Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors
Corresponding Author: Jang‑Kyo Kim
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 122
Abstract
Flexible multidirectional strain sensors are crucial to accurately determining the complex strain states involved in emerging sensing applications. Although considerable efforts have been made to construct anisotropic structures for improved selective sensing capabilities, existing anisotropic sensors suffer from a trade-off between high sensitivity and high stretchability with acceptable linearity. Here, an ultrasensitive, highly selective multidirectional sensor is developed by rational design of functionally different anisotropic layers. The bilayer sensor consists of an aligned carbon nanotube (CNT) array assembled on top of a periodically wrinkled and cracked CNT–graphene oxide film. The transversely aligned CNT layer bridge the underlying longitudinal microcracks to effectively discourage their propagation even when highly stretched, leading to superior sensitivity with a gauge factor of 287.6 across a broad linear working range of up to 100% strain. The wrinkles generated through a pre-straining/releasing routine in the direction transverse to CNT alignment is responsible for exceptional selectivity of 6.3, to the benefit of accurate detection of loading directions by the multidirectional sensor. This work proposes a unique approach to leveraging the inherent merits of two cross-influential anisotropic structures to resolve the trade-off among sensitivity, selectivity, and stretchability, demonstrating promising applications in full-range, multi-axis human motion detection for wearable electronics and smart robotics.
Highlights:
1 Two functionally different anisotropic layers are rationally assembled for highly selective and stretchable multidirectional strain sensors.
2 Concurrently excellent selectivity, sensitivity, stretchability, and linearity up to 100% strain is demonstrated for the first time in a multidirectional strain sensor.
3 A novel stepwise crack propagation mechanism is proposed to enable high stretchability and linearity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
- P. Miao, J. Wang, C.C. Zhang, M.Y. Sun, S.S. Cheng et al., Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11(1), 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
- J.W. Jeong, W.H. Yeo, A. Akhtar, J.J. Norton, Y.J. Kwack et al., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839–6846 (2013). https://doi.org/10.1002/adma.201301921
- B. Zhang, Y. Tang, R. Dai, H. Wang, X. Sun et al., Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 64, 103953 (2019). https://doi.org/10.1016/j.nanoen.2019.103953
- M.L. Zhu, Z.D. Sun, Z.X. Zhang, Q.F. Shi, T.Y.Y. He et al., Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 6(19), aaz8693 (2020). https://doi.org/10.1126/sciadv.aaz8693
- J. Wang, M.-F. Lin, S. Park, P.S. Lee, Deformable conductors for human–machine interface. Mater. Today 21(5), 508–526 (2018). https://doi.org/10.1016/j.mattod.2017.12.006
- S.C. Chen, Y.F. Wang, L. Yang, F. Karouta, K. Sun, Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett. 12(1), 136 (2020). https://doi.org/10.1007/s40820-020-00480-8
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
- H. Xu, Y. Lv, D. Qiu, Y. Zhou, H. Zeng et al., An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale 11(4), 1570–1578 (2019). https://doi.org/10.1039/c8nr08589g
- L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
- B.H. Liang, Z. Zhang, W.J. Chen, D.W. Lu, L.L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11(1), 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
- T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
- H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32(15), 1901924 (2020). https://doi.org/10.1002/adma.201901924
- S. Zhang, Z. Zhou, J. Zhong, Z. Shi, Y. Mao et al., Body-integrated, enzyme-triggered degradable, silk-based mechanical sensors for customized health/fitness monitoring and in situ treatment. Adv. Sci. 7(13), 1903802 (2020). https://doi.org/10.1002/advs.201903802
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
- Q.B. Zheng, J.-H. Lee, X. Shen, X. Chen, J.-K. Kim, Graphene-based wearable piezoresistive physical sensors. Mater. Today 36, 158–179 (2020). https://doi.org/10.1016/j.mattod.2019.12.004
- Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1), 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
- J. Zhou, X.Z. Xu, Y.Y. Xin, G. Lubineau, Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28(16), 1705591 (2018). https://doi.org/10.1002/adfm.201705591
- J.H. Pu, X. Zhao, X.J. Zha, L. Bai, K. Ke et al., Multilayer structured AgNW/WPu-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7(26), 15913–15923 (2019). https://doi.org/10.1039/c9ta04352g
- Y.N. Yang, L.J. Shi, Z.R. Cao, R.R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2TX (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 29(14), 1807882 (2019). https://doi.org/10.1002/adfm.201807882
- M.O. Tas, M.A. Baker, M.G. Masteghin, J. Bentz, K. Boxshal et al., Highly stretchable, directionally oriented carbon nanotube/PDMS conductive films with enhanced sensitivity as wearable strain sensors. ACS Appl. Mater. Interfaces 11(43), 39560–39573 (2019). https://doi.org/10.1021/acsami.9b13684
- Z. Liu, D. Qi, P. Guo, Y. Liu, B. Zhu et al., Thickness-gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 27(40), 6230–6237 (2015). https://doi.org/10.1002/adma.201503288
- X. Shi, H. Wang, X. Xie, Q. Xue, J. Zhang et al., Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13(1), 649–659 (2019). https://doi.org/10.1021/acsnano.8b07805
- X. Shi, S. Liu, Y. Sun, J. Liang, Y. Chen, Lowering internal friction of 0D–1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater. 28(22), 1800850 (2018). https://doi.org/10.1002/adfm.201800850
- M. Zhang, C. Wang, H. Wang, M. Jian, X. Hao et al., Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 27(2), 1604795 (2017). https://doi.org/10.1002/adfm.201604795
- J. Lee, S. Pyo, D.S. Kwon, E. Jo, W. Kim et al., Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small 15(12), e1805120 (2019). https://doi.org/10.1002/smll.201805120
- S. Gong, L.W. Yap, B. Zhu, Q. Zhai, Y. Liu et al., Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 31(41), 1903789 (2019). https://doi.org/10.1002/adma.201903789
- B. Sarkar, D.K. Satapathy, M. Jaiswal, Wrinkle and crack-dependent charge transport in a uniaxially strained conducting polymer film on a flexible substrate. Soft Matter 13(32), 5437–5444 (2017). https://doi.org/10.1039/c7sm00972k
- Y.L. Tan, B.R. Hu, J. Song, Z.Y. Chu, W.J. Wu, Bioinspired multiscale wrinkling patterns on curved substrates: An overview. Nano-Micro Lett. 12(1), 101 (2020). https://doi.org/10.1007/s40820-020-00436-y
- J.-H. Lee, J. Kim, D. Liu, F. Guo, X. Shen et al., Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater. 29(29), 1901623 (2019). https://doi.org/10.1002/adfm.201901623
- S.H. Ha, S.H. Ha, M.B. Jeon, J.H. Cho, J.M. Kim, Highly sensitive and selective multidimensional resistive strain sensors based on a stiffness-variant stretchable substrate. Nanoscale 10(11), 5105–5113 (2018). https://doi.org/10.1039/c7nr08118a
- H. Chen, Y. Jing, J.-H. Lee, D. Liu, J. Kim et al., Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures. Mater. Horiz. 7(9), 2378–2389 (2020). https://doi.org/10.1039/d0mh00922a
- T. Yang, X. Li, X. Jiang, S. Lin, J. Lao et al., Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Mater. Horiz. 3(3), 248–255 (2016). https://doi.org/10.1039/c6mh00027d
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1038/nature14002
- L. Ma, W. Yang, Y. Wang, H. Chen, Y. Xing et al., Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks. Compos. Sci. Technol. 165, 190–197 (2018). https://doi.org/10.1016/j.compscitech.2018.06.030
- S. Ryu, P. Lee, J.B. Chou, R.Z. Xu, R. Zhao et al., Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9(6), 5929–5936 (2015). https://doi.org/10.1021/acsnano.5b00599
- C. Sui, Y. Yang, R.J. Headrick, Z. Pan, J. Wu et al., Directional sensing based on flexible aligned carbon nanotube film nanocomposites. Nanoscale 10(31), 14938–14946 (2018). https://doi.org/10.1039/c8nr02137f
- A. Santos, L. Amorim, J.P. Nunes, L.A. Rocha, A.F. Silva et al., Aligned carbon nanotube based sensors for strain sensing applications. Sensor Actuat. A-Phys. 289, 157–164 (2019). https://doi.org/10.1016/j.sna.2019.02.026
- J.D. Shi, J. Hu, Z.H. Dai, W. Zhao, P. Liu et al., Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon 123, 786–793 (2017). https://doi.org/10.1016/j.carbon.2017.08.006
- Y. Yu, Y.F. Luo, A. Guo, L.J. Yan, Y. Wu et al., Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 9(20), 6716–6723 (2017). https://doi.org/10.1039/c6nr09961k
- S. Huang, G. He, C. Yang, J. Wu, C. Guo et al., Stretchable strain vector sensor based on parallelly aligned vertical graphene. ACS Appl. Mater. Interfaces 11(1), 1294–1302 (2019). https://doi.org/10.1021/acsami.8b18210
- S. Chen, Y. Song, D. Ding, Z. Ling, F. Xu, Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv. Funct. Mater. 28(42), 1802547 (2018). https://doi.org/10.1002/adfm.201802547
- H. Hu, S. Wang, S. Wang, G. Liu, T. Cao et al., Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29(33), 1902922 (2019). https://doi.org/10.1002/adfm.201902922
- S.K. Ghosh, D. Mandal, Synergistically enhanced piezoelectric output in highly aligned 1d polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245–257 (2018). https://doi.org/10.1016/j.nanoen.2018.08.036
- H. Jeon, S.K. Hong, M.S. Kim, S.J. Cho, G. Lim, Omni-purpose stretchable strain sensor based on a highly dense nanocracking structure for whole-body motion monitoring. ACS Appl. Mater. Interfaces 9(48), 41712–41721 (2017). https://doi.org/10.1021/acsami.7b14153
- Q.B. Zheng, W.H. Ip, X.Y. Lin, N. Yousefi, K.K. Yeung et al., Transparent conductive films consisting of ultra large graphene sheets produced by langmuir-blodgett assembly. ACS Nano 5(7), 6039–6051 (2011). https://doi.org/10.1021/nn2018683
- Y. Geng, M.Y. Liu, J. Li, X.M. Shi, J.-K. Kim, Effects of surfactant treatment on mechanical and electrical properties of cnt/epoxy nanocomposites. Compos. Part A 39(12), 1876–1883 (2008). https://doi.org/10.1016/j.compositesa.2008.09.009
- H.S. Peng, Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity. J. Am. Chem. Soc. 130(1), 42–43 (2008). https://doi.org/10.1021/ja078267m
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: A comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- H.-P. Zhang, X.-Y. Lin, X. Lu, Z. Wang, L. Fang et al., Understanding the interfacial interactions between dopamine and different graphenes for biomedical materials. Mater. Chem. Front. 1(6), 1156–1164 (2017). https://doi.org/10.1039/c6qm00300a
- D. Chai, Z. Xie, Y. Wang, L. Liu, Y.J. Yum, Molecular dynamics investigation of the adhesion mechanism acting between dopamine and the surface of dopamine-processed aramid fibers. ACS Appl. Mater. Interfaces 6(20), 17974–17984 (2014). https://doi.org/10.1021/am504799m
- J.A. Swift, Speculations on the molecular structure of eumelanin. Int. J. Cosmetic Sci. 31(2), 143–150 (2009). https://doi.org/10.1111/j.1468-2494.2008.00488.x
- Y. Qin, Y. Zhang, N. Qi, Q. Wang, X. Zhang et al., Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-cnts and interfacial cross-linking by magnetic nanoparticles. ACS Appl. Mater. Interfaces 11(10), 10409–10417 (2019). https://doi.org/10.1021/acsami.8b22382
- Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx(MXene) nanoparticle–nanosheet hybrid network. Adv. Funct. Mater. 29(14), 1807882 (2019). https://doi.org/10.1002/adfm.201807882
- Y. Zhang, J. Peng, M. Li, E. Saiz, S.E. Wolf et al., Bioinspired supertough graphene fiber through sequential interfacial interactions. ACS Nano 12(9), 8901–8908 (2018). https://doi.org/10.1021/acsnano.8b04322
- Z.-D. Huang, B. Zhang, S.-W. Oh, Q.B. Zheng, X.-Y. Lin et al., Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J. Mater. Chem. 22(8), 3591 (2012). https://doi.org/10.1039/c2jm15048d
- Q.B. Zheng, Z. Li, J. Yang, J.-K. Kim, Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 64, 200–247 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.004
- C. Wang, Z.Z. Pan, W. Lv, B. Liu, J. Wei et al., A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 15(14), e1805363 (2019). https://doi.org/10.1002/smll.201805363
- A.I. Oliva-Avilés, F. Avilés, V. Sosa, Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49(9), 2989–2997 (2011). https://doi.org/10.1016/j.carbon.2011.03.017
- K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15(8), 5240–5247 (2015). https://doi.org/10.1021/acs.nanolett.5b01505
- Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9(11), 3834–3842 (2017). https://doi.org/10.1039/c7nr00121e
- W. Zhao, J. Luo, S. Shan, J.P. Lombardi, Y. Xu et al., Nanoparticle-structured highly sensitive and anisotropic gauge sensors. Small 11(35), 4509–4516 (2015). https://doi.org/10.1002/smll.201500768
- K.H. Kim, N.S. Jang, S.H. Ha, J.H. Cho, J.M. Kim, Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small 14(14), e1704232 (2018). https://doi.org/10.1002/smll.201704232
- H. Zhu, X. Wang, J. Liang, H. Lv, H. Tong et al., Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv. Funct. Mater. 27(21), 1606604 (2017). https://doi.org/10.1002/adfm.201606604
- R. Wang, N. Jiang, J. Su, Q. Yin, Y. Zhang et al., A bi-sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Mater. 27(35), 1702134 (2017). https://doi.org/10.1002/adfm.201702134
References
Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
P. Miao, J. Wang, C.C. Zhang, M.Y. Sun, S.S. Cheng et al., Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11(1), 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
J.W. Jeong, W.H. Yeo, A. Akhtar, J.J. Norton, Y.J. Kwack et al., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839–6846 (2013). https://doi.org/10.1002/adma.201301921
B. Zhang, Y. Tang, R. Dai, H. Wang, X. Sun et al., Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 64, 103953 (2019). https://doi.org/10.1016/j.nanoen.2019.103953
M.L. Zhu, Z.D. Sun, Z.X. Zhang, Q.F. Shi, T.Y.Y. He et al., Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 6(19), aaz8693 (2020). https://doi.org/10.1126/sciadv.aaz8693
J. Wang, M.-F. Lin, S. Park, P.S. Lee, Deformable conductors for human–machine interface. Mater. Today 21(5), 508–526 (2018). https://doi.org/10.1016/j.mattod.2017.12.006
S.C. Chen, Y.F. Wang, L. Yang, F. Karouta, K. Sun, Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett. 12(1), 136 (2020). https://doi.org/10.1007/s40820-020-00480-8
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
H. Xu, Y. Lv, D. Qiu, Y. Zhou, H. Zeng et al., An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale 11(4), 1570–1578 (2019). https://doi.org/10.1039/c8nr08589g
L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
B.H. Liang, Z. Zhang, W.J. Chen, D.W. Lu, L.L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11(1), 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32(15), 1901924 (2020). https://doi.org/10.1002/adma.201901924
S. Zhang, Z. Zhou, J. Zhong, Z. Shi, Y. Mao et al., Body-integrated, enzyme-triggered degradable, silk-based mechanical sensors for customized health/fitness monitoring and in situ treatment. Adv. Sci. 7(13), 1903802 (2020). https://doi.org/10.1002/advs.201903802
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
Q.B. Zheng, J.-H. Lee, X. Shen, X. Chen, J.-K. Kim, Graphene-based wearable piezoresistive physical sensors. Mater. Today 36, 158–179 (2020). https://doi.org/10.1016/j.mattod.2019.12.004
Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1), 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
J. Zhou, X.Z. Xu, Y.Y. Xin, G. Lubineau, Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28(16), 1705591 (2018). https://doi.org/10.1002/adfm.201705591
J.H. Pu, X. Zhao, X.J. Zha, L. Bai, K. Ke et al., Multilayer structured AgNW/WPu-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7(26), 15913–15923 (2019). https://doi.org/10.1039/c9ta04352g
Y.N. Yang, L.J. Shi, Z.R. Cao, R.R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2TX (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 29(14), 1807882 (2019). https://doi.org/10.1002/adfm.201807882
M.O. Tas, M.A. Baker, M.G. Masteghin, J. Bentz, K. Boxshal et al., Highly stretchable, directionally oriented carbon nanotube/PDMS conductive films with enhanced sensitivity as wearable strain sensors. ACS Appl. Mater. Interfaces 11(43), 39560–39573 (2019). https://doi.org/10.1021/acsami.9b13684
Z. Liu, D. Qi, P. Guo, Y. Liu, B. Zhu et al., Thickness-gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 27(40), 6230–6237 (2015). https://doi.org/10.1002/adma.201503288
X. Shi, H. Wang, X. Xie, Q. Xue, J. Zhang et al., Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13(1), 649–659 (2019). https://doi.org/10.1021/acsnano.8b07805
X. Shi, S. Liu, Y. Sun, J. Liang, Y. Chen, Lowering internal friction of 0D–1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater. 28(22), 1800850 (2018). https://doi.org/10.1002/adfm.201800850
M. Zhang, C. Wang, H. Wang, M. Jian, X. Hao et al., Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 27(2), 1604795 (2017). https://doi.org/10.1002/adfm.201604795
J. Lee, S. Pyo, D.S. Kwon, E. Jo, W. Kim et al., Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small 15(12), e1805120 (2019). https://doi.org/10.1002/smll.201805120
S. Gong, L.W. Yap, B. Zhu, Q. Zhai, Y. Liu et al., Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 31(41), 1903789 (2019). https://doi.org/10.1002/adma.201903789
B. Sarkar, D.K. Satapathy, M. Jaiswal, Wrinkle and crack-dependent charge transport in a uniaxially strained conducting polymer film on a flexible substrate. Soft Matter 13(32), 5437–5444 (2017). https://doi.org/10.1039/c7sm00972k
Y.L. Tan, B.R. Hu, J. Song, Z.Y. Chu, W.J. Wu, Bioinspired multiscale wrinkling patterns on curved substrates: An overview. Nano-Micro Lett. 12(1), 101 (2020). https://doi.org/10.1007/s40820-020-00436-y
J.-H. Lee, J. Kim, D. Liu, F. Guo, X. Shen et al., Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater. 29(29), 1901623 (2019). https://doi.org/10.1002/adfm.201901623
S.H. Ha, S.H. Ha, M.B. Jeon, J.H. Cho, J.M. Kim, Highly sensitive and selective multidimensional resistive strain sensors based on a stiffness-variant stretchable substrate. Nanoscale 10(11), 5105–5113 (2018). https://doi.org/10.1039/c7nr08118a
H. Chen, Y. Jing, J.-H. Lee, D. Liu, J. Kim et al., Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures. Mater. Horiz. 7(9), 2378–2389 (2020). https://doi.org/10.1039/d0mh00922a
T. Yang, X. Li, X. Jiang, S. Lin, J. Lao et al., Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Mater. Horiz. 3(3), 248–255 (2016). https://doi.org/10.1039/c6mh00027d
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014). https://doi.org/10.1038/nature14002
L. Ma, W. Yang, Y. Wang, H. Chen, Y. Xing et al., Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks. Compos. Sci. Technol. 165, 190–197 (2018). https://doi.org/10.1016/j.compscitech.2018.06.030
S. Ryu, P. Lee, J.B. Chou, R.Z. Xu, R. Zhao et al., Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9(6), 5929–5936 (2015). https://doi.org/10.1021/acsnano.5b00599
C. Sui, Y. Yang, R.J. Headrick, Z. Pan, J. Wu et al., Directional sensing based on flexible aligned carbon nanotube film nanocomposites. Nanoscale 10(31), 14938–14946 (2018). https://doi.org/10.1039/c8nr02137f
A. Santos, L. Amorim, J.P. Nunes, L.A. Rocha, A.F. Silva et al., Aligned carbon nanotube based sensors for strain sensing applications. Sensor Actuat. A-Phys. 289, 157–164 (2019). https://doi.org/10.1016/j.sna.2019.02.026
J.D. Shi, J. Hu, Z.H. Dai, W. Zhao, P. Liu et al., Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon 123, 786–793 (2017). https://doi.org/10.1016/j.carbon.2017.08.006
Y. Yu, Y.F. Luo, A. Guo, L.J. Yan, Y. Wu et al., Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 9(20), 6716–6723 (2017). https://doi.org/10.1039/c6nr09961k
S. Huang, G. He, C. Yang, J. Wu, C. Guo et al., Stretchable strain vector sensor based on parallelly aligned vertical graphene. ACS Appl. Mater. Interfaces 11(1), 1294–1302 (2019). https://doi.org/10.1021/acsami.8b18210
S. Chen, Y. Song, D. Ding, Z. Ling, F. Xu, Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv. Funct. Mater. 28(42), 1802547 (2018). https://doi.org/10.1002/adfm.201802547
H. Hu, S. Wang, S. Wang, G. Liu, T. Cao et al., Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29(33), 1902922 (2019). https://doi.org/10.1002/adfm.201902922
S.K. Ghosh, D. Mandal, Synergistically enhanced piezoelectric output in highly aligned 1d polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245–257 (2018). https://doi.org/10.1016/j.nanoen.2018.08.036
H. Jeon, S.K. Hong, M.S. Kim, S.J. Cho, G. Lim, Omni-purpose stretchable strain sensor based on a highly dense nanocracking structure for whole-body motion monitoring. ACS Appl. Mater. Interfaces 9(48), 41712–41721 (2017). https://doi.org/10.1021/acsami.7b14153
Q.B. Zheng, W.H. Ip, X.Y. Lin, N. Yousefi, K.K. Yeung et al., Transparent conductive films consisting of ultra large graphene sheets produced by langmuir-blodgett assembly. ACS Nano 5(7), 6039–6051 (2011). https://doi.org/10.1021/nn2018683
Y. Geng, M.Y. Liu, J. Li, X.M. Shi, J.-K. Kim, Effects of surfactant treatment on mechanical and electrical properties of cnt/epoxy nanocomposites. Compos. Part A 39(12), 1876–1883 (2008). https://doi.org/10.1016/j.compositesa.2008.09.009
H.S. Peng, Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity. J. Am. Chem. Soc. 130(1), 42–43 (2008). https://doi.org/10.1021/ja078267m
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: A comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
H.-P. Zhang, X.-Y. Lin, X. Lu, Z. Wang, L. Fang et al., Understanding the interfacial interactions between dopamine and different graphenes for biomedical materials. Mater. Chem. Front. 1(6), 1156–1164 (2017). https://doi.org/10.1039/c6qm00300a
D. Chai, Z. Xie, Y. Wang, L. Liu, Y.J. Yum, Molecular dynamics investigation of the adhesion mechanism acting between dopamine and the surface of dopamine-processed aramid fibers. ACS Appl. Mater. Interfaces 6(20), 17974–17984 (2014). https://doi.org/10.1021/am504799m
J.A. Swift, Speculations on the molecular structure of eumelanin. Int. J. Cosmetic Sci. 31(2), 143–150 (2009). https://doi.org/10.1111/j.1468-2494.2008.00488.x
Y. Qin, Y. Zhang, N. Qi, Q. Wang, X. Zhang et al., Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-cnts and interfacial cross-linking by magnetic nanoparticles. ACS Appl. Mater. Interfaces 11(10), 10409–10417 (2019). https://doi.org/10.1021/acsami.8b22382
Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx(MXene) nanoparticle–nanosheet hybrid network. Adv. Funct. Mater. 29(14), 1807882 (2019). https://doi.org/10.1002/adfm.201807882
Y. Zhang, J. Peng, M. Li, E. Saiz, S.E. Wolf et al., Bioinspired supertough graphene fiber through sequential interfacial interactions. ACS Nano 12(9), 8901–8908 (2018). https://doi.org/10.1021/acsnano.8b04322
Z.-D. Huang, B. Zhang, S.-W. Oh, Q.B. Zheng, X.-Y. Lin et al., Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J. Mater. Chem. 22(8), 3591 (2012). https://doi.org/10.1039/c2jm15048d
Q.B. Zheng, Z. Li, J. Yang, J.-K. Kim, Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 64, 200–247 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.004
C. Wang, Z.Z. Pan, W. Lv, B. Liu, J. Wei et al., A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 15(14), e1805363 (2019). https://doi.org/10.1002/smll.201805363
A.I. Oliva-Avilés, F. Avilés, V. Sosa, Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49(9), 2989–2997 (2011). https://doi.org/10.1016/j.carbon.2011.03.017
K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15(8), 5240–5247 (2015). https://doi.org/10.1021/acs.nanolett.5b01505
Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9(11), 3834–3842 (2017). https://doi.org/10.1039/c7nr00121e
W. Zhao, J. Luo, S. Shan, J.P. Lombardi, Y. Xu et al., Nanoparticle-structured highly sensitive and anisotropic gauge sensors. Small 11(35), 4509–4516 (2015). https://doi.org/10.1002/smll.201500768
K.H. Kim, N.S. Jang, S.H. Ha, J.H. Cho, J.M. Kim, Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small 14(14), e1704232 (2018). https://doi.org/10.1002/smll.201704232
H. Zhu, X. Wang, J. Liang, H. Lv, H. Tong et al., Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv. Funct. Mater. 27(21), 1606604 (2017). https://doi.org/10.1002/adfm.201606604
R. Wang, N. Jiang, J. Su, Q. Yin, Y. Zhang et al., A bi-sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Mater. 27(35), 1702134 (2017). https://doi.org/10.1002/adfm.201702134