface materials for thermal management: a mini-review. Compos. Commun. 22, 100528 (2020). https://doi.org/10.1016/j.coco.2020.100528
- J.P. Cao, J. Zhao, X. Zhao, F. You, H. Yu et al., High thermal conductivity and high electrical resistivity of poly (vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos. Sci. Technol. 89, 142–148 (2013). https://doi.org/10.1016/j.compscitech.2013.09.024
- W. Qiu, W. Lin, Y. Tuersun, M. Ou, S. Chu, Ultra-flexible, dielectric, and thermostable boron nitride-graphene fluoride hybrid films for efficient thermal management. Adv. Mater. Interfaces 8(9), 2002187 (2021). https://doi.org/10.1002/admi.202002187
- Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
- T. Zhou, H. Wei, H. Tan, X. Wang, H. Zeng et al., Strongly anisotropic thermal conductivity and adequate breathability of bilayered films for heat management of on-skin electronics. 2D Mater. 5(3), 035013 (2018). https://doi.org/10.1088/2053-583/aabc19
- Y. Guo, Y. Zhou, Y. Xu, Engineering polymers with metal-like thermal conductivity—present status and future perspectives. Polymer 233, 124168 (2021). https://doi.org/10.1016/j.polymer.2021.124168
- X. Wang, M. Kaviany, B. Huang, Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9(45), 18022–18031 (2017). https://doi.org/10.1039/c7nr06216h
- H. Ma, Y. Ma, Z. Tian, Simple theoretical model for thermal conductivity of crystalline polymers. ACS Appl. Polym. Mater. 1(10), 2566–2570 (2019). https://doi.org/10.1021/acsapm.9b00605
- M. Morita, T. Shiga, Surface phonons limit heat conduction in thin films. Phys. Rev. B 103(19), 195418 (2021). https://doi.org/10.1103/PhysRevB.103.195418
- T. Zhang, X. Wu, T. Luo, Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 118(36), 21148–21159 (2014). https://doi.org/10.1021/jp5051639
- C. Lu, S.W. Chiang, H. Du, J. Li, L. Gan et al., Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115, 52–59 (2017). https://doi.org/10.1016/j.polymer.2017.02.024
- L. Bai, X. Zhao, R.Y. Bao, Z.Y. Liu, M.B. Yang et al., Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA. J. Mater. Sci. 53(14), 10543–10553 (2018). https://doi.org/10.1007/s10853-018-2306-4
- H.B. Cho, A. Konno, T. Fujihara, T. Suzuki, S. Tanaka et al., Self-assemblies of linearly aligned diamond fillers in polysiloxane/diamond composite films with enhanced thermal conductivity. Compos. Sci. Technol. 72(1), 112–118 (2011). https://doi.org/10.1016/j.compscitech.2011.10.009
- X. Xie, K. Yang, D. Li, T.H. Tsai, J. Shin et al., High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95(3), 035406 (2017). https://doi.org/10.1103/PhysRevB.95.035406
- D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46(10), 6131–6140 (1992). https://doi.org/10.1103/physrevb.46.6131
- W.P. Hsieh, M.D. Losego, P.V. Braun, S. Shenogin, P. Keblinski et al., Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83(17), 174205 (2011). https://doi.org/10.1103/PhysRevB.83.174205
- V. Rashidi, E.J. Coyle, K. Sebeck, J. Kieffer, K.P. Pipe, Thermal conductance in cross-linked polymers: effects of non-bonding interactions. J. Phys. Chem. B 121(17), 4600–4609 (2017). https://doi.org/10.1021/acs.jpcb.7b01377
- G.H. Kim, D. Lee, A. Shanker, L. Shao, M.S. Kwon et al., High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14(3), 295–300 (2015). https://doi.org/10.1038/nmat4141
- X. Huang, C. Zhi, P. Jiang, Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. J. Phys. Chem. C 116(44), 23812–23820 (2012). https://doi.org/10.1021/jp308556r
- C. Li, X. Long, E. Songfeng, Q. Zhang, T. Li et al., Magnesium-induced preparation of boron nitride nanotubes and their application in thermal interface materials. Nanoscale 11(24), 11457–11463 (2019). https://doi.org/10.1039/c9nr03915e
- F. Jiang, X. Cui, N. Song, L. Shi, P. Ding, Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos. Commun. 20, 100350 (2020). https://doi.org/10.1016/j.coco.2020.04.016
- Z. Liang, Y. Pei, C. Chen, B. Jiang, Y. Yao et al., General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13(11), 12653–12661 (2019). https://doi.org/10.1021/acsnano.9b04202
- X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu et al., A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5), 5167–5178 (2017). https://doi.org/10.1021/acsnano.7b02359
- V. Singh, T.L. Bougher, A. Weathers, Y. Cai, K. Bi et al., High thermal conductivity of chain-oriented amorphous polythiophene. Nat. nanotechnol. 9(5), 384–390 (2014). https://doi.org/10.1038/nnano.2014.44
- C.P. Feng, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang et al., Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv. Compos. Hybr. Mater. 1(1), 160–167 (2017). https://doi.org/10.1007/s42114-017-0013-2
- C.P. Feng, L. Bai, Y. Shao, R.Y. Bao, Z.Y. Liu et al., A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management. Adv. Mater. Interfaces 5(2), 1700946 (2018). https://doi.org/10.1002/admi.201700946
- C.P. Feng, S.S. Wan, W.C. Wu, L. Bai, R.Y. Bao et al., Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 167, 456–462 (2018). https://doi.org/10.1016/j.compscitech.2018.08.039
- Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong et al., Reduced graphene oxide heterostructured silver nanops significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 11(28), 25465–25473 (2019). https://doi.org/10.1021/acsami.9b10161
- H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
- G. Yang, H. Yi, Y. Yao, C. Li, Z. Li, Thermally conductive graphene films for heat dissipation. ACS Appl. Nano Mater. 3(3), 2149–2155 (2020). https://doi.org/10.1021/acsanm.9b01955
- X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu et al., Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 142, 100577 (2020). https://doi.org/10.1016/j.mser.2020.100577
- Y. Guo, K. Ruan, X. Shi, X. Yang, J. Gu, Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos. Sci. Technol. 193, 108134 (2020). https://doi.org/10.1016/j.compscitech.2020.108134
- N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo et al., Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
- F. Kargar, Z. Barani, R. Salgado, B. Debnath, J.S. Lewis et al., Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018). https://doi.org/10.1021/acsami.8b16616
- M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27(6), 2100–2106 (2015). https://doi.org/10.1021/cm504550e
- Y. Su, J.J. Li, G.J. Weng, Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon 137, 222–233 (2018). https://doi.org/10.1016/j.carbon.2018.05.033
- Y. Wu, K. Ye, Z. Liu, B. Wang, C. Yan et al., Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity. ACS Appl. Mater. Interfaces 11(47), 44700–44707 (2019). https://doi.org/10.1021/acsami.9b15758
- W. Zhao, J. Kong, H. Liu, Q. Zhuang, J. Gu et al., Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8(48), 19984–19993 (2016). https://doi.org/10.1039/c6nr06622d
- H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi et al., Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybr. Mater. 4(1), 36–50 (2021). https://doi.org/10.1007/s42114-021-00208-1
- F. Wei, C.P. Feng, J. Yang, L.Y. Yang, L. Bai et al., Scalable flexible phase change materials with a swollen polymer network structure for thermal energy storage. ACS Appl. Mater. Interfaces 13(49), 59364–59372 (2021). https://doi.org/10.1021/acsami.1c20147
- J. Gao, C. Meng, D. Xie, C. Liu, H. Bao et al., Temperature dependent thermal transport in graphene paper above room temperature. Appl. Therm. Eng. 150, 1252–1259 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.098
- W. Parker, R. Jenkins, C. Butler, G. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961). https://doi.org/10.1063/1.1728417
- Y.H. Zhao, Z.K. Wu, S.L. Bai, Thermal resistance measurement of 3D graphene foam/polymer composite by laser flash analysis. Int. J. Heat Mass Transfer. 101, 470–475 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.068
- H. Wang, W. Chu, G. Chen, A brief review on measuring methods of thermal conductivity of organic and hybrid thermoelectric materials. Adv. Electron. Mater. 5(11), 1900167 (2019). https://doi.org/10.1002/aelm.201900167
- G. Boussatour, P.Y. Cresson, B. Genestie, N. Joly, J.F. Brun et al., Measurement of the thermal conductivity of flexible biosourced polymers using the 3-omega method. Polym. Test. 70, 503–510 (2018). https://doi.org/10.1016/j.polymertesting.2018.07.026
- A. Jain, K.E. Goodson, Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J. Heat Transfer 130(10), 102402 (2008). https://doi.org/10.1115/1.2945904
- Y. Ju, K. Kurabayashi, K. Goodson, Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films 339(1–2), 160–164 (1999). https://doi.org/10.1016/S0040-6090(98)01328-5
- A. Greppmair, B. Stoib, N. Saxena, C. Gerstberger, P. Müller-Buschbaum et al., Measurement of the in-plane thermal conductivity by steady-state infrared thermography. Rev. Sci. Instrum. 88(4), 044903 (2017). https://doi.org/10.1063/1.4979564
- A. Palacios, L. Cong, M.E. Navarro, Y. Ding, C. Barreneche, Thermal conductivity measurement techniques for characterizing thermal energy storage materials—a review. Renew. Sust. Energ. Rev. 108, 32–52 (2019). https://doi.org/10.1016/j.rser.2019.03.020
- L. Xu, Measurement of in-plane thermal conductivity of self-suspended thin films. IOP Conf. Ser. Mater. Sci. Eng. 711(1), 012072 (2020). https://doi.org/10.1088/1757-899x/711/1/012072
- Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts et al., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572
- S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5(4), 251–255 (2010). https://doi.org/10.1038/nnano.2010.27
- F. Tan, S. Han, D. Peng, H. Wang, J. Yang et al., Nanoporous and highly thermal conductive thin film of single-crystal covalent organic frameworks ribbons. J. Am. Chem. Soc. 143(10), 3927–3933 (2021). https://doi.org/10.1021/jacs.0c13458
- Z. Li, L. An, S. Khuje, J. Tan, Y. Hu et al., Solution-shearing of dielectric polymer with high thermal conductivity and electric insulation. Sci. Adv. 7(40), eabi7410 (2021). https://doi.org/10.1126/sciadv.abi7410
- K.J. Solis, J.E. Martin, Field-structured magnetic platelets as a route to improved thermal interface materials. J. Appl. Phys. 111(7), 073507 (2012). https://doi.org/10.1063/1.3699013
- A. Roy, T.L. Bougher, R. Geng, Y. Ke, J. Locklin et al., Thermal conductance of poly(3-methylthiophene) brushes. ACS Appl. Mater. Interfaces 8(38), 25578–25585 (2016). https://doi.org/10.1021/acsami.6b04429
- A. Shanker, C. Li, G.H. Kim, D. Gidley, K.P. Pipe et al., High thermal conductivity in electrostatically engineered amorphous polymers. Sci. Adv. 3(7), 1700342 (2017). https://doi.org/10.1126/sciadv.1700342
- K. Ruan, Y. Guo, J. Gu, Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54(10), 4934–4944 (2021). https://doi.org/10.1021/acs.macromol.1c00686
- Y. Xu, X. Wang, J. Zhou, B. Song, Z. Jiang et al., Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 4(3), eaar3031 (2018). https://doi.org/10.1126/sciadv.aar3031
- Z. Li, F. Guo, K. Pang, J. Lin, Q. Gao et al., Precise thermoplastic processing of graphene oxide layered solid by polymer intercalation. Nano-Micro Lett. 14, 12 (2021). https://doi.org/10.1007/s40820-021-00755-8
- M. Mu, C. Wan, T. McNally, Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins. 2D Mater. 4(4), 042001 (2017). https://doi.org/10.1088/2053-1583/aa7cd1
- J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno et al., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25(29), 4664–4672 (2015). https://doi.org/10.1002/adfm.201501429
- Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri et al., Graphene related materials for thermal management. 2D Mater. 7(1), 012001 (2019). https://doi.org/10.1088/2053-1583/ab48d9
- Y. Guo, C. Dun, J. Xu, J. Mu, P. Li et al., Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44), 1702645 (2017). https://doi.org/10.1002/smll.201702645
- H. Hou, W. Dai, Q. Yan, L. Lv, F.E. Alam et al., Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. J. Mater. Chem. A 6(25), 12091–12097 (2018). https://doi.org/10.1039/c8ta03937b
- J. Li, X.Y. Chen, R.B. Lei, J.F. Lai, T.M. Ma et al., Highly thermally conductive graphene film produced using glucose under low-temperature thermal annealing. J. Mater. Sci. 54(10), 7553–7562 (2019). https://doi.org/10.1007/s10853-019-03406-x
- N.J. Song, C.M. Chen, C. Lu, Z. Liu, Q.Q. Kong et al., Thermally reduced graphene oxide films as flexible lateral heat spreaders. J. Mater. Chem. A 2(39), 16563–16568 (2014). https://doi.org/10.1039/c4ta02693d
- G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun et al., Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26(26), 4521–4526 (2014). https://doi.org/10.1002/adma.201400951
- C. Teng, D. Xie, J. Wang, Z. Yang, G. Ren et al., Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 27(20), 1700240 (2017). https://doi.org/10.1002/adfm.201700240
- P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.H. Kim et al., Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94, 494–500 (2015). https://doi.org/10.1016/j.carbon.2015.07.032
- Y. Wang, H. Wang, F. Liu, X. Wu, J. Xu et al., Flexible printed circuit board based on graphene/polyimide composites with excellent thermal conductivity and sandwich structure. Compos. Part A Appl. Sci. Manuf. 138, 106075 (2020). https://doi.org/10.1016/j.compositesa.2020.106075
- X. Zhang, Y. Guo, Y. Liu, Z. Li, W. Fang et al., Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon 167, 249–255 (2020). https://doi.org/10.1016/j.carbon.2020.05.051
- Y. Zeng, T. Li, Y. Yao, T. Li, L. Hu et al., Thermally conductive reduced graphene oxide thin films for extreme temperature sensors. Adv. Funct. Mater. 29(27), 1901388 (2019). https://doi.org/10.1002/adfm.201901388
- C. Cai, T. Wang, Y. Zhang, N. He, Facile fabrication of ultra-large graphene film with high photothermal effect and thermal conductivity. Appl. Surf. Sci. 563, 150354 (2021). https://doi.org/10.1016/j.apsusc.2021.150354
- H. Zhan, Y.W. Chen, Q.Q. Shi, Y. Zhang, R.W. Mo et al., Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength. Carbon 186, 205–214 (2022). https://doi.org/10.1016/j.carbon.2021.09.069
- B. Wang, B.V. Cunning, N.Y. Kim, F. Kargar, S.Y. Park et al., Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order. Adv. Mater. 31(29), 1903039 (2019). https://doi.org/10.1002/adma.201903039
- S. Li, Z. Zheng, S. Liu, Z. Chi, X. Chen et al., Ultrahigh thermal and electric conductive graphite films prepared by g-C3N4 catalyzed graphitization of polyimide films. Chem. Eng. J. 430, 132530 (2022). https://doi.org/10.1016/j.cej.2021.132530
- M. Weng, L. Jian, X. Feng, X. Luo, J. Hu et al., High oriented graphite film with high thermal conductivity prepared by pure polyimide film formed with catalyst pyridine. Ceram. Int. 47(17), 24519–24526 (2021). https://doi.org/10.1016/j.ceramint.2021.05.170
- Q.Q. Kong, Z. Liu, J.G. Gao, C.M. Chen, Q. Zhang et al., Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater. 24(27), 4222–4228 (2014). https://doi.org/10.1002/adfm.201304144
- J. Zhang, G. Shi, C. Jiang, S. Ju, D. Jiang, 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader. Small 11(46), 6197–6204 (2015). https://doi.org/10.1002/smll.201501878
- M.C. Vu, N.A.T. Thieu, J.H. Lim, W.K. Choi, J.C. Won et al., Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation. Carbon 157, 741–749 (2020). https://doi.org/10.1016/j.carbon.2019.10.079
- M.C. Vu, I.H. Kim, W.K. Choi, C.S. Lim, M.A. Islam et al., Highly flexible graphene derivative hybrid film: an outstanding nonflammable thermally conductive yet electrically insulating material for efficient thermal management. ACS Appl. Mater. Interfaces 12(23), 26413–26423 (2020). https://doi.org/10.1021/acsami.0c02427
- E. Mercado, J. Anaya, M. Kuball, Impact of polymer residue level on the in-plane thermal conductivity of suspended large-area graphene sheets. ACS Appl. Mater. Interfaces 13(15), 17910–17919 (2021). https://doi.org/10.1021/acsami.1c00365
- L. Ma, Y. Wang, Y. Wang, C. Wang, X. Gao, Graphene induced carbonization of polyimide films to prepared flexible carbon films with improving-thermal conductivity. Ceram. Int. 46(3), 3332–3338 (2020). https://doi.org/10.1016/j.ceramint.2019.10.042
- Z. Zhang, J. Qu, Y. Feng, W. Feng, Assembly of graphene-aligned polymer composites for thermal conductive applications. Compos. Commun. 9, 33–41 (2018). https://doi.org/10.1016/j.coco.2018.04.009
- L. Wang, H. Qiu, C. Liang, P. Song, Y. Han et al., Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141, 506–514 (2019). https://doi.org/10.1016/j.carbon.2018.10.003
- X. Meng, J. Zhang, J. Ma, Y. Li, Z. Chen et al., Using cellulose nanocrystals for graphene/hexagonal boron nitride nanosheet films towards efficient thermal management with tunable electrical conductivity. Compos. Part A Appl. Sci. Manuf. 138, 106089 (2020). https://doi.org/10.1016/j.compositesa.2020.106089
- X. Wang, P. Wu, Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 10(40), 34311–34321 (2018). https://doi.org/10.1021/acsami.8b12565
- Z. Shen, J. Feng, Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanops. ACS Appl. Mater. Interfaces 10(28), 24193–24200 (2018). https://doi.org/10.1021/acsami.8b07249
- K. Ruan, H. Yan, S. Zhang, X. Shi, Y. Guo et al., In-situ fabrication of hetero-structured fillers to significantly enhance thermal conductivities of silicone rubber composite films. Compos. Sci. Technol. 210, 108799 (2021). https://doi.org/10.1016/j.compscitech.2021.108799
- Q. Chen, Z. Ma, Z. Wang, L. Liu, M. Zhu et al., Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 32(8), 2110782 (2021). https://doi.org/10.1002/adfm.202110782
- J. Song, C. Chen, Y. Zhang, High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films. Compos. Part A Appl. Sci. Manuf. 105, 1–8 (2018). https://doi.org/10.1016/j.compositesa.2017.11.001
- X. Wang, P. Wu, Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 11(24), 21946–21954 (2019). https://doi.org/10.1021/acsami.9b07377
- S. Cui, N. Song, L. Shi, P. Ding, Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds. ACS Sustain. Chem. Eng. 8(16), 6363–6370 (2020). https://doi.org/10.1021/acssuschemeng.0c00420
- N. Song, D. Jiao, S. Cui, X. Hou, P. Ding et al., Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces 9(3), 2924–2932 (2017). https://doi.org/10.1021/acsami.6b11979
- S. Yang, B. Xue, Y. Li, X. Li, L. Xie et al., Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films. Chem. Eng. J. 383, 123072 (2020). https://doi.org/10.1016/j.cej.2019.123072
- T. Ha, D.G. Kim, J.W. Ka, Y.S. Kim, W.G. Koh et al., Simultaneous effects of silver-decorated graphite nanoplatelets and anisotropic alignments on improving thermal conductivity of stretchable poly(vinyl alcohol) composite films. Compos. Part A Appl. Sci. Manuf. 138, 106045 (2020). https://doi.org/10.1016/j.compositesa.2020.106045
- F. Luo, M. Zhang, S. Chen, J. Xu, C. Ma et al., Sandwich-structured PVA/rGO films from self-construction with high thermal conductivity and electrical insulation. Compos. Sci. Technol. 207, 108707 (2021). https://doi.org/10.1016/j.compscitech.2021.108707
- M. Ma, L. Xu, L. Qiao, S. Chen, Y. Shi et al., Nanofibrillated cellulose/MgO@rGO composite films with highly anisotropic thermal conductivity and electrical insulation. Chem. Eng. J. 392, 123714 (2020). https://doi.org/10.1016/j.cej.2019.123714
- G. Li, X. Tian, X. Xu, C. Zhou, J. Wu et al., Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers. Compos. Sci. Technol. 138, 179–185 (2017). https://doi.org/10.1016/j.compscitech.2016.12.001
- X. Wu, H. Li, K. Cheng, H. Qiu, J. Yang, Modified graphene/polyimide composite films with strongly enhanced thermal conductivity. Nanoscale 11(17), 8219–8225 (2019). https://doi.org/10.1039/c9nr02117e
- Y. Wang, X. Zhang, X. Ding, Y. Li, P. Zhang et al., Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy. Compos. Sci. Technol. 205, 108693 (2021). https://doi.org/10.1016/j.compscitech.2021.108693
- X. Zhao, W. Li, Y. Wang, H. Li, J. Wang, Bioinspired modified graphite film with superb mechanical and thermoconductive properties. Carbon 181, 40–47 (2021). https://doi.org/10.1016/j.carbon.2021.05.019
- C.P. Feng, L.B. Chen, G.L. Tian, S.S. Wan, L. Bai et al., Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS Appl. Mater. Interfaces 11(20), 18739–18745 (2019). https://doi.org/10.1021/acsami.9b03885
- C. Yuan, J. Li, L. Lindsay, D. Cherns, J.W. Pomeroy et al., Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2, 43 (2019). https://doi.org/10.1038/s42005-019-0145-5
- L.Y. Yang, C.P. Feng, L. Bai, R.Y. Bao, Z.Y. Liu et al., Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management. Chem. Eng. J. 425, 131466 (2021). https://doi.org/10.1016/j.cej.2021.131466
- V. Guerra, C. Wan, T. McNally, Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.002
- H. Song, J. Liu, B. Liu, J. Wu, H.M. Cheng et al., Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
- D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome et al., Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010). https://doi.org/10.1021/nn1006495
- S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33(44), 2101589 (2021). https://doi.org/10.1002/adma.202101589
- M. Zhu, J. Li, J. Chen, H. Song, H. Zhang, Improving thermal conductivity of epoxy resin by filling boron nitride nanomaterials: a molecular dynamics investigation. Comp. Mater. Sci. 164, 108–115 (2019). https://doi.org/10.1016/j.commatsci.2019.04.012
- X. Ou, S. Chen, X. Lu, Q. Lu, Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry. Compos. Commun. 23, 100549 (2021). https://doi.org/10.1016/j.coco.2020.100549
- Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
- M.M. Rahman, A.B. Puthirath, A. Adumbumkulath, T. Tsafack, H. Robatjazi et al., Fiber reinforced layered dielectric nanocomposite. Adv. Funct. Mater. 29(28), 1900056 (2019). https://doi.org/10.1002/adfm.201900056
- J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- H. Shen, J. Guo, H. Wang, N. Zhao, J. Xu, Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces 7(10), 5701–5708 (2015). https://doi.org/10.1021/am507416y
- L. Cao, J. Wang, J. Dong, X. Zhao, H.B. Li et al., Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres. Compos. B Eng. 188, 107882 (2020). https://doi.org/10.1016/j.compositesb.2020.107882
- X. He, Y. Wang, Highly thermally conductive polyimide composite films with excellent thermal and electrical insulating properties. Ind. Eng. Chem. Res. 59(5), 1925–1933 (2020). https://doi.org/10.1021/acs.iecr.9b05939
- N. Song, Q. Wang, D. Jiao, H. Pan, L. Shi et al., Highly thermally conductive SiO2-coated NFC/BNNS hybrid films with water resistance. Compos. Part A Appl. Sci. Manuf. 143, 106261 (2021). https://doi.org/10.1016/j.compositesa.2020.106261
- Q. Song, W. Zhu, Y. Deng, M. Zhu, Q. Zhang, Synergetic optimization of thermal conductivity and breakdown strength of boron nitride/poly (vinylidene fluoride) composite film with sandwich intercalated structure for heat management in flexible electronics. Compos. Part A Appl. Sci. Manuf. 135, 105933 (2020). https://doi.org/10.1016/j.compositesa.2020.105933
- Y. Wang, S. Xia, G. Xiao, J. Di, J. Wang, High-loading boron nitride-based bio-inspired paper with plastic-like ductility and metal-like thermal conductivity. ACS Appl. Mater. Interfaces 12(11), 13156–13164 (2020). https://doi.org/10.1021/acsami.9b21753
- Y. Wang, X. Zhang, X. Ding, P. Zhang, M. Shu et al., Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Compos. B Eng. 199, 108267 (2020). https://doi.org/10.1016/j.compositesb.2020.108267
- K. Zhao, G. Liu, W. Cao, Z. Su, J. Zhao et al., A combination of nanodiamond and boron nitride for the preparation of polyvinyl alcohol composite film with high thermal conductivity. Polymer 206, 122885 (2020). https://doi.org/10.1016/j.polymer.2020.122885
- Z.G. Wang, W. Liu, Y.H. Liu, Y. Ren, Y.P. Li et al., Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. B Eng. 180, 107569 (2020). https://doi.org/10.1016/j.compositesb.2019.107569
- J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super compatible functional BN nanosheets/polymer films with excellent mechanical property and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 81363–81369 (2018). https://doi.org/10.1039/C7TC04860B
- L. Zhao, C. Wei, Z. Li, W. Wei, L. Jia et al., High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater. Des. 210, 110124 (2021). https://doi.org/10.1016/j.matdes.2021.110124
- X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
- E. Jiao, K. Wu, Y. Liu, M. Lu, H. Zhang et al., Robust bioinspired MXene-based flexible films with excellent thermal conductivity and photothermal properties. Compos. Part A Appl. Sci. Manuf. 143, 106290 (2021). https://doi.org/10.1016/j.compositesa.2021.106290
- Y. Shang, Y. Ji, J. Dong, G. Yang, X. Zhang et al., Sandwiched cellulose nanofiber /boron nitride nanosheet /Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Compos. Sci. Technol. 214, 108974 (2021). https://doi.org/10.1016/j.compscitech.2021.108974
- M.A. Vadivelu, C.R. Kumar, G.M. Joshi, Polymer composites for thermal management: a review. Compos. Interfaces 23(9), 847–872 (2016). https://doi.org/10.1080/09276440.2016.1176853
- H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou et al., Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 30(12), 1704561 (2018). https://doi.org/10.1002/adma.201704561
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5(2), 235–258 (2020). https://doi.org/10.1039/c9nh00571d
- X. Zheng, W. Nie, Q. Hu, X. Wang, Z. Wang et al., Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Mater. Des. 200, 109442 (2021). https://doi.org/10.1016/j.matdes.2020.109442
- J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
- A. Wang, S. Li, X. Zhang, H. Bao, Roles of electrons on the thermal transport of 2D metallic MXenes. Phys. Rev. Mater. 6, 014009 (2022). https://doi.org/10.1103/PhysRevMaterials.6.014009
- Y. Liu, K. Wu, M. Lu, E. Jiao, H. Zhang et al., Highly thermal conductivity and flame retardant flexible graphene/MXene paper based on an optimized interface and nacre laminated structure. Compos. Part A Appl. Sci. Manuf. 141, 106227 (2021). https://doi.org/10.1016/j.compositesa.2020.106227
- F. Jamil, H.M. Ali, M.M. Janjua, MXene based advanced materials for thermal energy storage: a recent review. J. Energy Storage. 35, 102322 (2021). https://doi.org/10.1016/j.est.2021.102322
- X. Chen, Y. Zhao, L. Li, Y. Wang, J. Wang et al., MXene/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 61(1), 80–115 (2020). https://doi.org/10.1080/15583724.2020.1729179
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- S. Wu, T. Yan, Z. Kuai, W. Pan, Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Stor. Mater. 25, 251–295 (2020). https://doi.org/10.1016/j.ensm.2019.10.010
- J. Sun, Y. Yao, X. Zeng, G. Pan, J. Hu et al., Preparation of boron nitride nanosheet/nanofibrillated cellulose nanocomposites with ultrahigh thermal conductivity via engineering interfacial thermal resistance. Adv. Mater. Interfaces 4(17), 1700563 (2017). https://doi.org/10.1002/admi.201700563
- H. Yang, Y. Tang, P. Yang, Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions. Nanoscale 11(30), 14155–14163 (2019). https://doi.org/10.1039/C9NR03538A
- K. Wu, P. Liao, R. Du, Q. Zhang, F. Chen et al., Preparation of a thermally conductive biodegradable cellulose nanofiber/hydroxylated boron nitride nanosheet film: the critical role of edge-hydroxylation. J. Mater. Chem. A 6(25), 11863–11873 (2018). https://doi.org/10.1039/c8ta03642j
- K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma et al., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 8438614 (2021). https://doi.org/10.34133/2021/8438614
- D. An, S. Cheng, S. Xi, Z. Zhang, X. Duan et al., Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem. Eng. J. 383, 123151 (2020). https://doi.org/10.1016/j.cej.2019.123151
- Z.G. Wang, M.Z. Chen, Y.H. Liu, H.J. Duan, L. Xu et al., Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications. J. Mater. Chem. C 7(29), 9018–9024 (2019). https://doi.org/10.1039/c9tc02845e
- Y. Yao, X. Zeng, R. Sun, J.B. Xu, C.P. Wong, Effect of silver nanops decoration on the thermal conductivity of boron nitride nanosheets/silicon carbide nanowires bioinspired composite paper. 17th International Conference on Electronic Packaging Technology (ICEPT), 277–282 (2016). https://doi.org/10.1109/ICEPT.2016.7583136
- S. Quiles-Díaz, Y. Martínez-Rubí, J. Guan, K.S. Kim, M. Couillard et al., Enhanced thermal conductivity in polymer nanocomposites via covalent functionalization of boron nitride nanotubes with short polyethylene chains for heat-transfer applications. ACS Appl. Nano Mater. 2(1), 440–451 (2018). https://doi.org/10.1021/acsanm.8b01992
- W. Han, Y. Bai, S. Liu, C. Ge, L. Wang et al., Enhanced thermal conductivity of commercial polystyrene filled with core-shell structured BN@PS. Compos. Part A Appl. Sci. Manuf. 102, 218–227 (2017). https://doi.org/10.1016/j.compositesa.2017.08.012
- C. Fu, Q. Li, J. Lu, S. Mateti, Q. Cai et al., Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Compos. Sci. Technol. 165, 322–330 (2018). https://doi.org/10.1016/j.compscitech.2018.07.010
- C.P. Feng, L.B. Chen, G.L. Tian, L. Bai, R.Y. Bao et al., Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm−1K−1. Chem. Eng. J. 392, 123784 (2019). https://doi.org/10.1016/j.cej.2019.123784
- R. Sun, H. Yao, H.B. Zhang, Y. Li, Y.W. Mai et al., Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites. Compos. Sci. Technol. 137, 16–23 (2016). https://doi.org/10.1016/j.compscitech.2016.10.017
- Y. Xue, X. Jin, Y. Fan, R. Tian, X. Xu et al., Large-scale synthesis of hexagonal boron nitride nanosheets and their improvement in thermal properties of epoxy composites. Polym. Compos. 35(9), 1707–1715 (2014). https://doi.org/10.1002/pc.22824
- S. Depaifve, C.E. Federico, D. Ruch, S. Hermans, A. Laachachi, Nitrene functionalization as a new approach for reducing the interfacial thermal resistance in graphene nanoplatelets/epoxy nanocomposites. Carbon 167, 646–657 (2020). https://doi.org/10.1016/j.carbon.2020.06.035
- I.H. Tseng, J.C. Chang, S.L. Huang, M.H. Tsai, Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym. Int. 62(5), 827–835 (2013). https://doi.org/10.1002/pi.4375
- H. Yang, Z. Zhang, J. Zhang, X.C. Zeng, Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale 10(40), 19092–19099 (2018). https://doi.org/10.1039/c8nr05703f
- S. Zhou, T. Xu, F. Jiang, N. Song, P. Ding, High-performance polyamide-imide films: effect of functionalization degree of BN nanosheets. Compos. Sci. Technol. 213, 108907 (2021). https://doi.org/10.1016/j.compscitech.2021.108907
- A. Bashir, M. Maqbool, R. Lv, A. Usman, H. Guo et al., Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite. Compos. B Eng. 218, 108871 (2021). https://doi.org/10.1016/j.compositesb.2021.108871
- S. Boroushak, R. Ansari, S. Ajori, Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single-and double-walled carbon nanotubes with polyethylene chains. Diamond Relat. Mater. 86, 173–178 (2018). https://doi.org/10.1016/j.diamond.2018.04.023
- N. Yang, X. Zeng, J. Lu, R. Sun, C.P. Wong, Effect of chemical functionalization on the thermal conductivity of 2D hexagonal boron nitride. Appl. Phys. Lett. 113(17), 171904 (2018). https://doi.org/10.1063/1.5050293
- Z. Xie, K. Wu, D. Liu, Q. Zhang, Q. Fu, One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. Compos. Sci. Technol. 208, 108756 (2021). https://doi.org/10.1016/j.compscitech.2021.108756
- H. Oh, K. Kim, S. Ryu, J. Kim, Enhancement of thermal conductivity of polymethyl methacrylate-coated graphene/epoxy composites using admicellar polymerization with different ionic surfactants. Compos. Part A Appl. Sci. Manuf. 116, 206–215 (2019). https://doi.org/10.1016/j.compositesa.2018.10.035
- J. Xia, J. Liu, D. Zheng, C. Duan, B. Feng et al., Intercalation of copper microps in an expanded graphite film with improved through-plane thermal conductivity. J. Mater. Sci. 55(17), 7351–7358 (2020). https://doi.org/10.1007/s10853-020-04533-6
- H. Zhong, J.R. Lukes, Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74(12), 125403 (2006). https://doi.org/10.1103/PhysRevB.74.125403
- Y. Yao, X. Zeng, R. Sun, J.B. Xu, C.P. Wong, Highly thermally conductive composite papers prepared based on the thought of bioinspired engineering. ACS Appl. Mater. Interfaces 8(24), 15645–15653 (2016). https://doi.org/10.1021/acsami.6b04636
- Z. Qu, K. Wang, C. Xu, Y. Li, E. Jiao et al., Simultaneous enhancement in thermal conductivity and flame retardancy of flexible film by introducing covalent bond connection. Chem. Eng. J. 421, 129729 (2021). https://doi.org/10.1016/j.cej.2021.129729
- Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan et al., Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. B Eng. 164, 732–739 (2019). https://doi.org/10.1016/j.compositesb.2019.01.099
- C. Fu, C. Yan, L. Ren, X. Zeng, G. Du et al., Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanops. Compos. Sci. Technol. 177, 118–126 (2019). https://doi.org/10.1016/j.compscitech.2019.04.026
- Z. Lin, Y. Liu, S. Raghavan, K.S. Moon, S.K. Sitaraman et al., Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 5(15), 7633–7640 (2013). https://doi.org/10.1021/am401939z
- M. Foygel, R.D. Morris, D. Anez, S. French, V.L. Sobolev, Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys. Rev. B 71(10), 104201 (2005). https://doi.org/10.1103/PhysRevB.71.104201
- G. He, X. Tian, Y. Dai, X. Li, C. Lin et al., Bioinspired interfacial engineering of polymer based energetic composites towards superior thermal conductivity via reducing thermal resistance. Appl. Surf. Sci. 493, 679–690 (2019). https://doi.org/10.1016/j.apsusc.2019.06.299
- F. Luo, K. Wu, J. Shi, X. Du, X. Li et al., Green reduction of graphene oxide by polydopamine to a construct flexible film: superior flame retardancy and high thermal conductivity. J. Mater. Chem. A 5(35), 18542–18550 (2017). https://doi.org/10.1039/c7ta04740a
- M. Owais, M.H. Javed, M.Z. Akram, W.F. Paxton, I.S. Akhatov et al., Review—recent advances in thermally conductive paper-like films. ECS J. Solid State Sci. Technol. 10(3), 033001 (2021). https://doi.org/10.1149/2162-8777/abea5b
- W. Lan, Y. Chen, Z. Yang, W. Han, J. Zhou et al., Ultraflexible transparent film heater made of Ag nanowire/PVA composite for rapid-response thermotherapy pads. ACS Appl. Mater. Interfaces 9(7), 6644–6651 (2017). https://doi.org/10.1021/acsami.6b16853
- Y.B. Tao, Y.L. He, A review of phase change material and performance enhancement method for latent heat storage system. Renew. Sust. Energ. Rev. 93, 245–259 (2018). https://doi.org/10.1016/j.rser.2018.05.028
- Y. Xiong, M. Smalc, J. Norley, J. Chang, H. Mayer et al., Thermal tests and analysis of thin graphite heat spreader for hot spot reduction in handheld devices. 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 583–590 (2008). https://doi.org/10.1109/ITHERM.2008.4544321
- X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595
- Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
- T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu et al., Three-dimensional printed thermal regulation textiles. ACS Nano 11(11), 11513–11520 (2017). https://doi.org/10.1021/acsnano.7b06295
- J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A Appl. Sci. Manuf. 87, 290–296 (2016). https://doi.org/10.1016/j.compositesa.2016.05.010
- G. Manasoglu, R. Celen, M. Kanik, Y. Ulcay, Electrical resistivity and thermal conductivity properties of graphene-coated woven fabrics. J. Appl. Polym. Sci. 136(40), 48024 (2019). https://doi.org/10.1002/app.48024
- A. Abbas, Y. Zhao, X. Wang, T. Lin, Cooling effect of MWCNT-containing composite coatings on cotton fabrics. J. Text. Inst. 104(8), 798–807 (2013). https://doi.org/10.1080/00405000.2012.757007
- P.C. Hsu, X. Liu, C. Liu, X. Xie, H.R. Lee et al., Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15(1), 365–371 (2015). https://doi.org/10.1021/nl5036572
- J. Wang, Q. Li, D. Liu, C. Chen, Z. Chen et al., High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale 10(35), 16868–16872 (2018). https://doi.org/10.1039/C8NR05167D
- Q. Gao, T. Lauster, B.A.F. Kopera, M. Retsch, S. Agarwal et al., Breathable and flexible dual-sided nonwovens with adjustable infrared optical performances for smart textile. Adv. Funct. Mater. 32(5), 2108808 (2021). https://doi.org/10.1002/adfm.202108808
- L. Wei, Z. Lu, F. Cao, L. Zhang, X. Yang et al., A comprehensive study on thermal conductivity of the lithium-ion battery. Int. J. Energy Res. 44(12), 9466–9478 (2020). https://doi.org/10.1002/er.5016
- Y. Liu, Y. Qiao, Y. Zhang, Z. Yang, T. Gao et al., 3D printed separator for the thermal management of high-performance Li metal anodes. Energy Stor. Mater. 12, 197–203 (2018). https://doi.org/10.1016/j.ensm.2017.12.019
- M.T.F. Rodrigues, K. Kalaga, H. Gullapalli, G. Babu, A.L.M. Reddy et al., Hexagonal boron nitride-based electrolyte composite for li-ion battery operation from room temperature to 150 °C. Adv. Energy Mater. 6(12), 1600218 (2016). https://doi.org/10.1002/aenm.201600218
- M.G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, 2D boron nitride nanosheets for polymer composite materials. NPJ 2D Mater. Appl. 5(1), 1–18 (2021). https://doi.org/10.1038/s41699-021-00231-2
- W. Luo, L. Zhou, K. Fu, Z. Yang, J. Wan et al., A thermally conductive separator for stable Li metal anodes. Nano Lett. 15(9), 6149–6154 (2015). https://doi.org/10.1021/acs.nanolett.5b02432
- J. Shi, D. Han, Z. Li, L. Yang, S.G. Lu et al., Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3(5), 1200–1225 (2019). https://doi.org/10.1016/j.joule.2019.03.021
- G. Zhang, B. Fan, P. Zhao, Z. Hu, Y. Liu et al., Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Appl. Energy Mater. 1(3), 1344–1354 (2018). https://doi.org/10.1021/acsaem.8b00052
References
X. Xu, J. Chen, J. Zhou, B. Li, Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30(17), 1705544 (2018). https://doi.org/10.1002/adma.201705544
B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. Wu et al., Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9, 1664 (2018). https://doi.org/10.1038/s41467-018-03978-3
H. Fang, S.L. Bai, C.P. Wong, Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application. Compos. Part A Appl. Sci. Manuf. 100, 71–80 (2017). https://doi.org/10.1016/j.compositesa.2017.04.018
W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
H. Guo, R. Lv, S. Bai, Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 1(2), 101–115 (2019). https://doi.org/10.1016/j.nanoms.2019.03.003
W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13(2), 1547–1554 (2019). https://doi.org/10.1021/acsnano.8b07337
M. Qin, Y. Xu, R. Cao, W. Feng, L. Chen, Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 28(45), 1805053 (2018). https://doi.org/10.1002/adfm.201805053
X. Wang, P. Wu, Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets. ACS Appl. Mater. Interfaces 9(23), 19934–19944 (2017). https://doi.org/10.1021/acsami.7b04768
P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28(51), 1805365 (2018). https://doi.org/10.1002/adfm.201805365
Z. Zhu, C. Li, E. Songfeng, L. Xie, R. Geng et al., Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol. 170, 93–100 (2019). https://doi.org/10.1016/j.compscitech.2018.11.035
Y. Zhou, F. Liu, H. Wang, Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: a key issue review. Polym. Compos. 38(4), 803–813 (2017). https://doi.org/10.1002/pc.23641
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19(7), 075609 (2008). https://doi.org/10.1088/0957-4484/19/7/075609
J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 1363–1369 (2018). https://doi.org/10.1039/c7tc04860b
Y. Wu, Y. Xue, S. Qin, D. Liu, X. Wang et al., BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS Appl. Mater. Interfaces 9(49), 43163–43170 (2017). https://doi.org/10.1021/acsami.7b15264
H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao et al., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4), 3606–3613 (2014). https://doi.org/10.1021/nn500134m
X. Wang, P. Wu, Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films. ACS Appl. Mater. Interfaces 10(3), 2504–2514 (2018). https://doi.org/10.1021/acsami.7b15712
N. Song, X. Hou, L. Chen, S. Cui, L. Shi et al., A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl. Mater. Interfaces 9(21), 17914–17922 (2017). https://doi.org/10.1021/acsami.7b02675
C. Yuan, B. Duan, L. Li, B. Xie, M. Huang et al., Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl. Mater. Interfaces 7(23), 13000–13006 (2015). https://doi.org/10.1021/acsami.5b03007
S. Ronca, T. Igarashi, G. Forte, S. Rastogi, Metallic-like thermal conductivity in a lightweight insulator: solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer 123, 203–210 (2017). https://doi.org/10.1016/j.polymer.2017.07.027
X. Qian, J. Zhou, G. Chen, Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20(9), 1188–1202 (2021). https://doi.org/10.1038/s41563-021-00918-3
Y. Xu, D. Kraemer, B. Song, Z. Jiang, J. Zhou et al., Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019). https://doi.org/10.1038/s41467-019-09697-7
C.P. Feng, L.Y. Yang, J. Yang, L. Bai, R.Y. Bao et al., Recent advances in polymer-based thermal interface materials for thermal management: a mini-review. Compos. Commun. 22, 100528 (2020). https://doi.org/10.1016/j.coco.2020.100528
J.P. Cao, J. Zhao, X. Zhao, F. You, H. Yu et al., High thermal conductivity and high electrical resistivity of poly (vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos. Sci. Technol. 89, 142–148 (2013). https://doi.org/10.1016/j.compscitech.2013.09.024
W. Qiu, W. Lin, Y. Tuersun, M. Ou, S. Chu, Ultra-flexible, dielectric, and thermostable boron nitride-graphene fluoride hybrid films for efficient thermal management. Adv. Mater. Interfaces 8(9), 2002187 (2021). https://doi.org/10.1002/admi.202002187
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
T. Zhou, H. Wei, H. Tan, X. Wang, H. Zeng et al., Strongly anisotropic thermal conductivity and adequate breathability of bilayered films for heat management of on-skin electronics. 2D Mater. 5(3), 035013 (2018). https://doi.org/10.1088/2053-583/aabc19
Y. Guo, Y. Zhou, Y. Xu, Engineering polymers with metal-like thermal conductivity—present status and future perspectives. Polymer 233, 124168 (2021). https://doi.org/10.1016/j.polymer.2021.124168
X. Wang, M. Kaviany, B. Huang, Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9(45), 18022–18031 (2017). https://doi.org/10.1039/c7nr06216h
H. Ma, Y. Ma, Z. Tian, Simple theoretical model for thermal conductivity of crystalline polymers. ACS Appl. Polym. Mater. 1(10), 2566–2570 (2019). https://doi.org/10.1021/acsapm.9b00605
M. Morita, T. Shiga, Surface phonons limit heat conduction in thin films. Phys. Rev. B 103(19), 195418 (2021). https://doi.org/10.1103/PhysRevB.103.195418
T. Zhang, X. Wu, T. Luo, Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 118(36), 21148–21159 (2014). https://doi.org/10.1021/jp5051639
C. Lu, S.W. Chiang, H. Du, J. Li, L. Gan et al., Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115, 52–59 (2017). https://doi.org/10.1016/j.polymer.2017.02.024
L. Bai, X. Zhao, R.Y. Bao, Z.Y. Liu, M.B. Yang et al., Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA. J. Mater. Sci. 53(14), 10543–10553 (2018). https://doi.org/10.1007/s10853-018-2306-4
H.B. Cho, A. Konno, T. Fujihara, T. Suzuki, S. Tanaka et al., Self-assemblies of linearly aligned diamond fillers in polysiloxane/diamond composite films with enhanced thermal conductivity. Compos. Sci. Technol. 72(1), 112–118 (2011). https://doi.org/10.1016/j.compscitech.2011.10.009
X. Xie, K. Yang, D. Li, T.H. Tsai, J. Shin et al., High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95(3), 035406 (2017). https://doi.org/10.1103/PhysRevB.95.035406
D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46(10), 6131–6140 (1992). https://doi.org/10.1103/physrevb.46.6131
W.P. Hsieh, M.D. Losego, P.V. Braun, S. Shenogin, P. Keblinski et al., Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83(17), 174205 (2011). https://doi.org/10.1103/PhysRevB.83.174205
V. Rashidi, E.J. Coyle, K. Sebeck, J. Kieffer, K.P. Pipe, Thermal conductance in cross-linked polymers: effects of non-bonding interactions. J. Phys. Chem. B 121(17), 4600–4609 (2017). https://doi.org/10.1021/acs.jpcb.7b01377
G.H. Kim, D. Lee, A. Shanker, L. Shao, M.S. Kwon et al., High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14(3), 295–300 (2015). https://doi.org/10.1038/nmat4141
X. Huang, C. Zhi, P. Jiang, Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. J. Phys. Chem. C 116(44), 23812–23820 (2012). https://doi.org/10.1021/jp308556r
C. Li, X. Long, E. Songfeng, Q. Zhang, T. Li et al., Magnesium-induced preparation of boron nitride nanotubes and their application in thermal interface materials. Nanoscale 11(24), 11457–11463 (2019). https://doi.org/10.1039/c9nr03915e
F. Jiang, X. Cui, N. Song, L. Shi, P. Ding, Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos. Commun. 20, 100350 (2020). https://doi.org/10.1016/j.coco.2020.04.016
Z. Liang, Y. Pei, C. Chen, B. Jiang, Y. Yao et al., General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13(11), 12653–12661 (2019). https://doi.org/10.1021/acsnano.9b04202
X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu et al., A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5), 5167–5178 (2017). https://doi.org/10.1021/acsnano.7b02359
V. Singh, T.L. Bougher, A. Weathers, Y. Cai, K. Bi et al., High thermal conductivity of chain-oriented amorphous polythiophene. Nat. nanotechnol. 9(5), 384–390 (2014). https://doi.org/10.1038/nnano.2014.44
C.P. Feng, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang et al., Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv. Compos. Hybr. Mater. 1(1), 160–167 (2017). https://doi.org/10.1007/s42114-017-0013-2
C.P. Feng, L. Bai, Y. Shao, R.Y. Bao, Z.Y. Liu et al., A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management. Adv. Mater. Interfaces 5(2), 1700946 (2018). https://doi.org/10.1002/admi.201700946
C.P. Feng, S.S. Wan, W.C. Wu, L. Bai, R.Y. Bao et al., Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 167, 456–462 (2018). https://doi.org/10.1016/j.compscitech.2018.08.039
Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong et al., Reduced graphene oxide heterostructured silver nanops significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 11(28), 25465–25473 (2019). https://doi.org/10.1021/acsami.9b10161
H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
G. Yang, H. Yi, Y. Yao, C. Li, Z. Li, Thermally conductive graphene films for heat dissipation. ACS Appl. Nano Mater. 3(3), 2149–2155 (2020). https://doi.org/10.1021/acsanm.9b01955
X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu et al., Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 142, 100577 (2020). https://doi.org/10.1016/j.mser.2020.100577
Y. Guo, K. Ruan, X. Shi, X. Yang, J. Gu, Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos. Sci. Technol. 193, 108134 (2020). https://doi.org/10.1016/j.compscitech.2020.108134
N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo et al., Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
F. Kargar, Z. Barani, R. Salgado, B. Debnath, J.S. Lewis et al., Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018). https://doi.org/10.1021/acsami.8b16616
M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27(6), 2100–2106 (2015). https://doi.org/10.1021/cm504550e
Y. Su, J.J. Li, G.J. Weng, Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon 137, 222–233 (2018). https://doi.org/10.1016/j.carbon.2018.05.033
Y. Wu, K. Ye, Z. Liu, B. Wang, C. Yan et al., Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity. ACS Appl. Mater. Interfaces 11(47), 44700–44707 (2019). https://doi.org/10.1021/acsami.9b15758
W. Zhao, J. Kong, H. Liu, Q. Zhuang, J. Gu et al., Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8(48), 19984–19993 (2016). https://doi.org/10.1039/c6nr06622d
H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi et al., Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybr. Mater. 4(1), 36–50 (2021). https://doi.org/10.1007/s42114-021-00208-1
F. Wei, C.P. Feng, J. Yang, L.Y. Yang, L. Bai et al., Scalable flexible phase change materials with a swollen polymer network structure for thermal energy storage. ACS Appl. Mater. Interfaces 13(49), 59364–59372 (2021). https://doi.org/10.1021/acsami.1c20147
J. Gao, C. Meng, D. Xie, C. Liu, H. Bao et al., Temperature dependent thermal transport in graphene paper above room temperature. Appl. Therm. Eng. 150, 1252–1259 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.098
W. Parker, R. Jenkins, C. Butler, G. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961). https://doi.org/10.1063/1.1728417
Y.H. Zhao, Z.K. Wu, S.L. Bai, Thermal resistance measurement of 3D graphene foam/polymer composite by laser flash analysis. Int. J. Heat Mass Transfer. 101, 470–475 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.068
H. Wang, W. Chu, G. Chen, A brief review on measuring methods of thermal conductivity of organic and hybrid thermoelectric materials. Adv. Electron. Mater. 5(11), 1900167 (2019). https://doi.org/10.1002/aelm.201900167
G. Boussatour, P.Y. Cresson, B. Genestie, N. Joly, J.F. Brun et al., Measurement of the thermal conductivity of flexible biosourced polymers using the 3-omega method. Polym. Test. 70, 503–510 (2018). https://doi.org/10.1016/j.polymertesting.2018.07.026
A. Jain, K.E. Goodson, Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J. Heat Transfer 130(10), 102402 (2008). https://doi.org/10.1115/1.2945904
Y. Ju, K. Kurabayashi, K. Goodson, Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films 339(1–2), 160–164 (1999). https://doi.org/10.1016/S0040-6090(98)01328-5
A. Greppmair, B. Stoib, N. Saxena, C. Gerstberger, P. Müller-Buschbaum et al., Measurement of the in-plane thermal conductivity by steady-state infrared thermography. Rev. Sci. Instrum. 88(4), 044903 (2017). https://doi.org/10.1063/1.4979564
A. Palacios, L. Cong, M.E. Navarro, Y. Ding, C. Barreneche, Thermal conductivity measurement techniques for characterizing thermal energy storage materials—a review. Renew. Sust. Energ. Rev. 108, 32–52 (2019). https://doi.org/10.1016/j.rser.2019.03.020
L. Xu, Measurement of in-plane thermal conductivity of self-suspended thin films. IOP Conf. Ser. Mater. Sci. Eng. 711(1), 012072 (2020). https://doi.org/10.1088/1757-899x/711/1/012072
Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts et al., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572
S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5(4), 251–255 (2010). https://doi.org/10.1038/nnano.2010.27
F. Tan, S. Han, D. Peng, H. Wang, J. Yang et al., Nanoporous and highly thermal conductive thin film of single-crystal covalent organic frameworks ribbons. J. Am. Chem. Soc. 143(10), 3927–3933 (2021). https://doi.org/10.1021/jacs.0c13458
Z. Li, L. An, S. Khuje, J. Tan, Y. Hu et al., Solution-shearing of dielectric polymer with high thermal conductivity and electric insulation. Sci. Adv. 7(40), eabi7410 (2021). https://doi.org/10.1126/sciadv.abi7410
K.J. Solis, J.E. Martin, Field-structured magnetic platelets as a route to improved thermal interface materials. J. Appl. Phys. 111(7), 073507 (2012). https://doi.org/10.1063/1.3699013
A. Roy, T.L. Bougher, R. Geng, Y. Ke, J. Locklin et al., Thermal conductance of poly(3-methylthiophene) brushes. ACS Appl. Mater. Interfaces 8(38), 25578–25585 (2016). https://doi.org/10.1021/acsami.6b04429
A. Shanker, C. Li, G.H. Kim, D. Gidley, K.P. Pipe et al., High thermal conductivity in electrostatically engineered amorphous polymers. Sci. Adv. 3(7), 1700342 (2017). https://doi.org/10.1126/sciadv.1700342
K. Ruan, Y. Guo, J. Gu, Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54(10), 4934–4944 (2021). https://doi.org/10.1021/acs.macromol.1c00686
Y. Xu, X. Wang, J. Zhou, B. Song, Z. Jiang et al., Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 4(3), eaar3031 (2018). https://doi.org/10.1126/sciadv.aar3031
Z. Li, F. Guo, K. Pang, J. Lin, Q. Gao et al., Precise thermoplastic processing of graphene oxide layered solid by polymer intercalation. Nano-Micro Lett. 14, 12 (2021). https://doi.org/10.1007/s40820-021-00755-8
M. Mu, C. Wan, T. McNally, Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins. 2D Mater. 4(4), 042001 (2017). https://doi.org/10.1088/2053-1583/aa7cd1
J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno et al., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25(29), 4664–4672 (2015). https://doi.org/10.1002/adfm.201501429
Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri et al., Graphene related materials for thermal management. 2D Mater. 7(1), 012001 (2019). https://doi.org/10.1088/2053-1583/ab48d9
Y. Guo, C. Dun, J. Xu, J. Mu, P. Li et al., Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44), 1702645 (2017). https://doi.org/10.1002/smll.201702645
H. Hou, W. Dai, Q. Yan, L. Lv, F.E. Alam et al., Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. J. Mater. Chem. A 6(25), 12091–12097 (2018). https://doi.org/10.1039/c8ta03937b
J. Li, X.Y. Chen, R.B. Lei, J.F. Lai, T.M. Ma et al., Highly thermally conductive graphene film produced using glucose under low-temperature thermal annealing. J. Mater. Sci. 54(10), 7553–7562 (2019). https://doi.org/10.1007/s10853-019-03406-x
N.J. Song, C.M. Chen, C. Lu, Z. Liu, Q.Q. Kong et al., Thermally reduced graphene oxide films as flexible lateral heat spreaders. J. Mater. Chem. A 2(39), 16563–16568 (2014). https://doi.org/10.1039/c4ta02693d
G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun et al., Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26(26), 4521–4526 (2014). https://doi.org/10.1002/adma.201400951
C. Teng, D. Xie, J. Wang, Z. Yang, G. Ren et al., Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 27(20), 1700240 (2017). https://doi.org/10.1002/adfm.201700240
P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.H. Kim et al., Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94, 494–500 (2015). https://doi.org/10.1016/j.carbon.2015.07.032
Y. Wang, H. Wang, F. Liu, X. Wu, J. Xu et al., Flexible printed circuit board based on graphene/polyimide composites with excellent thermal conductivity and sandwich structure. Compos. Part A Appl. Sci. Manuf. 138, 106075 (2020). https://doi.org/10.1016/j.compositesa.2020.106075
X. Zhang, Y. Guo, Y. Liu, Z. Li, W. Fang et al., Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon 167, 249–255 (2020). https://doi.org/10.1016/j.carbon.2020.05.051
Y. Zeng, T. Li, Y. Yao, T. Li, L. Hu et al., Thermally conductive reduced graphene oxide thin films for extreme temperature sensors. Adv. Funct. Mater. 29(27), 1901388 (2019). https://doi.org/10.1002/adfm.201901388
C. Cai, T. Wang, Y. Zhang, N. He, Facile fabrication of ultra-large graphene film with high photothermal effect and thermal conductivity. Appl. Surf. Sci. 563, 150354 (2021). https://doi.org/10.1016/j.apsusc.2021.150354
H. Zhan, Y.W. Chen, Q.Q. Shi, Y. Zhang, R.W. Mo et al., Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength. Carbon 186, 205–214 (2022). https://doi.org/10.1016/j.carbon.2021.09.069
B. Wang, B.V. Cunning, N.Y. Kim, F. Kargar, S.Y. Park et al., Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order. Adv. Mater. 31(29), 1903039 (2019). https://doi.org/10.1002/adma.201903039
S. Li, Z. Zheng, S. Liu, Z. Chi, X. Chen et al., Ultrahigh thermal and electric conductive graphite films prepared by g-C3N4 catalyzed graphitization of polyimide films. Chem. Eng. J. 430, 132530 (2022). https://doi.org/10.1016/j.cej.2021.132530
M. Weng, L. Jian, X. Feng, X. Luo, J. Hu et al., High oriented graphite film with high thermal conductivity prepared by pure polyimide film formed with catalyst pyridine. Ceram. Int. 47(17), 24519–24526 (2021). https://doi.org/10.1016/j.ceramint.2021.05.170
Q.Q. Kong, Z. Liu, J.G. Gao, C.M. Chen, Q. Zhang et al., Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater. 24(27), 4222–4228 (2014). https://doi.org/10.1002/adfm.201304144
J. Zhang, G. Shi, C. Jiang, S. Ju, D. Jiang, 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader. Small 11(46), 6197–6204 (2015). https://doi.org/10.1002/smll.201501878
M.C. Vu, N.A.T. Thieu, J.H. Lim, W.K. Choi, J.C. Won et al., Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation. Carbon 157, 741–749 (2020). https://doi.org/10.1016/j.carbon.2019.10.079
M.C. Vu, I.H. Kim, W.K. Choi, C.S. Lim, M.A. Islam et al., Highly flexible graphene derivative hybrid film: an outstanding nonflammable thermally conductive yet electrically insulating material for efficient thermal management. ACS Appl. Mater. Interfaces 12(23), 26413–26423 (2020). https://doi.org/10.1021/acsami.0c02427
E. Mercado, J. Anaya, M. Kuball, Impact of polymer residue level on the in-plane thermal conductivity of suspended large-area graphene sheets. ACS Appl. Mater. Interfaces 13(15), 17910–17919 (2021). https://doi.org/10.1021/acsami.1c00365
L. Ma, Y. Wang, Y. Wang, C. Wang, X. Gao, Graphene induced carbonization of polyimide films to prepared flexible carbon films with improving-thermal conductivity. Ceram. Int. 46(3), 3332–3338 (2020). https://doi.org/10.1016/j.ceramint.2019.10.042
Z. Zhang, J. Qu, Y. Feng, W. Feng, Assembly of graphene-aligned polymer composites for thermal conductive applications. Compos. Commun. 9, 33–41 (2018). https://doi.org/10.1016/j.coco.2018.04.009
L. Wang, H. Qiu, C. Liang, P. Song, Y. Han et al., Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141, 506–514 (2019). https://doi.org/10.1016/j.carbon.2018.10.003
X. Meng, J. Zhang, J. Ma, Y. Li, Z. Chen et al., Using cellulose nanocrystals for graphene/hexagonal boron nitride nanosheet films towards efficient thermal management with tunable electrical conductivity. Compos. Part A Appl. Sci. Manuf. 138, 106089 (2020). https://doi.org/10.1016/j.compositesa.2020.106089
X. Wang, P. Wu, Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 10(40), 34311–34321 (2018). https://doi.org/10.1021/acsami.8b12565
Z. Shen, J. Feng, Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanops. ACS Appl. Mater. Interfaces 10(28), 24193–24200 (2018). https://doi.org/10.1021/acsami.8b07249
K. Ruan, H. Yan, S. Zhang, X. Shi, Y. Guo et al., In-situ fabrication of hetero-structured fillers to significantly enhance thermal conductivities of silicone rubber composite films. Compos. Sci. Technol. 210, 108799 (2021). https://doi.org/10.1016/j.compscitech.2021.108799
Q. Chen, Z. Ma, Z. Wang, L. Liu, M. Zhu et al., Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 32(8), 2110782 (2021). https://doi.org/10.1002/adfm.202110782
J. Song, C. Chen, Y. Zhang, High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films. Compos. Part A Appl. Sci. Manuf. 105, 1–8 (2018). https://doi.org/10.1016/j.compositesa.2017.11.001
X. Wang, P. Wu, Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 11(24), 21946–21954 (2019). https://doi.org/10.1021/acsami.9b07377
S. Cui, N. Song, L. Shi, P. Ding, Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds. ACS Sustain. Chem. Eng. 8(16), 6363–6370 (2020). https://doi.org/10.1021/acssuschemeng.0c00420
N. Song, D. Jiao, S. Cui, X. Hou, P. Ding et al., Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. ACS Appl. Mater. Interfaces 9(3), 2924–2932 (2017). https://doi.org/10.1021/acsami.6b11979
S. Yang, B. Xue, Y. Li, X. Li, L. Xie et al., Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films. Chem. Eng. J. 383, 123072 (2020). https://doi.org/10.1016/j.cej.2019.123072
T. Ha, D.G. Kim, J.W. Ka, Y.S. Kim, W.G. Koh et al., Simultaneous effects of silver-decorated graphite nanoplatelets and anisotropic alignments on improving thermal conductivity of stretchable poly(vinyl alcohol) composite films. Compos. Part A Appl. Sci. Manuf. 138, 106045 (2020). https://doi.org/10.1016/j.compositesa.2020.106045
F. Luo, M. Zhang, S. Chen, J. Xu, C. Ma et al., Sandwich-structured PVA/rGO films from self-construction with high thermal conductivity and electrical insulation. Compos. Sci. Technol. 207, 108707 (2021). https://doi.org/10.1016/j.compscitech.2021.108707
M. Ma, L. Xu, L. Qiao, S. Chen, Y. Shi et al., Nanofibrillated cellulose/MgO@rGO composite films with highly anisotropic thermal conductivity and electrical insulation. Chem. Eng. J. 392, 123714 (2020). https://doi.org/10.1016/j.cej.2019.123714
G. Li, X. Tian, X. Xu, C. Zhou, J. Wu et al., Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers. Compos. Sci. Technol. 138, 179–185 (2017). https://doi.org/10.1016/j.compscitech.2016.12.001
X. Wu, H. Li, K. Cheng, H. Qiu, J. Yang, Modified graphene/polyimide composite films with strongly enhanced thermal conductivity. Nanoscale 11(17), 8219–8225 (2019). https://doi.org/10.1039/c9nr02117e
Y. Wang, X. Zhang, X. Ding, Y. Li, P. Zhang et al., Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy. Compos. Sci. Technol. 205, 108693 (2021). https://doi.org/10.1016/j.compscitech.2021.108693
X. Zhao, W. Li, Y. Wang, H. Li, J. Wang, Bioinspired modified graphite film with superb mechanical and thermoconductive properties. Carbon 181, 40–47 (2021). https://doi.org/10.1016/j.carbon.2021.05.019
C.P. Feng, L.B. Chen, G.L. Tian, S.S. Wan, L. Bai et al., Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS Appl. Mater. Interfaces 11(20), 18739–18745 (2019). https://doi.org/10.1021/acsami.9b03885
C. Yuan, J. Li, L. Lindsay, D. Cherns, J.W. Pomeroy et al., Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2, 43 (2019). https://doi.org/10.1038/s42005-019-0145-5
L.Y. Yang, C.P. Feng, L. Bai, R.Y. Bao, Z.Y. Liu et al., Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management. Chem. Eng. J. 425, 131466 (2021). https://doi.org/10.1016/j.cej.2021.131466
V. Guerra, C. Wan, T. McNally, Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.002
H. Song, J. Liu, B. Liu, J. Wu, H.M. Cheng et al., Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome et al., Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010). https://doi.org/10.1021/nn1006495
S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya et al., Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33(44), 2101589 (2021). https://doi.org/10.1002/adma.202101589
M. Zhu, J. Li, J. Chen, H. Song, H. Zhang, Improving thermal conductivity of epoxy resin by filling boron nitride nanomaterials: a molecular dynamics investigation. Comp. Mater. Sci. 164, 108–115 (2019). https://doi.org/10.1016/j.commatsci.2019.04.012
X. Ou, S. Chen, X. Lu, Q. Lu, Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry. Compos. Commun. 23, 100549 (2021). https://doi.org/10.1016/j.coco.2020.100549
Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv et al., Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4), 6489–6498 (2021). https://doi.org/10.1021/acsnano.0c09229
M.M. Rahman, A.B. Puthirath, A. Adumbumkulath, T. Tsafack, H. Robatjazi et al., Fiber reinforced layered dielectric nanocomposite. Adv. Funct. Mater. 29(28), 1900056 (2019). https://doi.org/10.1002/adfm.201900056
J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
H. Shen, J. Guo, H. Wang, N. Zhao, J. Xu, Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces 7(10), 5701–5708 (2015). https://doi.org/10.1021/am507416y
L. Cao, J. Wang, J. Dong, X. Zhao, H.B. Li et al., Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres. Compos. B Eng. 188, 107882 (2020). https://doi.org/10.1016/j.compositesb.2020.107882
X. He, Y. Wang, Highly thermally conductive polyimide composite films with excellent thermal and electrical insulating properties. Ind. Eng. Chem. Res. 59(5), 1925–1933 (2020). https://doi.org/10.1021/acs.iecr.9b05939
N. Song, Q. Wang, D. Jiao, H. Pan, L. Shi et al., Highly thermally conductive SiO2-coated NFC/BNNS hybrid films with water resistance. Compos. Part A Appl. Sci. Manuf. 143, 106261 (2021). https://doi.org/10.1016/j.compositesa.2020.106261
Q. Song, W. Zhu, Y. Deng, M. Zhu, Q. Zhang, Synergetic optimization of thermal conductivity and breakdown strength of boron nitride/poly (vinylidene fluoride) composite film with sandwich intercalated structure for heat management in flexible electronics. Compos. Part A Appl. Sci. Manuf. 135, 105933 (2020). https://doi.org/10.1016/j.compositesa.2020.105933
Y. Wang, S. Xia, G. Xiao, J. Di, J. Wang, High-loading boron nitride-based bio-inspired paper with plastic-like ductility and metal-like thermal conductivity. ACS Appl. Mater. Interfaces 12(11), 13156–13164 (2020). https://doi.org/10.1021/acsami.9b21753
Y. Wang, X. Zhang, X. Ding, P. Zhang, M. Shu et al., Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Compos. B Eng. 199, 108267 (2020). https://doi.org/10.1016/j.compositesb.2020.108267
K. Zhao, G. Liu, W. Cao, Z. Su, J. Zhao et al., A combination of nanodiamond and boron nitride for the preparation of polyvinyl alcohol composite film with high thermal conductivity. Polymer 206, 122885 (2020). https://doi.org/10.1016/j.polymer.2020.122885
Z.G. Wang, W. Liu, Y.H. Liu, Y. Ren, Y.P. Li et al., Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. B Eng. 180, 107569 (2020). https://doi.org/10.1016/j.compositesb.2019.107569
J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super compatible functional BN nanosheets/polymer films with excellent mechanical property and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 81363–81369 (2018). https://doi.org/10.1039/C7TC04860B
L. Zhao, C. Wei, Z. Li, W. Wei, L. Jia et al., High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater. Des. 210, 110124 (2021). https://doi.org/10.1016/j.matdes.2021.110124
X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
E. Jiao, K. Wu, Y. Liu, M. Lu, H. Zhang et al., Robust bioinspired MXene-based flexible films with excellent thermal conductivity and photothermal properties. Compos. Part A Appl. Sci. Manuf. 143, 106290 (2021). https://doi.org/10.1016/j.compositesa.2021.106290
Y. Shang, Y. Ji, J. Dong, G. Yang, X. Zhang et al., Sandwiched cellulose nanofiber /boron nitride nanosheet /Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Compos. Sci. Technol. 214, 108974 (2021). https://doi.org/10.1016/j.compscitech.2021.108974
M.A. Vadivelu, C.R. Kumar, G.M. Joshi, Polymer composites for thermal management: a review. Compos. Interfaces 23(9), 847–872 (2016). https://doi.org/10.1080/09276440.2016.1176853
H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou et al., Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 30(12), 1704561 (2018). https://doi.org/10.1002/adma.201704561
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5(2), 235–258 (2020). https://doi.org/10.1039/c9nh00571d
X. Zheng, W. Nie, Q. Hu, X. Wang, Z. Wang et al., Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Mater. Des. 200, 109442 (2021). https://doi.org/10.1016/j.matdes.2020.109442
J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
A. Wang, S. Li, X. Zhang, H. Bao, Roles of electrons on the thermal transport of 2D metallic MXenes. Phys. Rev. Mater. 6, 014009 (2022). https://doi.org/10.1103/PhysRevMaterials.6.014009
Y. Liu, K. Wu, M. Lu, E. Jiao, H. Zhang et al., Highly thermal conductivity and flame retardant flexible graphene/MXene paper based on an optimized interface and nacre laminated structure. Compos. Part A Appl. Sci. Manuf. 141, 106227 (2021). https://doi.org/10.1016/j.compositesa.2020.106227
F. Jamil, H.M. Ali, M.M. Janjua, MXene based advanced materials for thermal energy storage: a recent review. J. Energy Storage. 35, 102322 (2021). https://doi.org/10.1016/j.est.2021.102322
X. Chen, Y. Zhao, L. Li, Y. Wang, J. Wang et al., MXene/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 61(1), 80–115 (2020). https://doi.org/10.1080/15583724.2020.1729179
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
S. Wu, T. Yan, Z. Kuai, W. Pan, Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Stor. Mater. 25, 251–295 (2020). https://doi.org/10.1016/j.ensm.2019.10.010
J. Sun, Y. Yao, X. Zeng, G. Pan, J. Hu et al., Preparation of boron nitride nanosheet/nanofibrillated cellulose nanocomposites with ultrahigh thermal conductivity via engineering interfacial thermal resistance. Adv. Mater. Interfaces 4(17), 1700563 (2017). https://doi.org/10.1002/admi.201700563
H. Yang, Y. Tang, P. Yang, Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions. Nanoscale 11(30), 14155–14163 (2019). https://doi.org/10.1039/C9NR03538A
K. Wu, P. Liao, R. Du, Q. Zhang, F. Chen et al., Preparation of a thermally conductive biodegradable cellulose nanofiber/hydroxylated boron nitride nanosheet film: the critical role of edge-hydroxylation. J. Mater. Chem. A 6(25), 11863–11873 (2018). https://doi.org/10.1039/c8ta03642j
K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma et al., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 8438614 (2021). https://doi.org/10.34133/2021/8438614
D. An, S. Cheng, S. Xi, Z. Zhang, X. Duan et al., Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem. Eng. J. 383, 123151 (2020). https://doi.org/10.1016/j.cej.2019.123151
Z.G. Wang, M.Z. Chen, Y.H. Liu, H.J. Duan, L. Xu et al., Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications. J. Mater. Chem. C 7(29), 9018–9024 (2019). https://doi.org/10.1039/c9tc02845e
Y. Yao, X. Zeng, R. Sun, J.B. Xu, C.P. Wong, Effect of silver nanops decoration on the thermal conductivity of boron nitride nanosheets/silicon carbide nanowires bioinspired composite paper. 17th International Conference on Electronic Packaging Technology (ICEPT), 277–282 (2016). https://doi.org/10.1109/ICEPT.2016.7583136
S. Quiles-Díaz, Y. Martínez-Rubí, J. Guan, K.S. Kim, M. Couillard et al., Enhanced thermal conductivity in polymer nanocomposites via covalent functionalization of boron nitride nanotubes with short polyethylene chains for heat-transfer applications. ACS Appl. Nano Mater. 2(1), 440–451 (2018). https://doi.org/10.1021/acsanm.8b01992
W. Han, Y. Bai, S. Liu, C. Ge, L. Wang et al., Enhanced thermal conductivity of commercial polystyrene filled with core-shell structured BN@PS. Compos. Part A Appl. Sci. Manuf. 102, 218–227 (2017). https://doi.org/10.1016/j.compositesa.2017.08.012
C. Fu, Q. Li, J. Lu, S. Mateti, Q. Cai et al., Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Compos. Sci. Technol. 165, 322–330 (2018). https://doi.org/10.1016/j.compscitech.2018.07.010
C.P. Feng, L.B. Chen, G.L. Tian, L. Bai, R.Y. Bao et al., Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm−1K−1. Chem. Eng. J. 392, 123784 (2019). https://doi.org/10.1016/j.cej.2019.123784
R. Sun, H. Yao, H.B. Zhang, Y. Li, Y.W. Mai et al., Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites. Compos. Sci. Technol. 137, 16–23 (2016). https://doi.org/10.1016/j.compscitech.2016.10.017
Y. Xue, X. Jin, Y. Fan, R. Tian, X. Xu et al., Large-scale synthesis of hexagonal boron nitride nanosheets and their improvement in thermal properties of epoxy composites. Polym. Compos. 35(9), 1707–1715 (2014). https://doi.org/10.1002/pc.22824
S. Depaifve, C.E. Federico, D. Ruch, S. Hermans, A. Laachachi, Nitrene functionalization as a new approach for reducing the interfacial thermal resistance in graphene nanoplatelets/epoxy nanocomposites. Carbon 167, 646–657 (2020). https://doi.org/10.1016/j.carbon.2020.06.035
I.H. Tseng, J.C. Chang, S.L. Huang, M.H. Tsai, Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym. Int. 62(5), 827–835 (2013). https://doi.org/10.1002/pi.4375
H. Yang, Z. Zhang, J. Zhang, X.C. Zeng, Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale 10(40), 19092–19099 (2018). https://doi.org/10.1039/c8nr05703f
S. Zhou, T. Xu, F. Jiang, N. Song, P. Ding, High-performance polyamide-imide films: effect of functionalization degree of BN nanosheets. Compos. Sci. Technol. 213, 108907 (2021). https://doi.org/10.1016/j.compscitech.2021.108907
A. Bashir, M. Maqbool, R. Lv, A. Usman, H. Guo et al., Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite. Compos. B Eng. 218, 108871 (2021). https://doi.org/10.1016/j.compositesb.2021.108871
S. Boroushak, R. Ansari, S. Ajori, Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single-and double-walled carbon nanotubes with polyethylene chains. Diamond Relat. Mater. 86, 173–178 (2018). https://doi.org/10.1016/j.diamond.2018.04.023
N. Yang, X. Zeng, J. Lu, R. Sun, C.P. Wong, Effect of chemical functionalization on the thermal conductivity of 2D hexagonal boron nitride. Appl. Phys. Lett. 113(17), 171904 (2018). https://doi.org/10.1063/1.5050293
Z. Xie, K. Wu, D. Liu, Q. Zhang, Q. Fu, One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. Compos. Sci. Technol. 208, 108756 (2021). https://doi.org/10.1016/j.compscitech.2021.108756
H. Oh, K. Kim, S. Ryu, J. Kim, Enhancement of thermal conductivity of polymethyl methacrylate-coated graphene/epoxy composites using admicellar polymerization with different ionic surfactants. Compos. Part A Appl. Sci. Manuf. 116, 206–215 (2019). https://doi.org/10.1016/j.compositesa.2018.10.035
J. Xia, J. Liu, D. Zheng, C. Duan, B. Feng et al., Intercalation of copper microps in an expanded graphite film with improved through-plane thermal conductivity. J. Mater. Sci. 55(17), 7351–7358 (2020). https://doi.org/10.1007/s10853-020-04533-6
H. Zhong, J.R. Lukes, Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74(12), 125403 (2006). https://doi.org/10.1103/PhysRevB.74.125403
Y. Yao, X. Zeng, R. Sun, J.B. Xu, C.P. Wong, Highly thermally conductive composite papers prepared based on the thought of bioinspired engineering. ACS Appl. Mater. Interfaces 8(24), 15645–15653 (2016). https://doi.org/10.1021/acsami.6b04636
Z. Qu, K. Wang, C. Xu, Y. Li, E. Jiao et al., Simultaneous enhancement in thermal conductivity and flame retardancy of flexible film by introducing covalent bond connection. Chem. Eng. J. 421, 129729 (2021). https://doi.org/10.1016/j.cej.2021.129729
Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan et al., Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. B Eng. 164, 732–739 (2019). https://doi.org/10.1016/j.compositesb.2019.01.099
C. Fu, C. Yan, L. Ren, X. Zeng, G. Du et al., Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanops. Compos. Sci. Technol. 177, 118–126 (2019). https://doi.org/10.1016/j.compscitech.2019.04.026
Z. Lin, Y. Liu, S. Raghavan, K.S. Moon, S.K. Sitaraman et al., Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 5(15), 7633–7640 (2013). https://doi.org/10.1021/am401939z
M. Foygel, R.D. Morris, D. Anez, S. French, V.L. Sobolev, Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys. Rev. B 71(10), 104201 (2005). https://doi.org/10.1103/PhysRevB.71.104201
G. He, X. Tian, Y. Dai, X. Li, C. Lin et al., Bioinspired interfacial engineering of polymer based energetic composites towards superior thermal conductivity via reducing thermal resistance. Appl. Surf. Sci. 493, 679–690 (2019). https://doi.org/10.1016/j.apsusc.2019.06.299
F. Luo, K. Wu, J. Shi, X. Du, X. Li et al., Green reduction of graphene oxide by polydopamine to a construct flexible film: superior flame retardancy and high thermal conductivity. J. Mater. Chem. A 5(35), 18542–18550 (2017). https://doi.org/10.1039/c7ta04740a
M. Owais, M.H. Javed, M.Z. Akram, W.F. Paxton, I.S. Akhatov et al., Review—recent advances in thermally conductive paper-like films. ECS J. Solid State Sci. Technol. 10(3), 033001 (2021). https://doi.org/10.1149/2162-8777/abea5b
W. Lan, Y. Chen, Z. Yang, W. Han, J. Zhou et al., Ultraflexible transparent film heater made of Ag nanowire/PVA composite for rapid-response thermotherapy pads. ACS Appl. Mater. Interfaces 9(7), 6644–6651 (2017). https://doi.org/10.1021/acsami.6b16853
Y.B. Tao, Y.L. He, A review of phase change material and performance enhancement method for latent heat storage system. Renew. Sust. Energ. Rev. 93, 245–259 (2018). https://doi.org/10.1016/j.rser.2018.05.028
Y. Xiong, M. Smalc, J. Norley, J. Chang, H. Mayer et al., Thermal tests and analysis of thin graphite heat spreader for hot spot reduction in handheld devices. 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 583–590 (2008). https://doi.org/10.1109/ITHERM.2008.4544321
X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595
Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu et al., Three-dimensional printed thermal regulation textiles. ACS Nano 11(11), 11513–11520 (2017). https://doi.org/10.1021/acsnano.7b06295
J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A Appl. Sci. Manuf. 87, 290–296 (2016). https://doi.org/10.1016/j.compositesa.2016.05.010
G. Manasoglu, R. Celen, M. Kanik, Y. Ulcay, Electrical resistivity and thermal conductivity properties of graphene-coated woven fabrics. J. Appl. Polym. Sci. 136(40), 48024 (2019). https://doi.org/10.1002/app.48024
A. Abbas, Y. Zhao, X. Wang, T. Lin, Cooling effect of MWCNT-containing composite coatings on cotton fabrics. J. Text. Inst. 104(8), 798–807 (2013). https://doi.org/10.1080/00405000.2012.757007
P.C. Hsu, X. Liu, C. Liu, X. Xie, H.R. Lee et al., Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15(1), 365–371 (2015). https://doi.org/10.1021/nl5036572
J. Wang, Q. Li, D. Liu, C. Chen, Z. Chen et al., High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale 10(35), 16868–16872 (2018). https://doi.org/10.1039/C8NR05167D
Q. Gao, T. Lauster, B.A.F. Kopera, M. Retsch, S. Agarwal et al., Breathable and flexible dual-sided nonwovens with adjustable infrared optical performances for smart textile. Adv. Funct. Mater. 32(5), 2108808 (2021). https://doi.org/10.1002/adfm.202108808
L. Wei, Z. Lu, F. Cao, L. Zhang, X. Yang et al., A comprehensive study on thermal conductivity of the lithium-ion battery. Int. J. Energy Res. 44(12), 9466–9478 (2020). https://doi.org/10.1002/er.5016
Y. Liu, Y. Qiao, Y. Zhang, Z. Yang, T. Gao et al., 3D printed separator for the thermal management of high-performance Li metal anodes. Energy Stor. Mater. 12, 197–203 (2018). https://doi.org/10.1016/j.ensm.2017.12.019
M.T.F. Rodrigues, K. Kalaga, H. Gullapalli, G. Babu, A.L.M. Reddy et al., Hexagonal boron nitride-based electrolyte composite for li-ion battery operation from room temperature to 150 °C. Adv. Energy Mater. 6(12), 1600218 (2016). https://doi.org/10.1002/aenm.201600218
M.G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, 2D boron nitride nanosheets for polymer composite materials. NPJ 2D Mater. Appl. 5(1), 1–18 (2021). https://doi.org/10.1038/s41699-021-00231-2
W. Luo, L. Zhou, K. Fu, Z. Yang, J. Wan et al., A thermally conductive separator for stable Li metal anodes. Nano Lett. 15(9), 6149–6154 (2015). https://doi.org/10.1021/acs.nanolett.5b02432
J. Shi, D. Han, Z. Li, L. Yang, S.G. Lu et al., Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3(5), 1200–1225 (2019). https://doi.org/10.1016/j.joule.2019.03.021
G. Zhang, B. Fan, P. Zhao, Z. Hu, Y. Liu et al., Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Appl. Energy Mater. 1(3), 1344–1354 (2018). https://doi.org/10.1021/acsaem.8b00052