Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare
Corresponding Author: Zhen Wen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 109
Abstract
Realizing real-time monitoring of physiological signals is vital for preventing and treating chronic diseases in elderly individuals. However, wearable sensors with low power consumption and high sensitivity to both weak physiological signals and large mechanical stimuli remain challenges. Here, a flexible triboelectric patch (FTEP) based on porous-reinforcement microstructures for remote health monitoring has been reported. The porous-reinforcement microstructure is constructed by the self-assembly of silicone rubber adhering to the porous framework of the PU sponge. The mechanical properties of the FTEP can be regulated by the concentrations of silicone rubber dilution. For pressure sensing, its sensitivity can be effectively improved fivefold compared to the device with a solid dielectric layer, reaching 5.93 kPa−1 under a pressure range of 0–5 kPa. In addition, the FTEP has a wide detection range up to 50 kPa with a sensitivity of 0.21 kPa−1. The porous microstructure makes the FTEP ultra-sensitive to external pressure, and the reinforcements endow the device with a greater deformation limit in a wide detection range. Finally, a novel concept of the wearable Internet of Healthcare (IoH) system for real-time physiological signal monitoring has been proposed, which could provide real-time physiological information for ambulatory personalized healthcare monitoring.
Highlights:
1 The porous-reinforcement microstructure is constructed by the self-assembly of silicone rubber adhering to the porous framework of the PU sponge.
2 With the excellent performance both for tiny pressure and large mechanical stimuli, the flexible triboelectric patch can be used to monitor pulse wave and plantar pressure.
3 A remote healthcare system for real-time physiological signal monitoring is proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Hui, Z. Li, L. Tang, J. Sun, X. Hou et al., A self-powered, highly embedded and sensitive tribo-label-sensor for the fast and stable label printer. Nano-Micro Lett. 15, 27 (2023). https://doi.org/10.1007/s40820-022-00999-y
- S. Liu, D.S. Yang, S. Wang, H. Luan, Y. Sekine et al., Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers. EcoMat 5, e12270 (2023). https://doi.org/10.1002/eom2.12270
- Y.H. Jung, J.Y. Yoo, A. Vázquez-Guardado, J.H. Kim, J.T. Kim et al., A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022). https://doi.org/10.1038/s41928-022-00765-3
- J. Tao, M. Dong, L. Li, C. Wang, J. Li et al., Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 6, 62 (2020). https://doi.org/10.1038/s41378-020-0171-1
- C. Deng, W. Tang, L. Liu, B. Chen, M. Li et al., Self -powered insole plantar pressure mapping system. Adv. Funct. Mater. 28, 1801606 (2018). https://doi.org/10.1002/adfm.201801606
- Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano Micro Lett. 14, 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
- Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14, 150 (2022). https://doi.org/10.1007/s40820-022-00895-5
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- K. Meng, J. Chen, X. Li, Y. Wu, W. Fan et al., Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 29, 1806388 (2019). https://doi.org/10.1002/adfm.201806388
- K. Meng, Y. Wu, Q. He, Z. Zhou, X. Wang et al., Ultrasensitive fingertip-contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces. ACS Appl. Mater. Interfaces 11, 46399–46407 (2019). https://doi.org/10.1021/acsami.9b12747
- S. Niu, S. Wang, L. Lin, Y. Liu, Y. Zhou et al., Theoretical study of contact-mode triboelectricnanogenerators as an effective power source. Energy Environ. Sci. 6, 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Q. Zhou, B. Ji, F. Hu, Z. Dai, S. Ding et al., Magnetized microcilia array-based self-powered electronic skin for micro-scaled 3D morphology recognition and high-capacity communication. Adv. Funct. Mater. 32, 2208120 (2022). https://doi.org/10.1002/adfm.202208120
- T. Huang, Y. Long, Z. Dong, Q. Hua, J. Niu et al., Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid–solid/gas–solid coupled triboelectric nanogenerator. Adv. Sci. 9, 2204519 (2022). https://doi.org/10.1002/advs.202204519
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- J. Liu, Z. Wen, H. Lei, Z. Gao, X. Sun, A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1. Nano-Micro Lett. 14, 88 (2022). https://doi.org/10.1007/s40820-022-00831-7
- L. Jia, Z.H. Guo, L. Li, C. Pan, P. Zhang et al., Electricity generation and self-powered sensing enabled by dynamic electric double layer at hydrogel-dielectric elastomer interfaces. ACS Nano 15, 19651–19660 (2021). https://doi.org/10.1021/acsnano.1c06950
- S. Lee, J.W. Park, Fingerprint-inspired triboelectric nanogenerator with a geometrically asymmetric electrode design for a self-powered dynamic pressure sensor. Nano Energy 101, 107546 (2022). https://doi.org/10.1016/j.nanoen.2022.107546
- S.K. Ghosh, J. Kim, M.P. Kim, S. Na, J. Cho et al., Ferroelectricity-coupled 2d-MXene-based hierarchically designed high-performance stretchable triboelectric nanogenerator. ACS Nano 16, 11415–11427 (2022). https://doi.org/10.1021/acsnano.2c05531
- B. Dong, Q. Shi, Y. Yang, F. Wen, Z. Zhang et al., Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 79, 105414 (2021). https://doi.org/10.1016/j.nanoen.2020.105414
- T. Zhang, Z. Wen, H. Lei, Z. Gao, Y. Chen et al., Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 87, 106215 (2021). https://doi.org/10.1016/j.nanoen.2021.106215
- K.Y. Lee, H.J. Yoon, T. Jiang, X. Wen, W. Seung et al., Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 6, 1502566 (2016). https://doi.org/10.1002/aenm.201502566
- K.Y. Lee, J. Chun, J.H. Lee, K.N. Kim, N.R. Kang et al., Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26, 5037–5042 (2014). https://doi.org/10.1002/adma.201401184
- Z. Peng, X. Xiao, J. Song, A. Libanori, C. Lee et al., Improving relative permittivity and suppressing dielectric loss of triboelectric layers for high-performance wearable electricity generation. ACS Nano 16, 20251–20262 (2022). https://doi.org/10.1021/acsnano.2c05820
- M. Ha, S. Lim, S. Cho, Y. Lee, S. Na et al., Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 12, 3964–3974 (2018). https://doi.org/10.1021/acsnano.8b01557
- D. Kim, S.J. Park, S.B. Jeon, M.L. Seol, Y.K. Choi, A triboelectric sponge fabricated from a cube sugar template by 3D soft lithography for superhydrophobicity and elasticity. Adv. Electron. Mater. 2, 1500331 (2016). https://doi.org/10.1002/aelm.201500331
- Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28, 1706365 (2018). https://doi.org/10.1002/adfm.201706365
- J. Chen, B. Chen, K. Han, W. Tang, Z.L. Wang, A triboelectric nanogenerator as a self-powered sensor for a soft–rigid hybrid actuator. Adv. Mater. Technol. 4, 1900337 (2019). https://doi.org/10.1002/admt.201900337
- Y. Shao, C. Luo, B. Deng, B. Yin, M. Yang, Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy 67, 104290 (2020). https://doi.org/10.1016/j.nanoen.2019.104290
- C. Chen, Z. Wen, J. Shi, X. Jian, P. Li et al., Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 11, 4143 (2020). https://doi.org/10.1038/s41467-020-17842-w
- R. Guo, Y. Fang, Z. Wang, A. Libanori, X. Xiao et al., Deep learning assisted body area triboelectric hydrogel sensor network for infant care. Adv. Funct. Mater. 32, 2204803 (2022). https://doi.org/10.1002/adfm.202204803
- Y. Fang, Y. Zou, J. Xu, G. Chen, Y. Zhou et al., Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33, 2104178 (2021). https://doi.org/10.1002/adma.202104178
- R. Hinchet, A. Ghaffarinejad, Y. Lu, J.Y. Hasani, S.-W. Kim et al., Understanding and modeling of triboelectric-electret nanogenerator. Nano Energy 47, 401–409 (2018). https://doi.org/10.1016/j.nanoen.2018.02.030
- S. Lee, J.-W. Park, Fingerprint-inspired triboelectric nanogenerator with a geometrically asymmetric electrode design for a self-powered dynamic pressure sensor. Nano Energy 101, 107546 (2022). https://doi.org/10.1016/j.nanoen.2022.107546
References
X. Hui, Z. Li, L. Tang, J. Sun, X. Hou et al., A self-powered, highly embedded and sensitive tribo-label-sensor for the fast and stable label printer. Nano-Micro Lett. 15, 27 (2023). https://doi.org/10.1007/s40820-022-00999-y
S. Liu, D.S. Yang, S. Wang, H. Luan, Y. Sekine et al., Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers. EcoMat 5, e12270 (2023). https://doi.org/10.1002/eom2.12270
Y.H. Jung, J.Y. Yoo, A. Vázquez-Guardado, J.H. Kim, J.T. Kim et al., A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022). https://doi.org/10.1038/s41928-022-00765-3
J. Tao, M. Dong, L. Li, C. Wang, J. Li et al., Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 6, 62 (2020). https://doi.org/10.1038/s41378-020-0171-1
C. Deng, W. Tang, L. Liu, B. Chen, M. Li et al., Self -powered insole plantar pressure mapping system. Adv. Funct. Mater. 28, 1801606 (2018). https://doi.org/10.1002/adfm.201801606
Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano Micro Lett. 14, 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14, 150 (2022). https://doi.org/10.1007/s40820-022-00895-5
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
K. Meng, J. Chen, X. Li, Y. Wu, W. Fan et al., Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 29, 1806388 (2019). https://doi.org/10.1002/adfm.201806388
K. Meng, Y. Wu, Q. He, Z. Zhou, X. Wang et al., Ultrasensitive fingertip-contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces. ACS Appl. Mater. Interfaces 11, 46399–46407 (2019). https://doi.org/10.1021/acsami.9b12747
S. Niu, S. Wang, L. Lin, Y. Liu, Y. Zhou et al., Theoretical study of contact-mode triboelectricnanogenerators as an effective power source. Energy Environ. Sci. 6, 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Q. Zhou, B. Ji, F. Hu, Z. Dai, S. Ding et al., Magnetized microcilia array-based self-powered electronic skin for micro-scaled 3D morphology recognition and high-capacity communication. Adv. Funct. Mater. 32, 2208120 (2022). https://doi.org/10.1002/adfm.202208120
T. Huang, Y. Long, Z. Dong, Q. Hua, J. Niu et al., Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid–solid/gas–solid coupled triboelectric nanogenerator. Adv. Sci. 9, 2204519 (2022). https://doi.org/10.1002/advs.202204519
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
J. Liu, Z. Wen, H. Lei, Z. Gao, X. Sun, A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1. Nano-Micro Lett. 14, 88 (2022). https://doi.org/10.1007/s40820-022-00831-7
L. Jia, Z.H. Guo, L. Li, C. Pan, P. Zhang et al., Electricity generation and self-powered sensing enabled by dynamic electric double layer at hydrogel-dielectric elastomer interfaces. ACS Nano 15, 19651–19660 (2021). https://doi.org/10.1021/acsnano.1c06950
S. Lee, J.W. Park, Fingerprint-inspired triboelectric nanogenerator with a geometrically asymmetric electrode design for a self-powered dynamic pressure sensor. Nano Energy 101, 107546 (2022). https://doi.org/10.1016/j.nanoen.2022.107546
S.K. Ghosh, J. Kim, M.P. Kim, S. Na, J. Cho et al., Ferroelectricity-coupled 2d-MXene-based hierarchically designed high-performance stretchable triboelectric nanogenerator. ACS Nano 16, 11415–11427 (2022). https://doi.org/10.1021/acsnano.2c05531
B. Dong, Q. Shi, Y. Yang, F. Wen, Z. Zhang et al., Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 79, 105414 (2021). https://doi.org/10.1016/j.nanoen.2020.105414
T. Zhang, Z. Wen, H. Lei, Z. Gao, Y. Chen et al., Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template. Nano Energy 87, 106215 (2021). https://doi.org/10.1016/j.nanoen.2021.106215
K.Y. Lee, H.J. Yoon, T. Jiang, X. Wen, W. Seung et al., Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 6, 1502566 (2016). https://doi.org/10.1002/aenm.201502566
K.Y. Lee, J. Chun, J.H. Lee, K.N. Kim, N.R. Kang et al., Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26, 5037–5042 (2014). https://doi.org/10.1002/adma.201401184
Z. Peng, X. Xiao, J. Song, A. Libanori, C. Lee et al., Improving relative permittivity and suppressing dielectric loss of triboelectric layers for high-performance wearable electricity generation. ACS Nano 16, 20251–20262 (2022). https://doi.org/10.1021/acsnano.2c05820
M. Ha, S. Lim, S. Cho, Y. Lee, S. Na et al., Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 12, 3964–3974 (2018). https://doi.org/10.1021/acsnano.8b01557
D. Kim, S.J. Park, S.B. Jeon, M.L. Seol, Y.K. Choi, A triboelectric sponge fabricated from a cube sugar template by 3D soft lithography for superhydrophobicity and elasticity. Adv. Electron. Mater. 2, 1500331 (2016). https://doi.org/10.1002/aelm.201500331
Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28, 1706365 (2018). https://doi.org/10.1002/adfm.201706365
J. Chen, B. Chen, K. Han, W. Tang, Z.L. Wang, A triboelectric nanogenerator as a self-powered sensor for a soft–rigid hybrid actuator. Adv. Mater. Technol. 4, 1900337 (2019). https://doi.org/10.1002/admt.201900337
Y. Shao, C. Luo, B. Deng, B. Yin, M. Yang, Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy 67, 104290 (2020). https://doi.org/10.1016/j.nanoen.2019.104290
C. Chen, Z. Wen, J. Shi, X. Jian, P. Li et al., Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 11, 4143 (2020). https://doi.org/10.1038/s41467-020-17842-w
R. Guo, Y. Fang, Z. Wang, A. Libanori, X. Xiao et al., Deep learning assisted body area triboelectric hydrogel sensor network for infant care. Adv. Funct. Mater. 32, 2204803 (2022). https://doi.org/10.1002/adfm.202204803
Y. Fang, Y. Zou, J. Xu, G. Chen, Y. Zhou et al., Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33, 2104178 (2021). https://doi.org/10.1002/adma.202104178
R. Hinchet, A. Ghaffarinejad, Y. Lu, J.Y. Hasani, S.-W. Kim et al., Understanding and modeling of triboelectric-electret nanogenerator. Nano Energy 47, 401–409 (2018). https://doi.org/10.1016/j.nanoen.2018.02.030
S. Lee, J.-W. Park, Fingerprint-inspired triboelectric nanogenerator with a geometrically asymmetric electrode design for a self-powered dynamic pressure sensor. Nano Energy 101, 107546 (2022). https://doi.org/10.1016/j.nanoen.2022.107546