A Thermochromic, Viscoelastic Nacre-like Nanocomposite for the Smart Thermal Management of Planar Electronics
Corresponding Author: Weiwei Lei
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 170
Abstract
Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elasticity, arbitrary elongation along with soft devices, and smart properties involving thermal self-healing, thermochromism and so on. Nacre-like composites with excellent in-plane heat dissipation are ideal as heat spreaders for thin and planar electronics. However, the intrinsically poor viscoelasticity, i.e., adhesion and elasticity, prevents them from simultaneous self-adhesion and arbitrary elongation along with current flexible devices as well as incurring high interfacial thermal impedance. In this paper, we propose a soft thermochromic composite (STC) membrane with a layered structure, considerable stretchability, high in-plane thermal conductivity (~ 30 W m−1 K−1), low thermal contact resistance (~ 12 mm2 K W−1, 4–5 times lower than that of silver paste), strong yet sustainable adhesion forces (~ 4607 J m−2, 2220 J m−2 greater than that of epoxy paste) and self-healing efficiency. As a self-adhesive heat spreader, it implements efficient cooling of various soft electronics with a temperature drop of 20 °C than the polyimide case. In addition to its self-healing function, the chameleon-like behavior of STC facilitates temperature monitoring by the naked eye, hence enabling smart thermal management.
Highlights:
1 Construction of a viscoelastic composite nacre with a ripple-like layered architecture through supramolecular interactions.
2 Outstanding self-adhesion, self-healing and scrape-resistant mechanical and thermal properties.
3 Utility as an integrated heat spreader and TIMs for “chameleon-like” thermal management of planar soft electronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.-B. Mao, H.-L. Gao, H.-B. Yao, L. Liu, H. Cölfen et al., Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107 (2016). https://doi.org/10.1126/science.aaf8991
- N. Kotov, Authentic synthetic nacre. Natl. Sci. Rev. 4, 284 (2017). https://doi.org/10.1093/nsr/nwx023
- H. Zhao, Z. Yang, L. Guo, Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications. NPG Asia Mater. 10, 1 (2018). https://doi.org/10.1038/s41427-018-0009-6
- K. Zhang, Z. Ma, H. Deng, Q. Fu, Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Adv. Compos. Hybrid Mater. 5, 238 (2022). https://doi.org/10.1007/s42114-021-00329-7
- W. Zhang, Y. Feng, J.T. Althakafy, Y. Liu, H.M. Abo-Dief et al., Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv. Compos. Hybrid Mater. 5, 2012 (2022). https://doi.org/10.1007/s42114-022-00539-7
- J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29, 1900412 (2019). https://doi.org/10.1002/adfm.201900412
- X. Hu, H. Wu, X. Lu, S. Liu, J. Qu, Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv. Compos. Hybrid Mater. 4, 478 (2021). https://doi.org/10.1007/s42114-021-00300-6
- J. Yu, Y. Zhang, Q. Guo, H. Hou, Y. Ma et al., Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv. Compos. Hybrid Mater. 5, 2297 (2022). https://doi.org/10.1007/s42114-021-00403-0
- X. Zeng, L. Ye, S. Yu, H. Li, R. Sun et al., Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale 7, 6774 (2015). https://doi.org/10.1039/C5NR00228A
- Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 29, 1903876 (2019). https://doi.org/10.1002/adfm.201903876
- S. Jiang, Y. Wei, S.Q. Shi, Y. Dong, C. Xia et al., Nacre-inspired strong and multifunctional soy protein-based nanocomposite materials for easy heat-dissipative mobile phone shell. Nano Lett. 21, 3254 (2021). https://doi.org/10.1021/acs.nanolett.1c00542
- L. Wang, N. Li, Y. Zhang, P. Di, M. Li et al., Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter 5, 3417 (2022). https://doi.org/10.1016/j.matt.2022.06.052
- J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6, 1363 (2018). https://doi.org/10.1039/C7TC04860B
- Y. Wu, Y. Xue, S. Qin, D. Liu, X. Wang et al., BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS Appl. Mater. Interfaces 9, 43163 (2017). https://doi.org/10.1021/acsami.7b15264
- J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. J. Materiomics 7, 219 (2021). https://doi.org/10.1016/j.jmat.2020.08.006
- J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337 (2019). https://doi.org/10.1021/acsnano.8b06290
- C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem. Int. Ed. 58, 7636 (2019). https://doi.org/10.1002/anie.201902410
- D. Hu, H. Liu, Y. Ding, W. Ma, Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydr. Polym. 264, 118058 (2021). https://doi.org/10.1016/j.carbpol.2021.118058
- K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1d rigid rod-like aramid nanofiber/2d boron nitride nanosheets. Adv. Mater. 32, 1906939 (2020). https://doi.org/10.1002/adma.201906939
- C. Chen, D. Liu, L. He, S. Qin, J. Wang et al., Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4, 247 (2020). https://doi.org/10.1016/j.joule.2019.11.010
- J. Song, X. Feng, Y. Huang, Mechanics and thermal management of stretchable inorganic electronics. Natl. Sci. Rev. 3, 128 (2016). https://doi.org/10.1093/nsr/nwv078
- Z. Zhang, W. Wang, Y. Jiang, Y.-X. Wang, Y. Wu et al., High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624 (2022). https://doi.org/10.1038/s41586-022-04400-1
- W. Woigk, E. Poloni, M. Grossman, F. Bouville, K. Masania et al., Nacre-like composites with superior specific damping performance. Proc. Natl. Acad. Sci. U.S.A 119, e2118868119 (2022). https://doi.org/10.1073/pnas.2118868119
- J.U. Kim, S.G. Seo, J.A. Rogers, Compound semiconductor devices for the skin. Nat. Mater. 22, 155–156 (2022). https://doi.org/10.1038/s41563-022-01441-9
- H. Bark, M.W.M. Tan, G. Thangavel, P.S. Lee, Deformable high loading liquid metal nanops composites for thermal energy management. Adv. Energy Mater. 11, 2101387 (2021). https://doi.org/10.1002/aenm.202101387
- H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
- D. Wang, S. Ren, J. Chen, Y. Li, Z. Wang et al., Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities. Chem. Eng. J. 430, 133163 (2022). https://doi.org/10.1016/j.cej.2021.133163
- G. Du, A. Mao, J. Yu, J. Hou, N. Zhao et al., Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat. Commun. 10, 800 (2019). https://doi.org/10.1038/s41467-019-08643-x
- D. Kim, J. Bae, J. Lee, J. Ahn, W. Hwang et al., Porous nanofiber membrane: rational platform for highly sensitive thermochromic sensor. Adv. Funct. Mater. 32, 2200463 (2022). https://doi.org/10.1002/adfm.202200463
- F. Chen, H. Xiao, Z.Q. Peng, Z.P. Zhang, M.Z. Rong et al., Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater. 4, 1048 (2021). https://doi.org/10.1007/s42114-021-00303-3
- J. Xu, Y. Li, T. Liu, D. Wang, F. Sun et al., Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300937
- Z. Wang, J. Fan, D. He, L. Ren, Z. Hao et al., Superior stretchable, low thermal resistance and efficient self-healing composite elastomers for thermal management. J. Mater. Chem. A 10, 21923 (2022). https://doi.org/10.1039/D2TA05781F
- J. Liu, N. Zheng, Z. Li, Z. Liu, G. Wang et al., Fast self-healing and antifouling polyurethane/fluorinated polysiloxane-microcapsules-silica composite material. Adv. Compos. Hybrid Mater. 5, 1899 (2022). https://doi.org/10.1007/s42114-022-00515-1
- W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi et al., Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 6, 8849 (2015). https://doi.org/10.1038/ncomms9849
- Y. Lai, X. Kuang, P. Zhu, M. Huang, X. Dong et al., Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 30, 1802556 (2018). https://doi.org/10.1002/adma.201802556
- C. Liu, Q. Yin, X. Li, L. Hao, W. Zhang et al., A waterborne polyurethane–based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv. Compos. Hybrid Mater. 4, 138 (2021). https://doi.org/10.1007/s42114-021-00206-3
- Z. Yan, S. Wang, J. Bi, Q. He, H. Song et al., Strengthening waterborne acrylic resin modified with trimethylolpropane triacrylate and compositing with carbon nanotubes for enhanced anticorrosion. Adv. Compos. Hybrid Mater. 5, 2116 (2022). https://doi.org/10.1007/s42114-022-00554-8
- P. Song, C. Wan, Y. Xie, Z. Zhang, S. Wang, Stepwise exfoliation of bound rubber from carbon black nanops and the structure characterization. Polym. Test. 71, 115 (2018). https://doi.org/10.1016/j.polymertesting.2018.08.032
- Y. Wang, X. Huang, X. Zhang, Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 12, 1291 (2021). https://doi.org/10.1038/s41467-021-21577-7
- D. Wang, J. Xu, J. Chen, P. Hu, Y. Wang et al., Transparent, mechanically strong, extremely tough, self-recoverable, healable supramolecular elastomers facilely fabricated via dynamic hard domains design for multifunctional applications. Adv. Funct. Mater. 30, 1907109 (2020). https://doi.org/10.1002/adfm.201907109
- R. Moriche, S.G. Prolongo, M. Sánchez, A. Jiménez-Suárez, F.J. Chamizo et al., Thermal conductivity and lap shear strength of GNP/epoxy nanocomposites adhesives. Int. J. Adhes. Adhes. 68, 407 (2016). https://doi.org/10.1016/j.ijadhadh.2015.12.012
- C. Zhi, Y. Xu, Y. Bando, D. Golberg, Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5, 6571 (2011). https://doi.org/10.1021/nn201946x
- Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31, 2104062 (2021). https://doi.org/10.1002/adfm.202104062
- L. Ping, P.-X. Hou, H. Wang, M. Chen, Y. Zhao et al., Clean, fast and scalable transfer of ultrathin/patterned vertically-aligned carbon nanotube arrays. Carbon 133, 275 (2018). https://doi.org/10.1016/j.carbon.2018.03.032
- J. Luo, Z. Cheng, C. Li, L. Wang, C. Yu et al., Electrically conductive adhesives based on thermoplastic polyurethane filled with silver flakes and carbon nanotubes. Compos. Sci. Technol. 129, 191 (2016). https://doi.org/10.1016/j.compscitech.2016.04.026
- W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13, 11561 (2019). https://doi.org/10.1021/acsnano.9b05163
- W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13, acsnano.8b07337 (2019). https://doi.org/10.1021/acsnano.8b07337
- X. Wu, H. Wang, Z. Wang, J. Xu, Y. Wu et al., Highly conductive thermal interface materials with vertically aligned graphite-nanoplatelet filler towards: high power density electronic device cooling. Carbon 182, 445 (2021). https://doi.org/10.1016/j.carbon.2021.06.048
- J.-W. Zhao, R. Zhao, Y.-K. Huo, W.-L. Cheng, Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials. Int. J. Heat Mass Transf. 140, 705 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.045
- J. Zhuang, J. Sun, D. Wu, Y. Liu, R.R. Patil et al., Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger. Adv. Compos. Hybrid Mater. 4, 27 (2021). https://doi.org/10.1007/s42114-021-00204-5
- X. Wei, T. Zhang, T. Luo, Thermal energy transport across hard–soft interfaces. ACS Energy Lett. 2, 2283 (2017). https://doi.org/10.1021/acsenergylett.7b00570
References
L.-B. Mao, H.-L. Gao, H.-B. Yao, L. Liu, H. Cölfen et al., Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107 (2016). https://doi.org/10.1126/science.aaf8991
N. Kotov, Authentic synthetic nacre. Natl. Sci. Rev. 4, 284 (2017). https://doi.org/10.1093/nsr/nwx023
H. Zhao, Z. Yang, L. Guo, Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications. NPG Asia Mater. 10, 1 (2018). https://doi.org/10.1038/s41427-018-0009-6
K. Zhang, Z. Ma, H. Deng, Q. Fu, Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Adv. Compos. Hybrid Mater. 5, 238 (2022). https://doi.org/10.1007/s42114-021-00329-7
W. Zhang, Y. Feng, J.T. Althakafy, Y. Liu, H.M. Abo-Dief et al., Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv. Compos. Hybrid Mater. 5, 2012 (2022). https://doi.org/10.1007/s42114-022-00539-7
J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29, 1900412 (2019). https://doi.org/10.1002/adfm.201900412
X. Hu, H. Wu, X. Lu, S. Liu, J. Qu, Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv. Compos. Hybrid Mater. 4, 478 (2021). https://doi.org/10.1007/s42114-021-00300-6
J. Yu, Y. Zhang, Q. Guo, H. Hou, Y. Ma et al., Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv. Compos. Hybrid Mater. 5, 2297 (2022). https://doi.org/10.1007/s42114-021-00403-0
X. Zeng, L. Ye, S. Yu, H. Li, R. Sun et al., Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale 7, 6774 (2015). https://doi.org/10.1039/C5NR00228A
Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 29, 1903876 (2019). https://doi.org/10.1002/adfm.201903876
S. Jiang, Y. Wei, S.Q. Shi, Y. Dong, C. Xia et al., Nacre-inspired strong and multifunctional soy protein-based nanocomposite materials for easy heat-dissipative mobile phone shell. Nano Lett. 21, 3254 (2021). https://doi.org/10.1021/acs.nanolett.1c00542
L. Wang, N. Li, Y. Zhang, P. Di, M. Li et al., Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter 5, 3417 (2022). https://doi.org/10.1016/j.matt.2022.06.052
J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6, 1363 (2018). https://doi.org/10.1039/C7TC04860B
Y. Wu, Y. Xue, S. Qin, D. Liu, X. Wang et al., BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications. ACS Appl. Mater. Interfaces 9, 43163 (2017). https://doi.org/10.1021/acsami.7b15264
J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. J. Materiomics 7, 219 (2021). https://doi.org/10.1016/j.jmat.2020.08.006
J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337 (2019). https://doi.org/10.1021/acsnano.8b06290
C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem. Int. Ed. 58, 7636 (2019). https://doi.org/10.1002/anie.201902410
D. Hu, H. Liu, Y. Ding, W. Ma, Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydr. Polym. 264, 118058 (2021). https://doi.org/10.1016/j.carbpol.2021.118058
K. Wu, J. Wang, D. Liu, C. Lei, D. Liu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1d rigid rod-like aramid nanofiber/2d boron nitride nanosheets. Adv. Mater. 32, 1906939 (2020). https://doi.org/10.1002/adma.201906939
C. Chen, D. Liu, L. He, S. Qin, J. Wang et al., Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4, 247 (2020). https://doi.org/10.1016/j.joule.2019.11.010
J. Song, X. Feng, Y. Huang, Mechanics and thermal management of stretchable inorganic electronics. Natl. Sci. Rev. 3, 128 (2016). https://doi.org/10.1093/nsr/nwv078
Z. Zhang, W. Wang, Y. Jiang, Y.-X. Wang, Y. Wu et al., High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624 (2022). https://doi.org/10.1038/s41586-022-04400-1
W. Woigk, E. Poloni, M. Grossman, F. Bouville, K. Masania et al., Nacre-like composites with superior specific damping performance. Proc. Natl. Acad. Sci. U.S.A 119, e2118868119 (2022). https://doi.org/10.1073/pnas.2118868119
J.U. Kim, S.G. Seo, J.A. Rogers, Compound semiconductor devices for the skin. Nat. Mater. 22, 155–156 (2022). https://doi.org/10.1038/s41563-022-01441-9
H. Bark, M.W.M. Tan, G. Thangavel, P.S. Lee, Deformable high loading liquid metal nanops composites for thermal energy management. Adv. Energy Mater. 11, 2101387 (2021). https://doi.org/10.1002/aenm.202101387
H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
D. Wang, S. Ren, J. Chen, Y. Li, Z. Wang et al., Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities. Chem. Eng. J. 430, 133163 (2022). https://doi.org/10.1016/j.cej.2021.133163
G. Du, A. Mao, J. Yu, J. Hou, N. Zhao et al., Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat. Commun. 10, 800 (2019). https://doi.org/10.1038/s41467-019-08643-x
D. Kim, J. Bae, J. Lee, J. Ahn, W. Hwang et al., Porous nanofiber membrane: rational platform for highly sensitive thermochromic sensor. Adv. Funct. Mater. 32, 2200463 (2022). https://doi.org/10.1002/adfm.202200463
F. Chen, H. Xiao, Z.Q. Peng, Z.P. Zhang, M.Z. Rong et al., Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater. 4, 1048 (2021). https://doi.org/10.1007/s42114-021-00303-3
J. Xu, Y. Li, T. Liu, D. Wang, F. Sun et al., Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300937
Z. Wang, J. Fan, D. He, L. Ren, Z. Hao et al., Superior stretchable, low thermal resistance and efficient self-healing composite elastomers for thermal management. J. Mater. Chem. A 10, 21923 (2022). https://doi.org/10.1039/D2TA05781F
J. Liu, N. Zheng, Z. Li, Z. Liu, G. Wang et al., Fast self-healing and antifouling polyurethane/fluorinated polysiloxane-microcapsules-silica composite material. Adv. Compos. Hybrid Mater. 5, 1899 (2022). https://doi.org/10.1007/s42114-022-00515-1
W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi et al., Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 6, 8849 (2015). https://doi.org/10.1038/ncomms9849
Y. Lai, X. Kuang, P. Zhu, M. Huang, X. Dong et al., Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 30, 1802556 (2018). https://doi.org/10.1002/adma.201802556
C. Liu, Q. Yin, X. Li, L. Hao, W. Zhang et al., A waterborne polyurethane–based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv. Compos. Hybrid Mater. 4, 138 (2021). https://doi.org/10.1007/s42114-021-00206-3
Z. Yan, S. Wang, J. Bi, Q. He, H. Song et al., Strengthening waterborne acrylic resin modified with trimethylolpropane triacrylate and compositing with carbon nanotubes for enhanced anticorrosion. Adv. Compos. Hybrid Mater. 5, 2116 (2022). https://doi.org/10.1007/s42114-022-00554-8
P. Song, C. Wan, Y. Xie, Z. Zhang, S. Wang, Stepwise exfoliation of bound rubber from carbon black nanops and the structure characterization. Polym. Test. 71, 115 (2018). https://doi.org/10.1016/j.polymertesting.2018.08.032
Y. Wang, X. Huang, X. Zhang, Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 12, 1291 (2021). https://doi.org/10.1038/s41467-021-21577-7
D. Wang, J. Xu, J. Chen, P. Hu, Y. Wang et al., Transparent, mechanically strong, extremely tough, self-recoverable, healable supramolecular elastomers facilely fabricated via dynamic hard domains design for multifunctional applications. Adv. Funct. Mater. 30, 1907109 (2020). https://doi.org/10.1002/adfm.201907109
R. Moriche, S.G. Prolongo, M. Sánchez, A. Jiménez-Suárez, F.J. Chamizo et al., Thermal conductivity and lap shear strength of GNP/epoxy nanocomposites adhesives. Int. J. Adhes. Adhes. 68, 407 (2016). https://doi.org/10.1016/j.ijadhadh.2015.12.012
C. Zhi, Y. Xu, Y. Bando, D. Golberg, Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5, 6571 (2011). https://doi.org/10.1021/nn201946x
Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31, 2104062 (2021). https://doi.org/10.1002/adfm.202104062
L. Ping, P.-X. Hou, H. Wang, M. Chen, Y. Zhao et al., Clean, fast and scalable transfer of ultrathin/patterned vertically-aligned carbon nanotube arrays. Carbon 133, 275 (2018). https://doi.org/10.1016/j.carbon.2018.03.032
J. Luo, Z. Cheng, C. Li, L. Wang, C. Yu et al., Electrically conductive adhesives based on thermoplastic polyurethane filled with silver flakes and carbon nanotubes. Compos. Sci. Technol. 129, 191 (2016). https://doi.org/10.1016/j.compscitech.2016.04.026
W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13, 11561 (2019). https://doi.org/10.1021/acsnano.9b05163
W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13, acsnano.8b07337 (2019). https://doi.org/10.1021/acsnano.8b07337
X. Wu, H. Wang, Z. Wang, J. Xu, Y. Wu et al., Highly conductive thermal interface materials with vertically aligned graphite-nanoplatelet filler towards: high power density electronic device cooling. Carbon 182, 445 (2021). https://doi.org/10.1016/j.carbon.2021.06.048
J.-W. Zhao, R. Zhao, Y.-K. Huo, W.-L. Cheng, Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials. Int. J. Heat Mass Transf. 140, 705 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.045
J. Zhuang, J. Sun, D. Wu, Y. Liu, R.R. Patil et al., Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger. Adv. Compos. Hybrid Mater. 4, 27 (2021). https://doi.org/10.1007/s42114-021-00204-5
X. Wei, T. Zhang, T. Luo, Thermal energy transport across hard–soft interfaces. ACS Energy Lett. 2, 2283 (2017). https://doi.org/10.1021/acsenergylett.7b00570