Reversible Magnesium Metal Anode Enabled by Cooperative Solvation/Surface Engineering in Carbonate Electrolytes
Corresponding Author: Yinzhu Jiang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 195
Abstract
Magnesium metal anode holds great potentials toward future high energy and safe rechargeable magnesium battery technology due to its divalent redox and dendrite-free nature. Electrolytes based on Lewis acid chemistry enable the reversible Mg plating/stripping, while they fail to match most cathode materials toward high-voltage magnesium batteries. Herein, reversible Mg plating/stripping is achieved in conventional carbonate electrolytes enabled by the cooperative solvation/surface engineering. Strongly electronegative Cl from the MgCl2 additive of electrolyte impairs the Mg…O = C interaction to reduce the Mg2+ desolvation barrier for accelerated redox kinetics, while the Mg2+-conducting polymer coating on the Mg surface ensures the facile Mg2+ migration and the effective isolation of electrolytes. As a result, reversible plating and stripping of Mg is demonstrated with a low overpotential of 0.7 V up to 2000 cycles. Moreover, benefitting from the wide electrochemical window of carbonate electrolytes, high-voltage (> 2.0 V) rechargeable magnesium batteries are achieved through assembling the electrode couple of Mg metal anode and Prussian blue-based cathodes. The present work provides a cooperative engineering strategy to promote the application of magnesium anode in carbonate electrolytes toward high energy rechargeable batteries.
Highlights:
1 A cooperative solvation/surface engineering approach is reported to achieve the reversible Mg plating/stripping in conventional carbonate electrolytes.
2 Benefitting from the strategy, Mg2+ can easily overcome the reduced desolvation barrier and penetrate the Mg2+-conducting polymer coating, deposited on the Mg metal anode successfully, promoting the application of magnesium anode in carbonate electrolytes toward high-energy rechargeable batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Balali, S. Stegen, Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renew. Sustain. Energy Rev. 135, 110185 (2021). https://doi.org/10.1016/j.rser.2020.110185
- J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202003456
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569 (2020). https://doi.org/10.1039/c7cs00863e
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279 (2018). https://doi.org/10.1038/s41560-018-0108-1
- X.X. Zeng, Y.T. Xu, Y.X. Yin, X.W. Wu, J. Yue et al., Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Mater. Today Nano 8, 100057 (2019). https://doi.org/10.1016/j.mtnano.2019.100057
- X. Zeng, M. Li, D. Abd El Hady, W. Alshitari, A.S. Al Bogami et al., Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900161
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- J. Muldoon, C.B. Bucur, T. Gregory, Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683 (2014). https://doi.org/10.1021/cr500049y
- H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour et al., Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013). https://doi.org/10.1039/c3ee40871j
- A. Ponrouch, J. Bitenc, R. Dominko, N. Lindahl, P. Johansson et al., Multivalent rechargeable batteries. Energy Storage Mater. 20, 253 (2019). https://doi.org/10.1016/j.ensm.2019.04.012
- P. Bonnick, J. Muldoon, A trip to oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 30, 1910510 (2020). https://doi.org/10.1002/adfm.201910510
- L.W. Gaddum, H.E. French, The electrolysis of grignard solutions. J. Am. Chem. Soc. 49, 1295 (1927). https://doi.org/10.1021/ja01404a020
- T.J. Carter, R. Mohtadi, T.S. Arthur, F. Mizuno, R. Zhang et al., Boron clusters as highly stable magnesium-battery electrolytes. Angew. Chem. Int. Ed. 53, 3173 (2014). https://doi.org/10.1002/anie.201310317
- D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar et al., Prototype systems for rechargeable magnesium batteries. Nature 407, 724 (2000). https://doi.org/10.1038/35037553
- Z. Zhang, Z. Cui, L. Qiao, J. Guan, H. Xu et al., Novel design concepts of efficient mg-ion electrolytes toward high-performance magnesium–selenium and magnesium–sulfur batteries. Adv. Energy Mater. 7, 1602055 (2017). https://doi.org/10.1002/aenm.201602055
- O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks et al., Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J. Electrochem. Soc. 155, A103 (2008). https://doi.org/10.1149/1.2806175
- R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3, 27 (2019). https://doi.org/10.1016/j.joule.2018.10.028
- M. Zhang, R. Liu, Z. Wang, X. Xing, Y. Liu et al., Electrolyte additive maintains high performance for dendrite-free lithium metal anode. Chin. Chem. Lett. 31, 1217 (2020). https://doi.org/10.1016/j.cclet.2019.07.055
- L. Wang, Y. Ye, N. Chen, Y. Huang, L. Li et al., Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28, 1800919 (2018). https://doi.org/10.1002/adfm.201800919
- G.H. Wrodnigg, J.O. Besenhard, M. Winter, Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J. Electrochem. Soc. 146, 470 (1999). https://doi.org/10.1149/1.1391630
- J.S. Gnanaraj, R.W. Thompson, J.F. DiCarlo, K.M. Abrahamc, The role of carbonate solvents on lithium intercalation into graphite. J. Electrochem. Soc. 154, A185 (2007). https://doi.org/10.1149/1.2424419
- L.P. Lossius, F. Emmenegger, Plating of magnesium from organic solvents. Electrochim. Acta 41, 445 (1996). https://doi.org/10.1016/0013-4686(95)00326-6
- Y. Gofer, R. Turgeman, H. Cohen, D. Aurbach, XPS investigation of surface chemistry of magnesium electrodes in contact with organic solutions of organochloroaluminate complex salts. Langmuir 19, 2344 (2003). https://doi.org/10.1021/la026642c
- A. Kopač Lautar, J. Bitenc, T. Rejec, R. Dominko, J. Filhol et al., Electrolyte reactivity in the double layer in mg batteries: an interface potential-dependent DFT study. J. Am. Chem. Soc. 142, 5146 (2020). https://doi.org/10.1021/jacs.9b12474
- Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466, 203 (1999). https://doi.org/10.1016/S0022-0728(99)00146-1
- Z.M. Liang, C.M. Ban, Strategies to enable reversible magnesium electrochemistry: from electrolytes to artificial solid-electrolyte interphase. Angew. Chem. Int. Ed. 60, 11036 (2020). https://doi.org/10.1002/anie.202006472
- Z. Guo, S. Zhao, T. Li, D. Su, S. Guo et al., Recent Advances in rechargeable magnesium-based batteries for high-efficiency energy storage. Adv. Energy Mater. 10, 1903591 (2020). https://doi.org/10.1002/aenm.201903591
- S. Son, T. Gao, S.P. Harvey, K.X. Steirer, A. Stokes, An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532 (2018). https://doi.org/10.1038/s41557-018-0019-6
- X. Li, T. Gao, F. Han, Z. Ma, X. Fan, Reducing mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater. 8, 1701728 (2018). https://doi.org/10.1002/aenm.201701728
- R. Lv, X. Guan, J. Zhang, Y. Xia, J. Luo, Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase. Natl. Sci. Rev. 7, 333 (2020). https://doi.org/10.1093/nsr/nwz157
- B. Pan, J. Huang, N. Sa, S.M. Brombosz, J.T. Vaughey et al., MgCl2: The key ingredient to improve chloride containing electrolytes for rechargeable magnesium-ion batteries. J. Electrochem. Soc. 163, A1672 (2016). https://doi.org/10.1149/2.0821608jes
- S. Ramalingaiah, D.S. Reddy, M.J. Reddy, E. Laxminarsaiah, U.V.S. Rao, Conductivity and discharge characteristic studies of novel polymer electrolyte based on PEO complexed with Mg(NO)2 salt. Mater. Lett. 29, 285 (1996). https://doi.org/10.1016/S0167-577X(96)00161-9
- A. Bakker, S. Gejji, J. Lindgren, K. Hermansson, M.M. Probst, Contact ion pair formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2PEOn for M = Mg, Ca. Sr and Ba. Polymer 36, 4371 (1995). https://doi.org/10.1016/0032-3861(95)96841-U
- Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithiumion batteries. J. Mater. Chem. A 3, 19218 (2015). https://doi.org/10.1039/c5ta03471j
- L. Li, X. Liu, K. Zhu, J. Tian, X. Liu et al., PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries. J. Solid State Electrochem. 19, 3373 (2015). https://doi.org/10.1007/s10008-015-2961-1
- A. Karmakar, A. Ghosh, A comparison of ion transport in different polyethylene oxide–lithium salt composite electrolytes. J. Appl. Phys. 107, 104113 (2010). https://doi.org/10.1063/1.3428389
- R. Amin, P. Balaya, J. Maier, Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem. Solid-State Lett. 10, A13 (2007). https://doi.org/10.1149/1.2388240
- O. Borodin, G.V. Zhuang, P.N. Ross, K. Xu, Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate. J. Phys. Chem. C 117, 7433 (2013). https://doi.org/10.1021/jp4000494
- J.L. Allen, O. Borodin, D.M. Seo, W.A. Henderson, Combined quantum chemical/Raman spectroscopic analyses of Li+ cation solvation: Cyclic carbonate solvents-ethylene carbonate and propylene carbonate. J. Power Sources 267, 821 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.107
- A. Brodin, P. Jacobsson, Dipolar interaction and molecular ordering in liquid propylene carbonate: Anomalous dielectric susceptibility and Raman non-coincidence effect. J. Mol. Liq. 164, 17 (2011). https://doi.org/10.1016/j.molliq.2011.08.001
- R. Konefał, Z. Morávková, B. Paruzel, V. Patsula, S. Abbrent et al., Eect of PAMAM Dendrimers on interactions and transport of LiTFSI and NaTFSI in propylene carbonate-based electrolytes. Polymer 12, 1595 (2020). https://doi.org/10.3390/polym12071595
- K. Xiao, Z. Liu, Z. Chen, X. Cao, Z. Liu et al., Unraveling the effects of anions in NixAy@CC (A=O, S, P) on Li-sulfur batteries. Mater. Today Nano 13, 100106 (2021). https://doi.org/10.1016/j.mtnano.2020.100106
- L. Fang, C. Wang, L. Huangfu, N. Bahlawane, H. Tian et al., Enabling full conversion reaction with high reversibility to approach theoretical capacity for sodium storage. Adv. Funct. Mater. 29, 1906680 (2019). https://doi.org/10.1002/adfm.201906680
- M. Mao, T. Gao, S. Hou, C. Wang, A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47, 8804 (2018). https://doi.org/10.1039/c8cs00319j
- P. Marzak, M. Kosiahn, J. Yun, A.S. Bandarenka, Intercalation of Mg2+ into electrodeposited Prussian Blue Analogue thin films from aqueous electrolytes. Electrochim. Acta 307, 157 (2019). https://doi.org/10.1016/j.electacta.2019.03.094
- A.L. Lipson, S. Han, S. Kim, B. Pan, N. Sa et al., Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. J. Power Sources 325, 646 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.019
- B. Wang, S. Liu, W. Sun, Y. Tang, H. Pan et al., Intercalation pseudocapacitance boosting ultrafast sodium storage in Prussian blue analogues. Chem. Sus. Chem. 12, 2415 (2019). https://doi.org/10.1002/cssc.201900582
- X. Wang, B. Wang, Y. Tang, B.B. Xu, C. Liang et al., Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode. J. Mater. Chem. A 8, 3222 (2020). https://doi.org/10.1039/C9TA12376H
References
Y. Balali, S. Stegen, Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renew. Sustain. Energy Rev. 135, 110185 (2021). https://doi.org/10.1016/j.rser.2020.110185
J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202003456
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569 (2020). https://doi.org/10.1039/c7cs00863e
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279 (2018). https://doi.org/10.1038/s41560-018-0108-1
X.X. Zeng, Y.T. Xu, Y.X. Yin, X.W. Wu, J. Yue et al., Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Mater. Today Nano 8, 100057 (2019). https://doi.org/10.1016/j.mtnano.2019.100057
X. Zeng, M. Li, D. Abd El Hady, W. Alshitari, A.S. Al Bogami et al., Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900161
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
J. Muldoon, C.B. Bucur, T. Gregory, Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683 (2014). https://doi.org/10.1021/cr500049y
H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour et al., Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013). https://doi.org/10.1039/c3ee40871j
A. Ponrouch, J. Bitenc, R. Dominko, N. Lindahl, P. Johansson et al., Multivalent rechargeable batteries. Energy Storage Mater. 20, 253 (2019). https://doi.org/10.1016/j.ensm.2019.04.012
P. Bonnick, J. Muldoon, A trip to oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 30, 1910510 (2020). https://doi.org/10.1002/adfm.201910510
L.W. Gaddum, H.E. French, The electrolysis of grignard solutions. J. Am. Chem. Soc. 49, 1295 (1927). https://doi.org/10.1021/ja01404a020
T.J. Carter, R. Mohtadi, T.S. Arthur, F. Mizuno, R. Zhang et al., Boron clusters as highly stable magnesium-battery electrolytes. Angew. Chem. Int. Ed. 53, 3173 (2014). https://doi.org/10.1002/anie.201310317
D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar et al., Prototype systems for rechargeable magnesium batteries. Nature 407, 724 (2000). https://doi.org/10.1038/35037553
Z. Zhang, Z. Cui, L. Qiao, J. Guan, H. Xu et al., Novel design concepts of efficient mg-ion electrolytes toward high-performance magnesium–selenium and magnesium–sulfur batteries. Adv. Energy Mater. 7, 1602055 (2017). https://doi.org/10.1002/aenm.201602055
O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks et al., Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J. Electrochem. Soc. 155, A103 (2008). https://doi.org/10.1149/1.2806175
R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3, 27 (2019). https://doi.org/10.1016/j.joule.2018.10.028
M. Zhang, R. Liu, Z. Wang, X. Xing, Y. Liu et al., Electrolyte additive maintains high performance for dendrite-free lithium metal anode. Chin. Chem. Lett. 31, 1217 (2020). https://doi.org/10.1016/j.cclet.2019.07.055
L. Wang, Y. Ye, N. Chen, Y. Huang, L. Li et al., Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28, 1800919 (2018). https://doi.org/10.1002/adfm.201800919
G.H. Wrodnigg, J.O. Besenhard, M. Winter, Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J. Electrochem. Soc. 146, 470 (1999). https://doi.org/10.1149/1.1391630
J.S. Gnanaraj, R.W. Thompson, J.F. DiCarlo, K.M. Abrahamc, The role of carbonate solvents on lithium intercalation into graphite. J. Electrochem. Soc. 154, A185 (2007). https://doi.org/10.1149/1.2424419
L.P. Lossius, F. Emmenegger, Plating of magnesium from organic solvents. Electrochim. Acta 41, 445 (1996). https://doi.org/10.1016/0013-4686(95)00326-6
Y. Gofer, R. Turgeman, H. Cohen, D. Aurbach, XPS investigation of surface chemistry of magnesium electrodes in contact with organic solutions of organochloroaluminate complex salts. Langmuir 19, 2344 (2003). https://doi.org/10.1021/la026642c
A. Kopač Lautar, J. Bitenc, T. Rejec, R. Dominko, J. Filhol et al., Electrolyte reactivity in the double layer in mg batteries: an interface potential-dependent DFT study. J. Am. Chem. Soc. 142, 5146 (2020). https://doi.org/10.1021/jacs.9b12474
Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466, 203 (1999). https://doi.org/10.1016/S0022-0728(99)00146-1
Z.M. Liang, C.M. Ban, Strategies to enable reversible magnesium electrochemistry: from electrolytes to artificial solid-electrolyte interphase. Angew. Chem. Int. Ed. 60, 11036 (2020). https://doi.org/10.1002/anie.202006472
Z. Guo, S. Zhao, T. Li, D. Su, S. Guo et al., Recent Advances in rechargeable magnesium-based batteries for high-efficiency energy storage. Adv. Energy Mater. 10, 1903591 (2020). https://doi.org/10.1002/aenm.201903591
S. Son, T. Gao, S.P. Harvey, K.X. Steirer, A. Stokes, An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532 (2018). https://doi.org/10.1038/s41557-018-0019-6
X. Li, T. Gao, F. Han, Z. Ma, X. Fan, Reducing mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater. 8, 1701728 (2018). https://doi.org/10.1002/aenm.201701728
R. Lv, X. Guan, J. Zhang, Y. Xia, J. Luo, Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase. Natl. Sci. Rev. 7, 333 (2020). https://doi.org/10.1093/nsr/nwz157
B. Pan, J. Huang, N. Sa, S.M. Brombosz, J.T. Vaughey et al., MgCl2: The key ingredient to improve chloride containing electrolytes for rechargeable magnesium-ion batteries. J. Electrochem. Soc. 163, A1672 (2016). https://doi.org/10.1149/2.0821608jes
S. Ramalingaiah, D.S. Reddy, M.J. Reddy, E. Laxminarsaiah, U.V.S. Rao, Conductivity and discharge characteristic studies of novel polymer electrolyte based on PEO complexed with Mg(NO)2 salt. Mater. Lett. 29, 285 (1996). https://doi.org/10.1016/S0167-577X(96)00161-9
A. Bakker, S. Gejji, J. Lindgren, K. Hermansson, M.M. Probst, Contact ion pair formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2PEOn for M = Mg, Ca. Sr and Ba. Polymer 36, 4371 (1995). https://doi.org/10.1016/0032-3861(95)96841-U
Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithiumion batteries. J. Mater. Chem. A 3, 19218 (2015). https://doi.org/10.1039/c5ta03471j
L. Li, X. Liu, K. Zhu, J. Tian, X. Liu et al., PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries. J. Solid State Electrochem. 19, 3373 (2015). https://doi.org/10.1007/s10008-015-2961-1
A. Karmakar, A. Ghosh, A comparison of ion transport in different polyethylene oxide–lithium salt composite electrolytes. J. Appl. Phys. 107, 104113 (2010). https://doi.org/10.1063/1.3428389
R. Amin, P. Balaya, J. Maier, Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem. Solid-State Lett. 10, A13 (2007). https://doi.org/10.1149/1.2388240
O. Borodin, G.V. Zhuang, P.N. Ross, K. Xu, Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate. J. Phys. Chem. C 117, 7433 (2013). https://doi.org/10.1021/jp4000494
J.L. Allen, O. Borodin, D.M. Seo, W.A. Henderson, Combined quantum chemical/Raman spectroscopic analyses of Li+ cation solvation: Cyclic carbonate solvents-ethylene carbonate and propylene carbonate. J. Power Sources 267, 821 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.107
A. Brodin, P. Jacobsson, Dipolar interaction and molecular ordering in liquid propylene carbonate: Anomalous dielectric susceptibility and Raman non-coincidence effect. J. Mol. Liq. 164, 17 (2011). https://doi.org/10.1016/j.molliq.2011.08.001
R. Konefał, Z. Morávková, B. Paruzel, V. Patsula, S. Abbrent et al., Eect of PAMAM Dendrimers on interactions and transport of LiTFSI and NaTFSI in propylene carbonate-based electrolytes. Polymer 12, 1595 (2020). https://doi.org/10.3390/polym12071595
K. Xiao, Z. Liu, Z. Chen, X. Cao, Z. Liu et al., Unraveling the effects of anions in NixAy@CC (A=O, S, P) on Li-sulfur batteries. Mater. Today Nano 13, 100106 (2021). https://doi.org/10.1016/j.mtnano.2020.100106
L. Fang, C. Wang, L. Huangfu, N. Bahlawane, H. Tian et al., Enabling full conversion reaction with high reversibility to approach theoretical capacity for sodium storage. Adv. Funct. Mater. 29, 1906680 (2019). https://doi.org/10.1002/adfm.201906680
M. Mao, T. Gao, S. Hou, C. Wang, A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47, 8804 (2018). https://doi.org/10.1039/c8cs00319j
P. Marzak, M. Kosiahn, J. Yun, A.S. Bandarenka, Intercalation of Mg2+ into electrodeposited Prussian Blue Analogue thin films from aqueous electrolytes. Electrochim. Acta 307, 157 (2019). https://doi.org/10.1016/j.electacta.2019.03.094
A.L. Lipson, S. Han, S. Kim, B. Pan, N. Sa et al., Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. J. Power Sources 325, 646 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.019
B. Wang, S. Liu, W. Sun, Y. Tang, H. Pan et al., Intercalation pseudocapacitance boosting ultrafast sodium storage in Prussian blue analogues. Chem. Sus. Chem. 12, 2415 (2019). https://doi.org/10.1002/cssc.201900582
X. Wang, B. Wang, Y. Tang, B.B. Xu, C. Liang et al., Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode. J. Mater. Chem. A 8, 3222 (2020). https://doi.org/10.1039/C9TA12376H