MXene Enhanced 3D Needled Waste Denim Felt for High-Performance Flexible Supercapacitors
Corresponding Author: Shengbo Ge
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 36
Abstract
MXene, a transition metal carbide/nitride, has been prominent as an ideal electrochemical active material for supercapacitors. However, the low MXene load limits its practical applications. As environmental concerns and sustainable development become more widely recognized, it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton. The present study proposes an effective 3D fabrication method that uses MXene to fabricate waste denim felt into ultralight and flexible supercapacitors through needling and carbonization. The 3D structure provided more sites for loading MXene onto Z-directional fiber bundles, resulting in more efficient ion exchange between the electrolyte and electrodes. Furthermore, the carbonization process removed the specific adverse groups in MXenes, further improving the specific capacitance, energy density, power density and electrical conductivity of supercapacitors. The electrodes achieve a maximum specific capacitance of 1748.5 mF cm−2 and demonstrate remarkable cycling stability maintaining more than 94% after 15,000 galvanostatic charge/discharge cycles. Besides, the obtained supercapacitors present a maximum specific capacitance of 577.5 mF cm−2, energy density of 80.2 μWh cm−2 and power density of 3 mW cm−2, respectively. The resulting supercapacitors can be used to develop smart wearable power devices such as smartwatches, laying the foundation for a novel strategy of utilizing waste cotton in a high-quality manner.
Highlights:
1 An ultralight and flexible supercapacitor is developed by an effective 3D fabrication method that uses MXene to fabricate waste denim felt through needling and carbonization.
2 The electrodes have a maximum specific capacitance of 1748.5 mF cm−2 and demonstrate remarkable cycling stability with more than 94% after 15,000 galvanostatic charge/discharge cycles
3 The loaded more MXene onto Z-directional fiber bundles results in enhanced specific capacitance, energy density and power density of supercapacitors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Lin, X. Li, H. Zhang, B. Xu, P. Wasnik et al., Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg. Chem. Front. 10, 4358–4392 (2023). https://doi.org/10.1039/D3QI00819C
- M. Pathak, C.S. Rout, Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx MXene for high-performance flexible solid-state asymmetric supercapacitors. Adv. Compos. Hybrid Mater. 5, 1404–1422 (2022). https://doi.org/10.1007/s42114-022-00466-7
- J. Wang, H. Kang, H. Ma, Y. Liu, Z. Xie et al., Super-fast fabrication of MXene film through a combination of ion induced gelation and vacuum-assisted filtration. Eng. Sci. 15, 57–66 (2021)
- S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29(45), 1905015 (2019). https://doi.org/10.1002/adfm.201905015
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32(8), 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- M.R. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- S.A. Kazemi, Y. Wang, Super strong 2D titanium carbide MXene-based materials: a theoretical prediction. J. Phys. Con. Matter. 32(11), 11LT01 (2019). https://doi.org/10.1088/1361-648X/ab5bd8
- Y. Wei, W. Luo, Z. Zhuang, B. Dai, J. Ding et al., Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid Mater. 4, 1082–1091 (2021). https://doi.org/10.1007/s42114-021-00323-z
- L. Pu, J. Zhang, N. Jiresse, Y. Gao, H. Zhou et al., N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid Mater. 5, 356–369 (2022). https://doi.org/10.1007/s42114-021-00371-5
- V.S. Sivasankarapillai, T.S.K. Sharma, K.H. Hwa, M. Wabaidur, S. Angaiah et al., MXene based sensing materials: current status and future perspectives. ES Energy Environ. 15, 4–14 (2022). https://doi.org/10.30919/esee8c618
- Y. Zhai, Y. Dou, D. Zhao, F.F. Pasquale, T.M. Richard et al., Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011). https://doi.org/10.1002/adma.201100984
- J. Liang, C. Jiang, W. Wu, Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs. Nanoscale 11, 7041–7061 (2019). https://doi.org/10.1039/C8NR10301A
- J. Yan, Y. Ma, C. Zhang, X. Li, W. Liu et al., Polypyrrole-MXene coated textile-based flexible energy storage device. RSC Adv. 8(69), 39742–39748 (2018). https://doi.org/10.1039/C8RA08403C
- Z. Zhou, W. Panatdasirisuk, T.S. Mathis, B. Anasori, C. Lu et al., Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 10(13), 6005–60139 (2018). https://doi.org/10.1039/C8NR00313K
- M. Hu, Z. Li, G. Li, T. Hu, C. Zhang et al., All-solid-state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol. 2(10), 1700143 (2017). https://doi.org/10.1002/admt.201700143
- Q. Wang, Y. Yang, W. Chen, K. Rong, C. Zhang et al., Reliable coaxial wet spinning strategy to fabricate flexible MnO2-based fiber supercapacitors. J. Alloy. Compd. 935, 168110 (2023). https://doi.org/10.1016/j.jallcom.2022.168110
- S. Zhen, G. Haocheng, Z. Chuan, Rational design of electrode–electrolyte interphase and electrolytes for rechargeable proton batteries. Nano-Micro Lett. 15, 96 (2023). https://doi.org/10.1007/s40820-023-01071-z
- P. Jiang, F. Qi, Z. Yong, W. Xin, H. Lei et al., A bilayer high-temperature dielectric film with superior breakdown strength and energy storage density. Nano-Micro Lett. 15, 154 (2023). https://doi.org/10.1007/s40820-023-01121-6
- L.V. Haule, C.M. Carr, M. Rigout, Preparation and physical properties of regenerated cellulose fibres from cotton waste garments. J. Clean. Prod. 112, 4445–4451 (2016). https://doi.org/10.1016/j.jclepro.2015.08.086
- L.J.R. Nunes, R. Godina, J.C.O. Matias, J.P.S. Cataldo, Economic and environmental benefits of using textile waste for the production of thermal energy. J. Clean. Prod. 171, 1353–1360 (2018). https://doi.org/10.1016/j.jclepro.2017.10.154
- L. Lu, W. Fan, X. Meng, L. Xue, S. Ge et al., Current recycling strategies and high-value utilization of waste cotton. Sci. Total. Environ. 856, 158798 (2023). https://doi.org/10.1016/j.scitotenv.2022.158798
- W.M. Qiao, M. Huda, Y. Song, S.H. Yoon, Y. Korai et al., Carbon fibers and films based on biomass resins. Energy Fuels 19(6), 2576–2582 (2005). https://doi.org/10.1021/ef050046j
- W. Xin, M. Tian, Y. Ge, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15, 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
- X. Meng, W. Fan, Y. Ma, T. Wei, H. Dou et al., Recycling of denim fabric wastes into high-performance composites using the needle-punching nonwoven fabrication route. Text. Res. J. 90(5–6), 695–709 (2020). https://doi.org/10.1177/0040517519870317
- Y. Li, Z. Lu, B. Xin, Y. Liu, Y. Cui et al., All-solid-state flexible supercapacitor of carbonized MXene/cotton fabric for wearable energy storage. Appl. Surf. Sci. 528, 146975 (2020). https://doi.org/10.1016/j.apsusc.2020.146975
- L. Wang, L. Chen, B. Yan, C. Wang, F. Zhu et al., In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J. Mater. Chem. A 2, 8334–8341 (2014). https://doi.org/10.1039/c3ta15266a
- M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti et al., High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31(9), 3324–3332 (2019). https://doi.org/10.1021/acs.chemmater.9b00397
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- Y.B. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- L.A. Naslund, I. Persson, XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Appl. Surf. Sci. 593, 153442 (2022). https://doi.org/10.1016/j.apsusc.2022.153442
- B. Yousefi, S. Mohammad, S. Saharkhiz, Z.K. Toussi, The effect of inner layer fiber diameter and fabric structure on transplanar water absorption and transfer of double-layered knitted fabrics. Fibers Polym. 22(2), 578–586 (2021). https://doi.org/10.1007/s12221-021-9430-5
- A. Levitt, D. Hegh, P. Phillips, S. Uzun, M. Anayee et al., 3D knitted energy storage textiles using MXene-coated yarns. Mater. Today 34, 17–29 (2020). https://doi.org/10.1016/j.mattod.2020.02.005
- M. Hu, T. Hu, R. Cheng, J. Yang, C. Cui et al., MXene-coated silk-derive d carbon cloth toward flexible electrode for supercapacitor application. J. Energy Chem. 27, 161–166 (2018). https://doi.org/10.1016/j.jechem.2017.10.030
- Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018). https://doi.org/10.1002/aenm.201703043
References
Z. Lin, X. Li, H. Zhang, B. Xu, P. Wasnik et al., Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg. Chem. Front. 10, 4358–4392 (2023). https://doi.org/10.1039/D3QI00819C
M. Pathak, C.S. Rout, Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx MXene for high-performance flexible solid-state asymmetric supercapacitors. Adv. Compos. Hybrid Mater. 5, 1404–1422 (2022). https://doi.org/10.1007/s42114-022-00466-7
J. Wang, H. Kang, H. Ma, Y. Liu, Z. Xie et al., Super-fast fabrication of MXene film through a combination of ion induced gelation and vacuum-assisted filtration. Eng. Sci. 15, 57–66 (2021)
S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29(45), 1905015 (2019). https://doi.org/10.1002/adfm.201905015
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32(8), 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
M.R. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
S.A. Kazemi, Y. Wang, Super strong 2D titanium carbide MXene-based materials: a theoretical prediction. J. Phys. Con. Matter. 32(11), 11LT01 (2019). https://doi.org/10.1088/1361-648X/ab5bd8
Y. Wei, W. Luo, Z. Zhuang, B. Dai, J. Ding et al., Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid Mater. 4, 1082–1091 (2021). https://doi.org/10.1007/s42114-021-00323-z
L. Pu, J. Zhang, N. Jiresse, Y. Gao, H. Zhou et al., N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid Mater. 5, 356–369 (2022). https://doi.org/10.1007/s42114-021-00371-5
V.S. Sivasankarapillai, T.S.K. Sharma, K.H. Hwa, M. Wabaidur, S. Angaiah et al., MXene based sensing materials: current status and future perspectives. ES Energy Environ. 15, 4–14 (2022). https://doi.org/10.30919/esee8c618
Y. Zhai, Y. Dou, D. Zhao, F.F. Pasquale, T.M. Richard et al., Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011). https://doi.org/10.1002/adma.201100984
J. Liang, C. Jiang, W. Wu, Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs. Nanoscale 11, 7041–7061 (2019). https://doi.org/10.1039/C8NR10301A
J. Yan, Y. Ma, C. Zhang, X. Li, W. Liu et al., Polypyrrole-MXene coated textile-based flexible energy storage device. RSC Adv. 8(69), 39742–39748 (2018). https://doi.org/10.1039/C8RA08403C
Z. Zhou, W. Panatdasirisuk, T.S. Mathis, B. Anasori, C. Lu et al., Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 10(13), 6005–60139 (2018). https://doi.org/10.1039/C8NR00313K
M. Hu, Z. Li, G. Li, T. Hu, C. Zhang et al., All-solid-state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol. 2(10), 1700143 (2017). https://doi.org/10.1002/admt.201700143
Q. Wang, Y. Yang, W. Chen, K. Rong, C. Zhang et al., Reliable coaxial wet spinning strategy to fabricate flexible MnO2-based fiber supercapacitors. J. Alloy. Compd. 935, 168110 (2023). https://doi.org/10.1016/j.jallcom.2022.168110
S. Zhen, G. Haocheng, Z. Chuan, Rational design of electrode–electrolyte interphase and electrolytes for rechargeable proton batteries. Nano-Micro Lett. 15, 96 (2023). https://doi.org/10.1007/s40820-023-01071-z
P. Jiang, F. Qi, Z. Yong, W. Xin, H. Lei et al., A bilayer high-temperature dielectric film with superior breakdown strength and energy storage density. Nano-Micro Lett. 15, 154 (2023). https://doi.org/10.1007/s40820-023-01121-6
L.V. Haule, C.M. Carr, M. Rigout, Preparation and physical properties of regenerated cellulose fibres from cotton waste garments. J. Clean. Prod. 112, 4445–4451 (2016). https://doi.org/10.1016/j.jclepro.2015.08.086
L.J.R. Nunes, R. Godina, J.C.O. Matias, J.P.S. Cataldo, Economic and environmental benefits of using textile waste for the production of thermal energy. J. Clean. Prod. 171, 1353–1360 (2018). https://doi.org/10.1016/j.jclepro.2017.10.154
L. Lu, W. Fan, X. Meng, L. Xue, S. Ge et al., Current recycling strategies and high-value utilization of waste cotton. Sci. Total. Environ. 856, 158798 (2023). https://doi.org/10.1016/j.scitotenv.2022.158798
W.M. Qiao, M. Huda, Y. Song, S.H. Yoon, Y. Korai et al., Carbon fibers and films based on biomass resins. Energy Fuels 19(6), 2576–2582 (2005). https://doi.org/10.1021/ef050046j
W. Xin, M. Tian, Y. Ge, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15, 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
X. Meng, W. Fan, Y. Ma, T. Wei, H. Dou et al., Recycling of denim fabric wastes into high-performance composites using the needle-punching nonwoven fabrication route. Text. Res. J. 90(5–6), 695–709 (2020). https://doi.org/10.1177/0040517519870317
Y. Li, Z. Lu, B. Xin, Y. Liu, Y. Cui et al., All-solid-state flexible supercapacitor of carbonized MXene/cotton fabric for wearable energy storage. Appl. Surf. Sci. 528, 146975 (2020). https://doi.org/10.1016/j.apsusc.2020.146975
L. Wang, L. Chen, B. Yan, C. Wang, F. Zhu et al., In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J. Mater. Chem. A 2, 8334–8341 (2014). https://doi.org/10.1039/c3ta15266a
M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti et al., High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31(9), 3324–3332 (2019). https://doi.org/10.1021/acs.chemmater.9b00397
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
Y.B. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
L.A. Naslund, I. Persson, XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Appl. Surf. Sci. 593, 153442 (2022). https://doi.org/10.1016/j.apsusc.2022.153442
B. Yousefi, S. Mohammad, S. Saharkhiz, Z.K. Toussi, The effect of inner layer fiber diameter and fabric structure on transplanar water absorption and transfer of double-layered knitted fabrics. Fibers Polym. 22(2), 578–586 (2021). https://doi.org/10.1007/s12221-021-9430-5
A. Levitt, D. Hegh, P. Phillips, S. Uzun, M. Anayee et al., 3D knitted energy storage textiles using MXene-coated yarns. Mater. Today 34, 17–29 (2020). https://doi.org/10.1016/j.mattod.2020.02.005
M. Hu, T. Hu, R. Cheng, J. Yang, C. Cui et al., MXene-coated silk-derive d carbon cloth toward flexible electrode for supercapacitor application. J. Energy Chem. 27, 161–166 (2018). https://doi.org/10.1016/j.jechem.2017.10.030
Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018). https://doi.org/10.1002/aenm.201703043