A Liquid–Solid Interface-Based Triboelectric Tactile Sensor with Ultrahigh Sensitivity of 21.48 kPa−1
Corresponding Author: Xuhui Sun
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 88
Abstract
Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach. However, the poor sensitivity and reliability caused by hard contact-electrification still poses challenges for the practical applications. In this work, a liquid–solid interface ferrofluid-based triboelectric tactile sensor (FTTS) with ultrahigh sensitivity is proposed. Relying on the fluidity and magnetism of ferrofluid, the topography of microstructure can be flexibly adjusted by directly employing ferrofluid as triboelectric material and controlling the position of outward magnet. To date, an ultrahigh sensitivity of 21.48 kPa−1 for the triboelectric sensors can be achieved due to the high spike microstructure, low Young’s modulus of ferrofluid and efficient solid–liquid interface contact-electrification. The detection limit of FTTS of 1.25 Pa with a wide detection range to 390 kPa was also obtained. In addition, the oleophobic property between ferrofluid and poly-tetra-fluoro-ethylene triboelectric layer can greatly reduce the wear and tear, resulting in the great improvement of stability. Finally, a strategy for personalized password lock with high security level has been demonstrated, illustrating a great perspective for practical application in smart home, artificial intelligence, Internet of things, etc.
Highlights:
1 A self-powered liquid–solid interface ferrofluid-based triboelectric tactile sensor with immediately formed spike-shaped microstructure is proposed.
2 Due to the high spike microstructure, low Young’s modulus of ferrofluid and efficient solid–liquid interface contact-electrification, an ultrahigh sensitivity of 21.48 kPa−1 for the triboelectric sensors can be achieved.
3 A strategy for personalized password lock with high security level is demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Billard, D. Kragic, Trends and challenges in robot manipulation. Science 364(6446), aat8414 (2019). https://doi.org/10.1126/science.aat8414
- R. Chen, Liquid metal based flexible pressure sensor for tactile sensing of robots. J. Phys. Conf. Ser. 1885(5), 052025 (2021). https://doi.org/10.1088/1742-6596/1885/5/052025
- X. He, Y. Zi, H. Yu, S.L. Zhang, J. Wang et al., An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction. Nano Energy 39, 328–336 (2017). https://doi.org/10.1016/j.nanoen.2017.06.046
- Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765
- Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng et al., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 8830–8837 (2017). https://doi.org/10.1021/acsnano.7b02975
- H. Lei, Y. Chen, Z. Gao, Z. Wen, X. Sun, Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 9(36), 20100–20130 (2021). https://doi.org/10.1039/d1ta03505c
- Z. Wu, T. Cheng, Z.L. Wang, Self-powered sensors and systems based on nanogenerators. Sensors 20(10), 2925 (2020). https://doi.org/10.3390/s20102925
- Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
- Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen et al., Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). https://doi.org/10.1038/ncomms10987
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu et al., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7(9), 8266–8274 (2013). https://doi.org/10.1021/nn4037514
- G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015). https://doi.org/10.1016/j.nanoen.2014.11.050
- M.L. Seol, J.H. Woo, D.I. Lee, H. Im, J. Hur et al., Nature-replicated nano-in-micro structures for triboelectric energy harvesting. Small 10(19), 3887–3894 (2014). https://doi.org/10.1002/smll.201400863
- C. Garcia, I. Trendafilova, R.G. Villoria, J.S.D. Rio, Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy 50, 401–409 (2018). https://doi.org/10.1016/j.nanoen.2018.05.046
- S.R.A. Ruth, V.R. Feig, H. Tran, Z. Bao, Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 30(39), 2003491 (2020). https://doi.org/10.1002/adfm.202003491
- T. Zhang, Z. Wen, H. Lei, Z. Gao, X. Sun, Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 87, 106215 (2021). https://doi.org/10.1016/j.nanoen.2021.106215
- P.S. Das, A. Chhetry, P. Maharjan, M.S. Rasel, J.Y. Park, A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 12, 1789–1795 (2019). https://doi.org/10.1007/s12274-019-2433-5
- J.H. Lee, H.J. Yoon, T.Y. Kim, M.K. Gupta, J.H. Lee et al., Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 25(21), 3203–3209 (2015). https://doi.org/10.1002/adfm.201500856
- H.J. Lee, K.Y. Chun, J.H. Oh, C.S. Han, Wearable triboelectric strain-insensitive pressure sensors based on hierarchical superposition patterns. ACS Sensors 6(6), 2411–2418 (2021). https://doi.org/10.1021/acssensors.1c00640
- Z. Liu, Z. Zhao, X. Zeng, X. Fu, Y. Hu, Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring. Nano Energy 59, 295–301 (2019)
- J. Yu, X. Hou, M. Cui, S. Shi, J. He et al., Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Sci. China Mater. 62(10), 1423–1432 (2019). https://doi.org/10.1007/s40843-019-9446-1
- X. Wu, J. Zhu, J.W. Evans, A.C. Arias, A single-mode, self-adapting, and self-powered mechanoreceptor based on a potentiometric-triboelectric hybridized sensing mechanism for resolving complex stimuli. Adv. Mater. 32(50), 2005970 (2020). https://doi.org/10.1002/adma.202005970
- S. Genc, B. Derin, Synthesis and rheology of ferrofluids: a review. Curr. Opin. Chem. Eng. 3(3), 118–124 (2014). https://doi.org/10.1016/j.coche.2013.12.006
- A. Chiolerio, M.B. Quadrelli, Smart fluid systems: the advent of autonomous liquid robotics. Adv. Sci. 4(7), 1700036 (2017). https://doi.org/10.1002/advs.201700036
- A. Ray, V.B. Varma, P.J. Jayaneel, N.M. Sudharsan, Z.P. Wang et al., On demand manipulation of ferrofluid droplets by magnetic fields. Sens. Actuat. B 242, 760–768 (2017). https://doi.org/10.1016/j.snb.2016.11.115
- C. Rigoni, S. Bertoldo, M. Pierno, D. Talbot, A. Abou-Hassan et al., Division of ferrofluid drops induced by a magnetic field. Langmuir 34(33), 9762–9767 (2018). https://doi.org/10.1021/acs.langmuir.8b02399
- A. Ahmed, I. Hassan, I.M. Mosa, E. Elsanadidy, M. Sharafeldin et al., An ultra-shapeable, smart sensing platform based on a multimodal ferrofluid-infused surface. Adv. Mater. 31(11), 1807201 (2019)
- A.G. Boudouvis, J.L. Puchalla, L.E. Scriven, R.E. Rosensweig, Normal field instability and patterns in pools of ferrofluid. J. Magn. Magn. Mater. 65(2), 307–310 (1987). https://doi.org/10.1016/0304-8853(87)90057-6
- S. Odenbach, M. Liu, Invalidation of the kelvin force in ferrofluids. Phys. Rev. Lett. 86(2), 328–331 (2001). https://doi.org/10.1103/PhysRevLett.86.328
- S. Chen, N. Wu, S. Lin, J. Duan, Z. Xu et al., Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy 70, 104460 (2020). https://doi.org/10.1016/j.nanoen.2020.104460
References
A. Billard, D. Kragic, Trends and challenges in robot manipulation. Science 364(6446), aat8414 (2019). https://doi.org/10.1126/science.aat8414
R. Chen, Liquid metal based flexible pressure sensor for tactile sensing of robots. J. Phys. Conf. Ser. 1885(5), 052025 (2021). https://doi.org/10.1088/1742-6596/1885/5/052025
X. He, Y. Zi, H. Yu, S.L. Zhang, J. Wang et al., An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction. Nano Energy 39, 328–336 (2017). https://doi.org/10.1016/j.nanoen.2017.06.046
Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765
Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng et al., Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11(9), 8830–8837 (2017). https://doi.org/10.1021/acsnano.7b02975
H. Lei, Y. Chen, Z. Gao, Z. Wen, X. Sun, Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 9(36), 20100–20130 (2021). https://doi.org/10.1039/d1ta03505c
Z. Wu, T. Cheng, Z.L. Wang, Self-powered sensors and systems based on nanogenerators. Sensors 20(10), 2925 (2020). https://doi.org/10.3390/s20102925
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen et al., Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). https://doi.org/10.1038/ncomms10987
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu et al., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7(9), 8266–8274 (2013). https://doi.org/10.1021/nn4037514
G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015). https://doi.org/10.1016/j.nanoen.2014.11.050
M.L. Seol, J.H. Woo, D.I. Lee, H. Im, J. Hur et al., Nature-replicated nano-in-micro structures for triboelectric energy harvesting. Small 10(19), 3887–3894 (2014). https://doi.org/10.1002/smll.201400863
C. Garcia, I. Trendafilova, R.G. Villoria, J.S.D. Rio, Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy 50, 401–409 (2018). https://doi.org/10.1016/j.nanoen.2018.05.046
S.R.A. Ruth, V.R. Feig, H. Tran, Z. Bao, Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 30(39), 2003491 (2020). https://doi.org/10.1002/adfm.202003491
T. Zhang, Z. Wen, H. Lei, Z. Gao, X. Sun, Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 87, 106215 (2021). https://doi.org/10.1016/j.nanoen.2021.106215
P.S. Das, A. Chhetry, P. Maharjan, M.S. Rasel, J.Y. Park, A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 12, 1789–1795 (2019). https://doi.org/10.1007/s12274-019-2433-5
J.H. Lee, H.J. Yoon, T.Y. Kim, M.K. Gupta, J.H. Lee et al., Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 25(21), 3203–3209 (2015). https://doi.org/10.1002/adfm.201500856
H.J. Lee, K.Y. Chun, J.H. Oh, C.S. Han, Wearable triboelectric strain-insensitive pressure sensors based on hierarchical superposition patterns. ACS Sensors 6(6), 2411–2418 (2021). https://doi.org/10.1021/acssensors.1c00640
Z. Liu, Z. Zhao, X. Zeng, X. Fu, Y. Hu, Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring. Nano Energy 59, 295–301 (2019)
J. Yu, X. Hou, M. Cui, S. Shi, J. He et al., Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Sci. China Mater. 62(10), 1423–1432 (2019). https://doi.org/10.1007/s40843-019-9446-1
X. Wu, J. Zhu, J.W. Evans, A.C. Arias, A single-mode, self-adapting, and self-powered mechanoreceptor based on a potentiometric-triboelectric hybridized sensing mechanism for resolving complex stimuli. Adv. Mater. 32(50), 2005970 (2020). https://doi.org/10.1002/adma.202005970
S. Genc, B. Derin, Synthesis and rheology of ferrofluids: a review. Curr. Opin. Chem. Eng. 3(3), 118–124 (2014). https://doi.org/10.1016/j.coche.2013.12.006
A. Chiolerio, M.B. Quadrelli, Smart fluid systems: the advent of autonomous liquid robotics. Adv. Sci. 4(7), 1700036 (2017). https://doi.org/10.1002/advs.201700036
A. Ray, V.B. Varma, P.J. Jayaneel, N.M. Sudharsan, Z.P. Wang et al., On demand manipulation of ferrofluid droplets by magnetic fields. Sens. Actuat. B 242, 760–768 (2017). https://doi.org/10.1016/j.snb.2016.11.115
C. Rigoni, S. Bertoldo, M. Pierno, D. Talbot, A. Abou-Hassan et al., Division of ferrofluid drops induced by a magnetic field. Langmuir 34(33), 9762–9767 (2018). https://doi.org/10.1021/acs.langmuir.8b02399
A. Ahmed, I. Hassan, I.M. Mosa, E. Elsanadidy, M. Sharafeldin et al., An ultra-shapeable, smart sensing platform based on a multimodal ferrofluid-infused surface. Adv. Mater. 31(11), 1807201 (2019)
A.G. Boudouvis, J.L. Puchalla, L.E. Scriven, R.E. Rosensweig, Normal field instability and patterns in pools of ferrofluid. J. Magn. Magn. Mater. 65(2), 307–310 (1987). https://doi.org/10.1016/0304-8853(87)90057-6
S. Odenbach, M. Liu, Invalidation of the kelvin force in ferrofluids. Phys. Rev. Lett. 86(2), 328–331 (2001). https://doi.org/10.1103/PhysRevLett.86.328
S. Chen, N. Wu, S. Lin, J. Duan, Z. Xu et al., Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy 70, 104460 (2020). https://doi.org/10.1016/j.nanoen.2020.104460