Superinsulating BNNS/PVA Composite Aerogels with High Solar Reflectance for Energy-Efficient Buildings
Corresponding Author: Jang‐Kyo Kim
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 54
Abstract
With the mandate of worldwide carbon neutralization, pursuing comfortable living environment while consuming less energy is an enticing and unavoidable choice. Novel composite aerogels with super thermal insulation and high sunlight reflection are developed for energy-efficient buildings. A solvent-assisted freeze-casting strategy is used to produce boron nitride nanosheet/polyvinyl alcohol (BNNS/PVA) composite aerogels with a tailored alignment channel structure. The effects of acetone and BNNS fillers on microstructures and multifunctional properties of aerogels are investigated. The acetone in the PVA suspension enlarges the cell walls to suppress the shrinkage, giving rise to a lower density and a higher porosity, accompanied with much diminished heat conduction throughout the whole product. The addition of BNNS fillers creates whiskers in place of disconnected transverse ligaments between adjacent cell walls, further ameliorating the thermal insulation transverse to the cell wall direction. The resultant BNNS/PVA aerogel delivers an ultralow thermal conductivity of 23.5 mW m−1 K−1 in the transverse direction. The superinsulating aerogel presents both an infrared stealthy capability and a high solar reflectance of 93.8% over the whole sunlight wavelength, far outperforming commercial expanded polystyrene foams with reflective coatings. The anisotropic BNNS/PVA composite aerogel presents great potential for application in energy-saving buildings.
Highlights:
1 Highly porous aerogel with longitudinally aligned channels and whisker-like ligaments is constructed by solvent-assisted unidirectional freezing.
2 The thermal insulation and solar reflection capabilities of the composite aerogel reach a state-of-the-art level.
3 The composite aerogel capable of infrared stealth and temperature preservation presents great potential for application in energy-saving buildings.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Zhou, I. Julianri, S. Wang, S.H. Chan, M. Li et al., Transparent bamboo with high radiative cooling targeting energy savings. ACS Mater. Lett. 3(6), 883–888 (2021). https://doi.org/10.1021/acsmaterialslett.1c00272
- Y. Ke, C. Zhou, Y. Zhou, S. Wang, S.H. Chan et al., Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv. Funct. Mater. 28(22), 1800113 (2018). https://doi.org/10.1002/adfm.201800113
- T. Zhang, Y. Tan, H. Yang, X. Zhang, The application of air layers in building envelopes: a review. Appl. Energy 165, 707–734 (2016). https://doi.org/10.1016/j.apenergy.2015.12.108
- T. Qiu, G. Wang, Q. Xu, G. Ni, Study on the thermal performance and design method of solar reflective–thermal insulation hybrid system for wall and roof in shanghai. Sol. Energy 171, 851–862 (2018). https://doi.org/10.1016/j.solener.2018.07.036
- D.M. Kammen, D.A. Sunter, City-integrated renewable energy for urban sustainability. Science 352(6288), 922–928 (2016). https://doi.org/10.1126/science.aad9302
- B.P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions–properties, requirements and possibilities. Energy Build. 43(10), 2549–2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015
- B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10(3), 277–283 (2014). https://doi.org/10.1038/nnano.2014.248
- N. Leventis, C. Chidambareswarapattar, D.P. Mohite, Z.J. Larimore, H. Lu et al., Multifunctional porous aramids (aerogels) by efficient reaction of carboxylic acids and isocyanates. J. Mater. Chem. 21(32), 11981–11986 (2011). https://doi.org/10.1039/c1jm11472g
- X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363(6428), 723–727 (2019). https://doi.org/10.1126/science.aav7304
- X. Shen, J.-K. Kim, 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives. Funct. Compos. Struct. 2(2), 022001 (2020). https://doi.org/10.1088/2631-6331/ab953a
- M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. Technol. 63(3), 315–339 (2012). https://doi.org/10.1007/s10971-012-2792-9
- N. Hüsing, U. Schubert, Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37(1–2), 22–45 (1998). https://doi.org/10.1002/(sici)1521-3773(19980202)37:1/2%3c22::Aid-anie22%3e3.0.Co;2-i
- S. Zhao, Z. Zhang, G. Sèbe, R. Wu, R.V. Rivera Virtudazo et al., Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: Improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 25(15), 2326–2334 (2015). https://doi.org/10.1002/adfm.201404368
- X. Tang, A. Sun, C. Chu, M. Yu, S. Ma et al., A novel silica nanowire-silica composite aerogels dried at ambient pressure. Mater. Des. 115, 415–421 (2017). https://doi.org/10.1016/j.matdes.2016.11.080
- M.A. Meador, C.R. Aleman, K. Hanson, N. Ramirez, S.L. Vivod et al., Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl. Mater. Interfaces. 7(2), 1240–1249 (2015). https://doi.org/10.1021/am507268c
- V. Apostolopoulou-Kalkavoura, P. Munier, L. Bergstrom, Thermally insulating nanocellulose-based materials. Adv. Mater. 33(28), 2001839 (2020). https://doi.org/10.1002/adma.202001839
- S. Ahankari, P. Paliwal, A. Subhedar, H. Kargarzadeh, Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15(3), 3849–3874 (2021). https://doi.org/10.1021/acsnano.0c09678
- T. Wang, M.-C. Long, H.-B. Zhao, B.-W. Liu, H.-G. Shi et al., An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. J. Mater. Chem. A 8(36), 18698–18706 (2020). https://doi.org/10.1039/d0ta05542e
- B. Shi, B. Ma, C. Wang, H. He, L. Qu et al., Fabrication and applications of polyimide nano-aerogels. Compos. Part A Appl. Sci. Manuf. 143, 106283 (2021). https://doi.org/10.1016/j.compositesa.2021.106283
- W. Gu, G. Wang, M. Zhou, T. Zhang, G. Ji, Polyimide-based foams: fabrication and multifunctional applications. ACS Appl. Mater. Interfaces 12(43), 48246–48258 (2020). https://doi.org/10.1021/acsami.0c15771
- Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu et al., Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15(7), 11667–11680 (2021). https://doi.org/10.1021/acsnano.1c02254
- T. Li, J. Song, X. Zhao, Z. Yang, G. Pastel et al., Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 4(3), eaar3724 (2018). https://doi.org/10.1126/sciadv.aar3724
- Y. Qin, Q. Peng, Y. Zhu, X. Zhao, Z. Lin et al., Lightweight, mechanically flexible and thermally superinsulating rgo/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Adv. 1(12), 4895–4903 (2019). https://doi.org/10.1039/c9na00444k
- N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo et al., Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
- G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen et al., Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 9(6), 491–495 (2010). https://doi.org/10.1038/nmat2752
- W. Fan, X. Zhang, Y. Zhang, Y. Zhang, T. Liu, Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 173, 47–52 (2019). https://doi.org/10.1016/j.compscitech.2019.01.025
- Q. Peng, Y. Qin, X. Zhao, X. Sun, Q. Chen et al., Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly. ACS Appl. Mater. Interfaces 9(50), 44010–44017 (2017). https://doi.org/10.1021/acsami.7b14604
- S. Zhou, V. Apostolopoulou-Kalkavoura, M.V. Tavares da Costa, L. Bergström, M. Strømme et al., Elastic aerogels of cellulose nanofibers@metal–organic frameworks for thermal insulation and fire retardancy. Nano-Micro Lett. 12(1), 9 (2020). https://doi.org/10.1007/s40820-019-0343-4
- X. Zhang, X. Zhao, T. Xue, F. Yang, W. Fan et al., Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 385, 123963 (2020). https://doi.org/10.1016/j.cej.2019.123963
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- Y. Qi, B. Xiang, J. Zhang, Effect of titanium dioxide (TiO2) with different crystal forms and surface modifications on cooling property and surface wettability of cool roofing materials. Sol. Energy Mater. Sol. Cells 172, 34–43 (2017). https://doi.org/10.1016/j.solmat.2017.07.017
- D. Dias, J. Machado, V. Leal, A. Mendes, Impact of using cool paints on energy demand and thermal comfort of a residential building. Appl. Therm. Eng. 65(1–2), 273–281 (2014). https://doi.org/10.1016/j.applthermaleng.2013.12.056
- A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M. Di Capua H. et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
- M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo et al., Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl. Mater. Interfaces. 12(22), 25286–25293 (2020). https://doi.org/10.1021/acsami.0c03897
- Z. Yang, Z. Zhou, H. Sun, T. Chen, J. Zhang, Construction of a ternary channel efficient passive cooling composites with solar-reflective, thermoemissive, and thermoconductive properties. Compos. Sci. Technol. 207, 108743 (2021). https://doi.org/10.1016/j.compscitech.2021.108743
- P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11(5), 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965
- C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 7(6), 2787–2794 (2019). https://doi.org/10.1039/C8TA10725D
- P. Min, X. Li, P. Liu, J. Liu, X.Q. Jia et al., Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 31, 2103703 (2021). https://doi.org/10.1002/adfm.202103703
- W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi et al., Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 6, 8849 (2015). https://doi.org/10.1038/ncomms9849
- Y. Wu, Z. Wang, X. Shen, X. Liu, N.M. Han et al., Graphene/boron nitride–polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 10(31), 26641–26652 (2018). https://doi.org/10.1021/acsami.8b08031
- J. Yang, W. Yang, W. Chen, X. Tao, An elegant coupling: freeze-casting and versatile polymer composites. Prog. Polym. Sci. 109, 101289 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101289
- X. Shen, Q. Zheng, J.-K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021). https://doi.org/10.1016/j.pmatsci.2020.100708
- Z. Wang, X. Shen, N.M. Han, X. Liu, Y. Wu et al., Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem. Mater. 28(18), 6731–6741 (2016). https://doi.org/10.1021/acs.chemmater.6b03206
- T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern et al., Oxygen radical functionalization of boron nitride nanosheets. J. Am. Chem. Soc. 134(45), 18758–18771 (2012). https://doi.org/10.1021/ja3080665
- F. Guo, X. Shen, J. Zhou, D. Liu, Q. Zheng et al., Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 30(19), 1910826 (2020). https://doi.org/10.1002/adfm.201910826
- X. Tong, L. Du, Q. Xu, Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay/poly(n-isopropylacrylamide). J. Mater. Chem. A 6(7), 3091–3099 (2018). https://doi.org/10.1039/c7ta10898b
- Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen et al., Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017). https://doi.org/10.1016/j.carbon.2017.07.079
- E. Munch, E. Saiz, A.P. Tomsia, S. Deville, Architectural control of freeze-cast ceramics through additives and templating. J. Am. Ceram. Soc. 92(7), 1534–1539 (2009). https://doi.org/10.1111/j.1551-2916.2009.03087.x
- M.M. Porter, R. Imperio, M. Wen, M.A. Meyers, J. McKittrick, Bioinspired scaffolds with varying pore architectures and mechanical properties. Adv. Funct. Mater. 24(14), 1978–1987 (2014). https://doi.org/10.1002/adfm.201302958
- N. Zhao, M. Yang, Q. Zhao, W. Gao, T. Xie et al., Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano 11(5), 4777–4784 (2017). https://doi.org/10.1021/acsnano.7b01089
- M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11(7), 6817–6824 (2017). https://doi.org/10.1021/acsnano.7b01815
- M. Antunes, V. Realinho, J.I. Velasco, E. Solórzano, M.-Á. Rodríguez-Pérez et al., Thermal conductivity anisotropy in polypropylene foams prepared by supercritical CO2 dissolution. Mater. Chem. Phys. 136(1), 268–276 (2012). https://doi.org/10.1016/j.matchemphys.2012.07.001
- S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik et al., Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2(11), 731–734 (2003). https://doi.org/10.1038/nmat996
- D. Wang, H. Peng, B. Yu, K. Zhou, H. Pan et al., Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties. Chem. Eng. J. 389, 124449 (2020). https://doi.org/10.1016/j.cej.2020.124449
- M.J. Oh, J.H. Lee, P.J. Yoo, Graphene-based ultralight compartmentalized isotropic foams with an extremely low thermal conductivity of 5.75 mW m−1 K−1. Adv. Funct. Mater. 31(5), 2007392 (2020). https://doi.org/10.1002/adfm.202007392
- J.F. Guo, G.H. Tang, A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels. Int. J. Heat Mass Transfer 137, 64–73 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.106
- L.R. Glicksman, Heat transfer in foams. ed. by N.C. Hilyard, A. Cunningham (Springer, 1994), pp. 104–152. https://doi.org/10.1007/978-94-011-1256-7_5
- H. Zhan, Y. Nie, Y. Chen, J.M. Bell, Y. Gu, Thermal transport in 3D nanostructures. Adv. Funct. Mater. 30(8), 1903841 (2020). https://doi.org/10.1002/adfm.201903841
- C. Bi, G.H. Tang, W.Q. Tao, Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution. J. Non-Cryst. Solids 358(23), 3124–3128 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.08.011
- G. Wei, Y. Liu, X. Zhang, F. Yu, X. Du, Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transfer 54(11–12), 2355–2366 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.026
- X. Lu, M. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke et al., Thermal conductivity of monolithic organic aerogels. Science 255(5047), 971–972 (1992). https://doi.org/10.1126/science.255.5047.971
- P.L. Kapitza, Heat transfer and superfluidity of helium II. Phys. Rev. 60(4), 354–355 (1941). https://doi.org/10.1103/PhysRev.60.354
- M. Alam, H. Singh, M.C. Limbachiya, Vacuum insulation panels (VIPs) for building construction industry–a review of the contemporary developments and future directions. Appl. Energy 88(11), 3592–3602 (2011). https://doi.org/10.1016/j.apenergy.2011.04.040
- J. Fricke, U. Heinemann, H.P. Ebert, Vacuum insulation panels—from research to market. Vacuum 82(7), 680–690 (2008). https://doi.org/10.1016/j.vacuum.2007.10.014
- C. Xie, S. Liu, Q. Zhang, H. Ma, S. Yang et al., Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method. ACS Nano 15(6), 10000–10009 (2021). https://doi.org/10.1021/acsnano.1c01551
- H.G. Shi, H.B. Zhao, B.W. Liu, Y.Z. Wang, Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(22), 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
- J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13(2), 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
- H. Qin, Y. Zhang, J. Jiang, L. Wang, M. Song et al., Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly. Adv. Funct. Mater. 31(46), 2106269 (2021). https://doi.org/10.1002/adfm.202106269
- W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
- H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
- Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6(17), eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
- W. Gao, Z. Lei, K. Wu, Y. Chen, Reconfigurable and renewable nano-micro-structured plastics for radiative cooling. Adv. Funct. Mater. 31(21), 2100535 (2021). https://doi.org/10.1002/adfm.202100535
- R. He, Y. Liao, J. Huang, T. Cheng, X. Zhang et al., Radiant air conditioning with infrared transparent polyethylene aerogel. Mater. Today Energy 21, 100800 (2021). https://doi.org/10.1016/j.mtener.2021.100800
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- Y. Tao, Z. Mao, Z. Yang, J. Zhang, Preparation and characterization of polymer matrix passive cooling materials with thermal insulation and solar reflection properties based on porous structure. Energy Build. 225, 110361 (2020). https://doi.org/10.1016/j.enbuild.2020.110361
References
C. Zhou, I. Julianri, S. Wang, S.H. Chan, M. Li et al., Transparent bamboo with high radiative cooling targeting energy savings. ACS Mater. Lett. 3(6), 883–888 (2021). https://doi.org/10.1021/acsmaterialslett.1c00272
Y. Ke, C. Zhou, Y. Zhou, S. Wang, S.H. Chan et al., Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv. Funct. Mater. 28(22), 1800113 (2018). https://doi.org/10.1002/adfm.201800113
T. Zhang, Y. Tan, H. Yang, X. Zhang, The application of air layers in building envelopes: a review. Appl. Energy 165, 707–734 (2016). https://doi.org/10.1016/j.apenergy.2015.12.108
T. Qiu, G. Wang, Q. Xu, G. Ni, Study on the thermal performance and design method of solar reflective–thermal insulation hybrid system for wall and roof in shanghai. Sol. Energy 171, 851–862 (2018). https://doi.org/10.1016/j.solener.2018.07.036
D.M. Kammen, D.A. Sunter, City-integrated renewable energy for urban sustainability. Science 352(6288), 922–928 (2016). https://doi.org/10.1126/science.aad9302
B.P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions–properties, requirements and possibilities. Energy Build. 43(10), 2549–2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10(3), 277–283 (2014). https://doi.org/10.1038/nnano.2014.248
N. Leventis, C. Chidambareswarapattar, D.P. Mohite, Z.J. Larimore, H. Lu et al., Multifunctional porous aramids (aerogels) by efficient reaction of carboxylic acids and isocyanates. J. Mater. Chem. 21(32), 11981–11986 (2011). https://doi.org/10.1039/c1jm11472g
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363(6428), 723–727 (2019). https://doi.org/10.1126/science.aav7304
X. Shen, J.-K. Kim, 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives. Funct. Compos. Struct. 2(2), 022001 (2020). https://doi.org/10.1088/2631-6331/ab953a
M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. Technol. 63(3), 315–339 (2012). https://doi.org/10.1007/s10971-012-2792-9
N. Hüsing, U. Schubert, Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37(1–2), 22–45 (1998). https://doi.org/10.1002/(sici)1521-3773(19980202)37:1/2%3c22::Aid-anie22%3e3.0.Co;2-i
S. Zhao, Z. Zhang, G. Sèbe, R. Wu, R.V. Rivera Virtudazo et al., Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: Improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 25(15), 2326–2334 (2015). https://doi.org/10.1002/adfm.201404368
X. Tang, A. Sun, C. Chu, M. Yu, S. Ma et al., A novel silica nanowire-silica composite aerogels dried at ambient pressure. Mater. Des. 115, 415–421 (2017). https://doi.org/10.1016/j.matdes.2016.11.080
M.A. Meador, C.R. Aleman, K. Hanson, N. Ramirez, S.L. Vivod et al., Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl. Mater. Interfaces. 7(2), 1240–1249 (2015). https://doi.org/10.1021/am507268c
V. Apostolopoulou-Kalkavoura, P. Munier, L. Bergstrom, Thermally insulating nanocellulose-based materials. Adv. Mater. 33(28), 2001839 (2020). https://doi.org/10.1002/adma.202001839
S. Ahankari, P. Paliwal, A. Subhedar, H. Kargarzadeh, Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15(3), 3849–3874 (2021). https://doi.org/10.1021/acsnano.0c09678
T. Wang, M.-C. Long, H.-B. Zhao, B.-W. Liu, H.-G. Shi et al., An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. J. Mater. Chem. A 8(36), 18698–18706 (2020). https://doi.org/10.1039/d0ta05542e
B. Shi, B. Ma, C. Wang, H. He, L. Qu et al., Fabrication and applications of polyimide nano-aerogels. Compos. Part A Appl. Sci. Manuf. 143, 106283 (2021). https://doi.org/10.1016/j.compositesa.2021.106283
W. Gu, G. Wang, M. Zhou, T. Zhang, G. Ji, Polyimide-based foams: fabrication and multifunctional applications. ACS Appl. Mater. Interfaces 12(43), 48246–48258 (2020). https://doi.org/10.1021/acsami.0c15771
Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu et al., Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15(7), 11667–11680 (2021). https://doi.org/10.1021/acsnano.1c02254
T. Li, J. Song, X. Zhao, Z. Yang, G. Pastel et al., Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 4(3), eaar3724 (2018). https://doi.org/10.1126/sciadv.aar3724
Y. Qin, Q. Peng, Y. Zhu, X. Zhao, Z. Lin et al., Lightweight, mechanically flexible and thermally superinsulating rgo/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Adv. 1(12), 4895–4903 (2019). https://doi.org/10.1039/c9na00444k
N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo et al., Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016). https://doi.org/10.1016/j.progpolymsci.2016.05.001
G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen et al., Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 9(6), 491–495 (2010). https://doi.org/10.1038/nmat2752
W. Fan, X. Zhang, Y. Zhang, Y. Zhang, T. Liu, Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 173, 47–52 (2019). https://doi.org/10.1016/j.compscitech.2019.01.025
Q. Peng, Y. Qin, X. Zhao, X. Sun, Q. Chen et al., Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly. ACS Appl. Mater. Interfaces 9(50), 44010–44017 (2017). https://doi.org/10.1021/acsami.7b14604
S. Zhou, V. Apostolopoulou-Kalkavoura, M.V. Tavares da Costa, L. Bergström, M. Strømme et al., Elastic aerogels of cellulose nanofibers@metal–organic frameworks for thermal insulation and fire retardancy. Nano-Micro Lett. 12(1), 9 (2020). https://doi.org/10.1007/s40820-019-0343-4
X. Zhang, X. Zhao, T. Xue, F. Yang, W. Fan et al., Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 385, 123963 (2020). https://doi.org/10.1016/j.cej.2019.123963
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
Y. Qi, B. Xiang, J. Zhang, Effect of titanium dioxide (TiO2) with different crystal forms and surface modifications on cooling property and surface wettability of cool roofing materials. Sol. Energy Mater. Sol. Cells 172, 34–43 (2017). https://doi.org/10.1016/j.solmat.2017.07.017
D. Dias, J. Machado, V. Leal, A. Mendes, Impact of using cool paints on energy demand and thermal comfort of a residential building. Appl. Therm. Eng. 65(1–2), 273–281 (2014). https://doi.org/10.1016/j.applthermaleng.2013.12.056
A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M. Di Capua H. et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo et al., Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl. Mater. Interfaces. 12(22), 25286–25293 (2020). https://doi.org/10.1021/acsami.0c03897
Z. Yang, Z. Zhou, H. Sun, T. Chen, J. Zhang, Construction of a ternary channel efficient passive cooling composites with solar-reflective, thermoemissive, and thermoconductive properties. Compos. Sci. Technol. 207, 108743 (2021). https://doi.org/10.1016/j.compscitech.2021.108743
P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11(5), 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965
C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 7(6), 2787–2794 (2019). https://doi.org/10.1039/C8TA10725D
P. Min, X. Li, P. Liu, J. Liu, X.Q. Jia et al., Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 31, 2103703 (2021). https://doi.org/10.1002/adfm.202103703
W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi et al., Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 6, 8849 (2015). https://doi.org/10.1038/ncomms9849
Y. Wu, Z. Wang, X. Shen, X. Liu, N.M. Han et al., Graphene/boron nitride–polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 10(31), 26641–26652 (2018). https://doi.org/10.1021/acsami.8b08031
J. Yang, W. Yang, W. Chen, X. Tao, An elegant coupling: freeze-casting and versatile polymer composites. Prog. Polym. Sci. 109, 101289 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101289
X. Shen, Q. Zheng, J.-K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021). https://doi.org/10.1016/j.pmatsci.2020.100708
Z. Wang, X. Shen, N.M. Han, X. Liu, Y. Wu et al., Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem. Mater. 28(18), 6731–6741 (2016). https://doi.org/10.1021/acs.chemmater.6b03206
T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern et al., Oxygen radical functionalization of boron nitride nanosheets. J. Am. Chem. Soc. 134(45), 18758–18771 (2012). https://doi.org/10.1021/ja3080665
F. Guo, X. Shen, J. Zhou, D. Liu, Q. Zheng et al., Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 30(19), 1910826 (2020). https://doi.org/10.1002/adfm.201910826
X. Tong, L. Du, Q. Xu, Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay/poly(n-isopropylacrylamide). J. Mater. Chem. A 6(7), 3091–3099 (2018). https://doi.org/10.1039/c7ta10898b
Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen et al., Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017). https://doi.org/10.1016/j.carbon.2017.07.079
E. Munch, E. Saiz, A.P. Tomsia, S. Deville, Architectural control of freeze-cast ceramics through additives and templating. J. Am. Ceram. Soc. 92(7), 1534–1539 (2009). https://doi.org/10.1111/j.1551-2916.2009.03087.x
M.M. Porter, R. Imperio, M. Wen, M.A. Meyers, J. McKittrick, Bioinspired scaffolds with varying pore architectures and mechanical properties. Adv. Funct. Mater. 24(14), 1978–1987 (2014). https://doi.org/10.1002/adfm.201302958
N. Zhao, M. Yang, Q. Zhao, W. Gao, T. Xie et al., Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano 11(5), 4777–4784 (2017). https://doi.org/10.1021/acsnano.7b01089
M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11(7), 6817–6824 (2017). https://doi.org/10.1021/acsnano.7b01815
M. Antunes, V. Realinho, J.I. Velasco, E. Solórzano, M.-Á. Rodríguez-Pérez et al., Thermal conductivity anisotropy in polypropylene foams prepared by supercritical CO2 dissolution. Mater. Chem. Phys. 136(1), 268–276 (2012). https://doi.org/10.1016/j.matchemphys.2012.07.001
S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik et al., Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2(11), 731–734 (2003). https://doi.org/10.1038/nmat996
D. Wang, H. Peng, B. Yu, K. Zhou, H. Pan et al., Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties. Chem. Eng. J. 389, 124449 (2020). https://doi.org/10.1016/j.cej.2020.124449
M.J. Oh, J.H. Lee, P.J. Yoo, Graphene-based ultralight compartmentalized isotropic foams with an extremely low thermal conductivity of 5.75 mW m−1 K−1. Adv. Funct. Mater. 31(5), 2007392 (2020). https://doi.org/10.1002/adfm.202007392
J.F. Guo, G.H. Tang, A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels. Int. J. Heat Mass Transfer 137, 64–73 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.106
L.R. Glicksman, Heat transfer in foams. ed. by N.C. Hilyard, A. Cunningham (Springer, 1994), pp. 104–152. https://doi.org/10.1007/978-94-011-1256-7_5
H. Zhan, Y. Nie, Y. Chen, J.M. Bell, Y. Gu, Thermal transport in 3D nanostructures. Adv. Funct. Mater. 30(8), 1903841 (2020). https://doi.org/10.1002/adfm.201903841
C. Bi, G.H. Tang, W.Q. Tao, Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution. J. Non-Cryst. Solids 358(23), 3124–3128 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.08.011
G. Wei, Y. Liu, X. Zhang, F. Yu, X. Du, Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transfer 54(11–12), 2355–2366 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.026
X. Lu, M. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke et al., Thermal conductivity of monolithic organic aerogels. Science 255(5047), 971–972 (1992). https://doi.org/10.1126/science.255.5047.971
P.L. Kapitza, Heat transfer and superfluidity of helium II. Phys. Rev. 60(4), 354–355 (1941). https://doi.org/10.1103/PhysRev.60.354
M. Alam, H. Singh, M.C. Limbachiya, Vacuum insulation panels (VIPs) for building construction industry–a review of the contemporary developments and future directions. Appl. Energy 88(11), 3592–3602 (2011). https://doi.org/10.1016/j.apenergy.2011.04.040
J. Fricke, U. Heinemann, H.P. Ebert, Vacuum insulation panels—from research to market. Vacuum 82(7), 680–690 (2008). https://doi.org/10.1016/j.vacuum.2007.10.014
C. Xie, S. Liu, Q. Zhang, H. Ma, S. Yang et al., Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method. ACS Nano 15(6), 10000–10009 (2021). https://doi.org/10.1021/acsnano.1c01551
H.G. Shi, H.B. Zhao, B.W. Liu, Y.Z. Wang, Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(22), 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13(2), 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
H. Qin, Y. Zhang, J. Jiang, L. Wang, M. Song et al., Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly. Adv. Funct. Mater. 31(46), 2106269 (2021). https://doi.org/10.1002/adfm.202106269
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6(17), eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
W. Gao, Z. Lei, K. Wu, Y. Chen, Reconfigurable and renewable nano-micro-structured plastics for radiative cooling. Adv. Funct. Mater. 31(21), 2100535 (2021). https://doi.org/10.1002/adfm.202100535
R. He, Y. Liao, J. Huang, T. Cheng, X. Zhang et al., Radiant air conditioning with infrared transparent polyethylene aerogel. Mater. Today Energy 21, 100800 (2021). https://doi.org/10.1016/j.mtener.2021.100800
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
Y. Tao, Z. Mao, Z. Yang, J. Zhang, Preparation and characterization of polymer matrix passive cooling materials with thermal insulation and solar reflection properties based on porous structure. Energy Build. 225, 110361 (2020). https://doi.org/10.1016/j.enbuild.2020.110361