Direct Synthesis of Co-doped Graphene on Dielectric Substrates Using Solid Carbon Sources
Corresponding Author: Xuhui Sun
Nano-Micro Letters,
Vol. 7 No. 4 (2015), Article Number: 368-373
Abstract
Direct synthesis of high-quality doped graphene on dielectric substrates without transfer is highly desired for simplified device processing in electronic applications. However, graphene synthesis directly on substrates suitable for device applications, though highly demanded, remains unattainable and challenging. Here, a simple and transfer-free synthesis of high-quality doped graphene on the dielectric substrate has been developed using a thin Cu layer as the top catalyst and polycyclic aromatic hydrocarbons as both carbon precursors and doping sources. N-doped and N, F-co-doped graphene have been achieved using TPB and F16CuPc as solid carbon sources, respectively. The growth conditions were systematically optimized and the as-grown doped graphene were well characterized. The growth strategy provides a controllable transfer-free route for high-quality doped graphene synthesis, which will facilitate the practical applications of graphene.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(18), 385–388 (2008). doi:10.1126/science.1157996
- X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008). doi:10.1038/nnano.2008.199
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). doi:10.1038/nature07719
- J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken et al., Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010). doi:10.1126/science.1184014
- X. Sun, L. Qiao, X. Wang, A novel immunosensor based on au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Lett. 5(3), 191–201 (2013). doi:10.5101/nml.v5i3
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). doi:10.1126/science.1156965
- A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). doi:10.1126/science.1158877
- Yu. Lili, Wu Hui, Wu Beina, Ziyi Wang, Hongmei Cao, Fu Congying, Nengqin Jia, Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett. 6(3), 258–267 (2014). doi:10.5101/nml140028a
- Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang et al., Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134(27), 11060–11063 (2012). doi:10.1021/ja302483t
- W. Haixia, Q. Liu, S. Guo, Composites of graphene and LiFePO4 as cathode materials for lithium ion battery: a mini-review. Nano-Micro Lett. 6(4), 316–326 (2014). doi:10.1007/s40820-014-0004-6
- L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). doi:10.1021/nn901850u
- Z. Yang, Z. Yao, G.F. Li, G.Y. Fang, H.G. Nie, Z. Liu, X.M. Zhou, X.A. Chen, S.M. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2011). doi:10.1021/nn203393d
- A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010). doi:10.1021/nn101926g
- A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v
- X.S. Lia, W.W. Caia, J. Ana, S. Kimb, J. Nahb et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). doi:10.1126/science.1171245
- Z.Q. Luo, S.H. Lim, Z.Q. Tian, J.Z. Shang, L.F. Lai, B. MacDonald, C. Fu, Z.X. Shen, T. Yu, J.Y. Lin, Pyridinic N-doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21, 8038–8044 (2011). doi:10.1039/c1jm10845j
- Z. Jin, J. Yao, C. Kittrell, J.M. Tour, Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5(5), 4112–4117 (2011). doi:10.1021/nn200766e
- Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010). doi:10.1038/nature09579
- L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). doi:10.1126/science.1218461
- S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). doi:10.1038/nnano.2010.132
- Q. Zhuo, Q. Wang, Y.P. Zhang, D. Zhang, Q.L. Li et al., Transfer-free synthesis of doped and patterned graphene films. ACS Nano 9, 594–601 (2015). doi:10.1021/nn505913v
- D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238 (2007). doi:10.1021/nl061702a
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). doi:10.1103/PhysRevLett.97.187401
- R. Stine, W.K. Lee, K.E. Whitener Jr, J.T. Robinson, P.E. Sheehan, Chemical stability of graphene fluoride produced by exposure to XeF2. Nano Lett. 13, 4311–4316 (2013). doi:10.1021/nl4021039
References
C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(18), 385–388 (2008). doi:10.1126/science.1157996
X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008). doi:10.1038/nnano.2008.199
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). doi:10.1038/nature07719
J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken et al., Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010). doi:10.1126/science.1184014
X. Sun, L. Qiao, X. Wang, A novel immunosensor based on au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Lett. 5(3), 191–201 (2013). doi:10.5101/nml.v5i3
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). doi:10.1126/science.1156965
A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). doi:10.1126/science.1158877
Yu. Lili, Wu Hui, Wu Beina, Ziyi Wang, Hongmei Cao, Fu Congying, Nengqin Jia, Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett. 6(3), 258–267 (2014). doi:10.5101/nml140028a
Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang et al., Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134(27), 11060–11063 (2012). doi:10.1021/ja302483t
W. Haixia, Q. Liu, S. Guo, Composites of graphene and LiFePO4 as cathode materials for lithium ion battery: a mini-review. Nano-Micro Lett. 6(4), 316–326 (2014). doi:10.1007/s40820-014-0004-6
L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). doi:10.1021/nn901850u
Z. Yang, Z. Yao, G.F. Li, G.Y. Fang, H.G. Nie, Z. Liu, X.M. Zhou, X.A. Chen, S.M. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2011). doi:10.1021/nn203393d
A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010). doi:10.1021/nn101926g
A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v
X.S. Lia, W.W. Caia, J. Ana, S. Kimb, J. Nahb et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). doi:10.1126/science.1171245
Z.Q. Luo, S.H. Lim, Z.Q. Tian, J.Z. Shang, L.F. Lai, B. MacDonald, C. Fu, Z.X. Shen, T. Yu, J.Y. Lin, Pyridinic N-doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21, 8038–8044 (2011). doi:10.1039/c1jm10845j
Z. Jin, J. Yao, C. Kittrell, J.M. Tour, Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5(5), 4112–4117 (2011). doi:10.1021/nn200766e
Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010). doi:10.1038/nature09579
L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). doi:10.1126/science.1218461
S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). doi:10.1038/nnano.2010.132
Q. Zhuo, Q. Wang, Y.P. Zhang, D. Zhang, Q.L. Li et al., Transfer-free synthesis of doped and patterned graphene films. ACS Nano 9, 594–601 (2015). doi:10.1021/nn505913v
D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238 (2007). doi:10.1021/nl061702a
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). doi:10.1103/PhysRevLett.97.187401
R. Stine, W.K. Lee, K.E. Whitener Jr, J.T. Robinson, P.E. Sheehan, Chemical stability of graphene fluoride produced by exposure to XeF2. Nano Lett. 13, 4311–4316 (2013). doi:10.1021/nl4021039