MXene@c-MWCNT Adhesive Silica Nanofiber Membranes Enhancing Electromagnetic Interference Shielding and Thermal Insulation Performance in Extreme Environments
Corresponding Author: Hu Liu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 195
Abstract
A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m−1 K−1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
Highlights:
1 The SiO2 nanofiber membranes and MXene@c-MWCNT6:4 as one unit layer (SMC1) were bonded together with 5 wt% PVA solution.
2 When the structural unit is increased to three layers, the resulting SMC3 has an average electromagnetic interference SET of 55.4 dB and a low thermal conductivity of 0.062 W m−1 K−1.
3 SMCx exhibit stable electromagnetic interference shielding and excellent thermal insulation even in extreme heat and cold environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Weiss, M.P. Mohamed, T. Gobert, Y. Chouard, N. Singh et al., Advanced materials for future lunar extravehicular activity space suit. Adv. Mater. Technol. 5, 2000028 (2020). https://doi.org/10.1002/admt.202000028
- Z. Han, Y. Song, J. Wang, S. Li, D. Pan et al., Research progress of thermal insulation materials used in spacesuits. ES Energy Environ. 21, 947 (2023). https://doi.org/10.30919/esee947
- J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
- D. An, Y. Chen, R. He, H. Yu, Z. Sun et al., The polymer-based thermal interface materials with improved thermal conductivity, compression resilience, and electromagnetic interference shielding performance by introducing uniformly melamine foam. Adv. Compos. Hybrid Mater. 6, 136 (2023). https://doi.org/10.1007/s42114-023-00709-1
- M. Clausi, M. Zahid, A. Shayganpour, I.S. Bayer, Polyimide foam composites with nano-boron nitride (BN) and silicon carbide (SiC) for latent heat storage. Adv. Compos. Hybrid Mater. 5, 798–812 (2022). https://doi.org/10.1007/s42114-022-00426-1
- A. Riahi, M.B. Shafii, Experimental evaluation of a vapor compression cycle integrated with a phase change material storage tank for peak load shaving. Eng. Sci. 23, 870 (2023). https://doi.org/10.30919/es8d870
- X. Zhao, K. Ruan, H. Qiu, X. Zhong, J. Gu, Fatigue-resistant polyimide aerogels with hierarchical cellular structure for broadband frequency sound absorption and thermal insulation. Adv. Compos. Hybrid Mater. 6, 171 (2023). https://doi.org/10.1007/s42114-023-00747-9
- Z. Li, D. Pan, Z. Han, D.J.P. Kumar, J. Ren et al., Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites. Adv. Compos. Hybrid Mater. 6, 224 (2023). https://doi.org/10.1007/s42114-023-00804-3
- L. Yin, J. Xu, B. Zhang, L. Wang, W. Tao et al., A facile fabrication of highly dispersed CeO2/SiO2 aerogel composites with high adsorption desulfurization performance. Chem. Eng. J. 428, 132581 (2022). https://doi.org/10.1016/j.cej.2021.132581
- S. Karamikamkar, H.E. Naguib, C.B. Park, Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review. Adv. Colloid Interface Sci. 276, 102101 (2020). https://doi.org/10.1016/j.cis.2020.102101
- M. Liu, H. Wu, Y. Wang, J. Ren, D.A. Alshammari et al., Flexible cementite/ferroferric oxide/silicon dioxide/carbon nanofibers composite membrane with low-frequency dispersion weakly negative permittivity. Adv. Compos. Hybrid Mater. 6, 217 (2023). https://doi.org/10.1007/s42114-023-00799-x
- C. Liu, S. Wang, N. Wang, J. Yu, Y.-T. Liu et al., From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano-Micro Lett. 14, 194 (2022). https://doi.org/10.1007/s40820-022-00937-y
- Y. Si, X. Mao, H. Zheng, J. Yu, B. Ding, Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Adv. 5, 6027–6032 (2015). https://doi.org/10.1039/C4RA12271B
- D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai et al., Amorphous silica nanowires: intensive blue light emitters. Appl. Phys. Lett. 73, 3076–3078 (1998). https://doi.org/10.1063/1.122677
- L. Wang, S. Tomura, F. Ohashi, M. Maeda, M. Suzuki et al., Synthesis of single silica nanotubes in the presence of citric acid. J. Mater. Chem. 11, 1465–1468 (2001). https://doi.org/10.1039/B010189N
- J. Niu, J. Sha, Z. Liu, Z. Su, J. Yu et al., Silicon nano-wires fabricated by thermal evaporation of silicon wafer. Phys. E Low Dimension. Syst. Nanostruct. 24, 268–271 (2004). https://doi.org/10.1016/j.physe.2004.04.040
- Z. Zhang, Y. Zhao, Z. Li, L. Zhang, Z. Liu et al., Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanops embedded in via electrospinning for high-performance microwave absorption. Adv. Compos. Hybrid Mater. 5, 513–524 (2022). https://doi.org/10.1007/s42114-021-00350-w
- S. Chanthee, C. Asavatesanupap, D. Sertphon, T. Nakkhong, N. Subjalearndee et al., Electrospinning with natural rubber and Ni doping for carbon dioxide adsorption and supercapacitor applications. Eng. Sci. 27, 975 (2024). https://doi.org/10.30919/es975
- H. Mhetre, Y. Kanse, Y. Chendake, Influence of Electrospinning voltage on the diameter and properties of 1-dimensional zinc oxide nanofiber. ES Mater. Manuf. 20, 838 (2023). https://doi.org/10.30919/esmm5f838
- T. Sirimekanont, P. Supaphol, K. Sombatmankhong, Titanium (IV) oxide composite hollow nanofibres with silver oxide outgrowth by combined sol–gel and electrospinning techniques and their potential applications in energy and environment. Adv. Compos. Hybrid Mater. 6, 115 (2023). https://doi.org/10.1007/s42114-023-00690-9
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- A. Udayakumar, P. Dhandapani, S. Ramasamy, S. Angaiah, Layered double hydroxide (LDH)–MXene nanocomposite for electrocatalytic water splitting: current status and perspective. ES Energy Environ. 24, 901 (2023). https://doi.org/10.30919/esee901
- S. Zheng, N. Wu, Y. Liu, Q. Wu, Y. Yang et al., Multifunctional flexible, crosslinked composites composed of trashed MXene sediment with high electromagnetic interference shielding performance. Adv. Compos. Hybrid Mater. 6, 161 (2023). https://doi.org/10.1007/s42114-023-00741-1
- B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33, 2307301 (2023). https://doi.org/10.1002/adfm.202307301
- N.M. Soudagar, V.K. Pandit, V.M. Nikale, S.G. Thube, S.S. Joshi et al., Influence of surfactant on the supercapacitive behavior of polyaniline-carbon nanotube composite thin films. ES Gen. 2, 1018 (2023). https://doi.org/10.30919/esg1018
- S.S. Wagh, D.B. Salunkhe, S.P. Patole, S. Jadkar, R.S. Patil et al., Zinc oxide decorated carbon nanotubes composites for photocatalysis and antifungal application. ES Energy Environ. 21, 945 (2023). https://doi.org/10.30919/esee945
- A. Huang, Y. Guo, Y. Zhu, T. Chen, Z. Yang et al., Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanops electrospun membrane strain sensors by multi-conductive network. Adv. Compos. Hybrid Mater. 6, 101 (2023). https://doi.org/10.1007/s42114-023-00684-7
- C. Pramanik, J.R. Gissinger, S. Kumar, H. Heinz, Carbon nanotube dispersion in solvents and polymer solutions: mechanisms, assembly, and preferences. ACS Nano 11, 12805–12816 (2017). https://doi.org/10.1021/acsnano.7b07684
- T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang et al., Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv. Compos. Hybrid Mater. 6, 108 (2023). https://doi.org/10.1007/s42114-023-00675-8
- B. Zhou, Y. Li, Z. Li, J. Ma, K. Zhou et al., Fire/heat-resistant, anti-corrosion and folding Ti2C3Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. J. Mater. Chem. C 9, 10425–10434 (2021). https://doi.org/10.1039/d1tc00289a
- Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4, 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
- H. Zhan, Y.W. Chen, Q.Q. Shi, Y. Zhang, R.W. Mo et al., Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength. Carbon 186, 205–214 (2022). https://doi.org/10.1016/j.carbon.2021.09.069
- D. Kong, Z.M. El-Bahy, H. Algadi, T. Li, S.M. El-Bahy et al., Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5, 1976–1987 (2022). https://doi.org/10.1007/s42114-022-00531-1
- X. Guan, Q. Zhang, C. Dong, R. Zhang, M. Peng et al., A first-principles study of Janus monolayer MXY (M = Mo, W; X, Y = S, Se, Te)/SiO2 van der Waals heterojunctions for integrated optical fibers. Adv. Compos. Hybrid Mater. 5, 3232–3244 (2022). https://doi.org/10.1007/s42114-022-00557-5
- Y. Yu, Y. Huang, L. Li, L. Huang, S. Zhang, Silica ceramic nanofiber membrane with ultra-softness and high temperature insulation. J. Mater. Sci. 57, 4080–4091 (2022). https://doi.org/10.1007/s10853-022-06913-6
- S. Zhang, B. Cheng, Z. Jia, Z. Zhao, X. Jin et al., The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 1658–1698 (2022). https://doi.org/10.1007/s42114-022-00514-2
- D.-Q. Zhang, T.-T. Liu, J.-C. Shu, S. Liang, X.-X. Wang et al., Self-assembly construction of WS2-rGO architecture with green EMI shielding. ACS Appl. Mater. Interfaces 11, 26807–26816 (2019). https://doi.org/10.1021/acsami.9b06509
- R.B.J. Chandra, B. Shivamurthy, S.B.B. Gowda, M.S. Kumar, Flexible linear low-density polyethylene laminated aluminum and nickel foil composite tapes for electromagnetic interference shielding. Eng. Sci. 21, 777 (2023). https://doi.org/10.30919/es8d777
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
- T. Gao, Y. Ma, L. Ji, Y. Zheng, S. Yan et al., Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2328–2338 (2022). https://doi.org/10.1007/s42114-022-00420-7
- J.-L. Shie, Y.-H. Chen, C.-Y. Chang, J.-P. Lin, D.-J. Lee et al., Thermal pyrolysis of poly(vinyl alcohol) and its major products. Energy Fuels 16, 109–118 (2002). https://doi.org/10.1021/ef010082s
- Z. Zhang, J. Liu, F. Wang, J. Kong, X. Wang, Fabrication of bulk macroporous zirconia by combining sol–gel with calcination processes. Ceram. Int. 37(7), 2549–2553 (2011). https://doi.org/10.1016/j.ceramint.2011.03.054
- Z. Wu, X. Wang, S.H.K. Annamareddy, S. Gao, Q. Xu et al., Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@multi-walled carbon nanotubes and boron nitride. ES Mater. Manuf. 22, 847 (2023). https://doi.org/10.30919/esmm5f847
- C. Lin, Y. Zhang, S. Zhang, X.X. Wang, J. Yang et al., Facile fabrication of a novel g-C3N4/CdS composites catalysts with enhanced photocatalytic performances. ES Energy Environ. 20, 860 (2023). https://doi.org/10.30919/esee8c860
- H. Algadi, T. Das, J. Ren, H. Li, High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen doped graphene quantum dots (NH2 GQDs)/all-inorganic (CsPbBr3) perovskite nanocrystals triple junction. Adv. Compos. Hybrid Mater. 6, 56 (2023). https://doi.org/10.1007/s42114-023-00634-3
- Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang et al., High-frequency FTIR absorption of SiO2/Si nanowires. Chem. Phys. Lett. 378, 299–304 (2003). https://doi.org/10.1016/j.cplett.2003.07.015
- V.S. Sivasankarapillai, T.S.K. Sharma, K.-Y. Hwa, S.M. Wabaidur, S. Angaiah et al., MXene based sensing materials: current status and future perspectives. ES Energy Environ. 15, 4–14 (2022). https://doi.org/10.30919/esee8c618
- N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan et al., Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35, e2207969 (2023). https://doi.org/10.1002/adma.202207969
- J. Wang, H. Kang, H. Ma, Y. Liu, Z. Xie et al., Super-fast fabrication of MXene film through a combination of ion induced gelation and vacuum-assisted filtration. Eng. Sci. 15, 57–66 (2021). https://doi.org/10.30919/es8d446
- Y. Cao, M. Weng, M.H.H. Mahmoud, A.Y. Elnaggar, L. Zhang et al., Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv. Compos. Hybrid Mater. 5, 1253–1267 (2022). https://doi.org/10.1007/s42114-022-00504-4
- Y. Wei, W. Luo, Z. Zhuang, B. Dai, J. Ding et al., Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid Mater. 4, 1082–1091 (2021). https://doi.org/10.1007/s42114-021-00323-z
- F. Jia, Z. Lu, S. Li, J. Zhang, Y. Liu et al., Asymmetric c-MWCNT/AgNWs/PANFs hybrid film constructed by tailoring conductive-blocks strategy for efficient EMI shielding. Carbon 217, 118600 (2024). https://doi.org/10.1016/j.carbon.2023.118600
- B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma et al., Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 704–754 (2022). https://doi.org/10.1007/s42114-022-00510-6
- S. Kowshik, U.S. Rao, S. Sharma, P. Hiremath, R. Prasad K.S., et al., Mechanical properties of eggshell filled non-post-cured and post-cured GFRP composites: a comparative study. ES Mater. Manuf. 22, 1043 (2023). https://doi.org/10.30919/esmm1043
- W. Zou, X. Zheng, X. Hu, J. Huang, G. Wang et al., Recent Advances in Injection Molding of Carbon Fiber Reinforced Thermoplastic Polymer Composites: A Review. ES. Gen. 1, 938 (2023). https://doi.org/10.30919/esg938
- V. Managuli, Y.S. Bothra, S. Sujith Kumar, P. Gaur, P.L. Chandracharya et al., Overview of mechanical characterization of bone using nanoindentation technique and its applications. Eng. Sci. 22, 820 (2023). https://doi.org/10.30919/es8d820
- B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33, 2213357 (2023). https://doi.org/10.1002/adfm.202213357
- H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
- D. Zhang, S. Liang, J. Chai, T. Liu, X. Yang et al., Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 134, 77–82 (2019). https://doi.org/10.1016/j.jpcs.2019.05.041
- P. Wang, L. Yang, J. Ling, J. Song, T. Song et al., Frontal ring-opening metathesis polymerized polydicyclopentadiene carbon nanotube/graphene aerogel composites with enhanced electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2066–2077 (2022). https://doi.org/10.1007/s42114-022-00543-x
- J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32, 2200123 (2022). https://doi.org/10.1002/adfm.202200123
- D. Zhang, H. Wang, J. Cheng, C. Han, X. Yang et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 528, 147052 (2020). https://doi.org/10.1016/j.apsusc.2020.147052
- C. Xiong, Q. Xiong, M. Zhao, B. Wang, L. Dai et al., Recent advances in non-biomass and biomass-based electromagnetic shielding materials. Adv. Compos. Hybrid Mater. 6, 205 (2023). https://doi.org/10.1007/s42114-023-00774-6
- H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S.B. Lee et al., Absorption-Dominant mmWave EMI shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nano-Micro Lett. 15, 76 (2023). https://doi.org/10.1007/s40820-023-01058-w
- H. Zhang, T. Liu, Z. Huang, J. Cheng, H. Wang et al., Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 8, 327–334 (2022). https://doi.org/10.1016/j.jmat.2021.09.003
- M. Seol, U. Hwang, J. Kim, D. Eom, I.-K. Park et al., Solution printable multifunctional polymer-based composites for smart electromagnetic interference shielding with tunable frequency and on–off selectivities. Adv. Compos. Hybrid Mater. 6, 46 (2023). https://doi.org/10.1007/s42114-022-00609-w
- K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62, e202309010 (2023). https://doi.org/10.1002/anie.202309010
- T. Zhang, J. Xu, T. Luo, Extremely high thermal conductivity of aligned polyacetylene predicted using first-principles-informed united-atom force field. ES Energy Environ. 16, 67–73 (2022). https://doi.org/10.30919/esee8c719
- Q. Xu, Z. Wu, W. Zhao, M. He, N. Guo et al., Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview. Adv. Compos. Hybrid Mater. 6, 203 (2023). https://doi.org/10.1007/s42114-023-00783-5
- J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32, 2201129 (2022). https://doi.org/10.1002/adfm.202201129
- D. Skoda, J. Vilcakova, R.S. Yadav, B. Hanulikova, T. Capkova et al., Nickel nanop–decorated reduced graphene oxide via one-step microwave-assisted synthesis and its lightweight and flexible composite with Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene polymer for electromagnetic wave shielding application. Adv. Compos. Hybrid Mater. 6, 113 (2023). https://doi.org/10.1007/s42114-023-00692-7
- X. Zhang, Q. Tian, B. Wang, N. Wu, C. Han et al., Flexible porous SiZrOC ultrafine fibers for high-temperature thermal insulation. Mater. Lett. 299, 130131 (2021). https://doi.org/10.1016/j.matlet.2021.130131
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
References
P. Weiss, M.P. Mohamed, T. Gobert, Y. Chouard, N. Singh et al., Advanced materials for future lunar extravehicular activity space suit. Adv. Mater. Technol. 5, 2000028 (2020). https://doi.org/10.1002/admt.202000028
Z. Han, Y. Song, J. Wang, S. Li, D. Pan et al., Research progress of thermal insulation materials used in spacesuits. ES Energy Environ. 21, 947 (2023). https://doi.org/10.30919/esee947
J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
D. An, Y. Chen, R. He, H. Yu, Z. Sun et al., The polymer-based thermal interface materials with improved thermal conductivity, compression resilience, and electromagnetic interference shielding performance by introducing uniformly melamine foam. Adv. Compos. Hybrid Mater. 6, 136 (2023). https://doi.org/10.1007/s42114-023-00709-1
M. Clausi, M. Zahid, A. Shayganpour, I.S. Bayer, Polyimide foam composites with nano-boron nitride (BN) and silicon carbide (SiC) for latent heat storage. Adv. Compos. Hybrid Mater. 5, 798–812 (2022). https://doi.org/10.1007/s42114-022-00426-1
A. Riahi, M.B. Shafii, Experimental evaluation of a vapor compression cycle integrated with a phase change material storage tank for peak load shaving. Eng. Sci. 23, 870 (2023). https://doi.org/10.30919/es8d870
X. Zhao, K. Ruan, H. Qiu, X. Zhong, J. Gu, Fatigue-resistant polyimide aerogels with hierarchical cellular structure for broadband frequency sound absorption and thermal insulation. Adv. Compos. Hybrid Mater. 6, 171 (2023). https://doi.org/10.1007/s42114-023-00747-9
Z. Li, D. Pan, Z. Han, D.J.P. Kumar, J. Ren et al., Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites. Adv. Compos. Hybrid Mater. 6, 224 (2023). https://doi.org/10.1007/s42114-023-00804-3
L. Yin, J. Xu, B. Zhang, L. Wang, W. Tao et al., A facile fabrication of highly dispersed CeO2/SiO2 aerogel composites with high adsorption desulfurization performance. Chem. Eng. J. 428, 132581 (2022). https://doi.org/10.1016/j.cej.2021.132581
S. Karamikamkar, H.E. Naguib, C.B. Park, Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review. Adv. Colloid Interface Sci. 276, 102101 (2020). https://doi.org/10.1016/j.cis.2020.102101
M. Liu, H. Wu, Y. Wang, J. Ren, D.A. Alshammari et al., Flexible cementite/ferroferric oxide/silicon dioxide/carbon nanofibers composite membrane with low-frequency dispersion weakly negative permittivity. Adv. Compos. Hybrid Mater. 6, 217 (2023). https://doi.org/10.1007/s42114-023-00799-x
C. Liu, S. Wang, N. Wang, J. Yu, Y.-T. Liu et al., From 1D nanofibers to 3D nanofibrous aerogels: a marvellous evolution of electrospun SiO2 nanofibers for emerging applications. Nano-Micro Lett. 14, 194 (2022). https://doi.org/10.1007/s40820-022-00937-y
Y. Si, X. Mao, H. Zheng, J. Yu, B. Ding, Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Adv. 5, 6027–6032 (2015). https://doi.org/10.1039/C4RA12271B
D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai et al., Amorphous silica nanowires: intensive blue light emitters. Appl. Phys. Lett. 73, 3076–3078 (1998). https://doi.org/10.1063/1.122677
L. Wang, S. Tomura, F. Ohashi, M. Maeda, M. Suzuki et al., Synthesis of single silica nanotubes in the presence of citric acid. J. Mater. Chem. 11, 1465–1468 (2001). https://doi.org/10.1039/B010189N
J. Niu, J. Sha, Z. Liu, Z. Su, J. Yu et al., Silicon nano-wires fabricated by thermal evaporation of silicon wafer. Phys. E Low Dimension. Syst. Nanostruct. 24, 268–271 (2004). https://doi.org/10.1016/j.physe.2004.04.040
Z. Zhang, Y. Zhao, Z. Li, L. Zhang, Z. Liu et al., Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanops embedded in via electrospinning for high-performance microwave absorption. Adv. Compos. Hybrid Mater. 5, 513–524 (2022). https://doi.org/10.1007/s42114-021-00350-w
S. Chanthee, C. Asavatesanupap, D. Sertphon, T. Nakkhong, N. Subjalearndee et al., Electrospinning with natural rubber and Ni doping for carbon dioxide adsorption and supercapacitor applications. Eng. Sci. 27, 975 (2024). https://doi.org/10.30919/es975
H. Mhetre, Y. Kanse, Y. Chendake, Influence of Electrospinning voltage on the diameter and properties of 1-dimensional zinc oxide nanofiber. ES Mater. Manuf. 20, 838 (2023). https://doi.org/10.30919/esmm5f838
T. Sirimekanont, P. Supaphol, K. Sombatmankhong, Titanium (IV) oxide composite hollow nanofibres with silver oxide outgrowth by combined sol–gel and electrospinning techniques and their potential applications in energy and environment. Adv. Compos. Hybrid Mater. 6, 115 (2023). https://doi.org/10.1007/s42114-023-00690-9
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
A. Udayakumar, P. Dhandapani, S. Ramasamy, S. Angaiah, Layered double hydroxide (LDH)–MXene nanocomposite for electrocatalytic water splitting: current status and perspective. ES Energy Environ. 24, 901 (2023). https://doi.org/10.30919/esee901
S. Zheng, N. Wu, Y. Liu, Q. Wu, Y. Yang et al., Multifunctional flexible, crosslinked composites composed of trashed MXene sediment with high electromagnetic interference shielding performance. Adv. Compos. Hybrid Mater. 6, 161 (2023). https://doi.org/10.1007/s42114-023-00741-1
B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33, 2307301 (2023). https://doi.org/10.1002/adfm.202307301
N.M. Soudagar, V.K. Pandit, V.M. Nikale, S.G. Thube, S.S. Joshi et al., Influence of surfactant on the supercapacitive behavior of polyaniline-carbon nanotube composite thin films. ES Gen. 2, 1018 (2023). https://doi.org/10.30919/esg1018
S.S. Wagh, D.B. Salunkhe, S.P. Patole, S. Jadkar, R.S. Patil et al., Zinc oxide decorated carbon nanotubes composites for photocatalysis and antifungal application. ES Energy Environ. 21, 945 (2023). https://doi.org/10.30919/esee945
A. Huang, Y. Guo, Y. Zhu, T. Chen, Z. Yang et al., Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanops electrospun membrane strain sensors by multi-conductive network. Adv. Compos. Hybrid Mater. 6, 101 (2023). https://doi.org/10.1007/s42114-023-00684-7
C. Pramanik, J.R. Gissinger, S. Kumar, H. Heinz, Carbon nanotube dispersion in solvents and polymer solutions: mechanisms, assembly, and preferences. ACS Nano 11, 12805–12816 (2017). https://doi.org/10.1021/acsnano.7b07684
T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang et al., Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv. Compos. Hybrid Mater. 6, 108 (2023). https://doi.org/10.1007/s42114-023-00675-8
B. Zhou, Y. Li, Z. Li, J. Ma, K. Zhou et al., Fire/heat-resistant, anti-corrosion and folding Ti2C3Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. J. Mater. Chem. C 9, 10425–10434 (2021). https://doi.org/10.1039/d1tc00289a
Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4, 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
H. Zhan, Y.W. Chen, Q.Q. Shi, Y. Zhang, R.W. Mo et al., Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength. Carbon 186, 205–214 (2022). https://doi.org/10.1016/j.carbon.2021.09.069
D. Kong, Z.M. El-Bahy, H. Algadi, T. Li, S.M. El-Bahy et al., Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5, 1976–1987 (2022). https://doi.org/10.1007/s42114-022-00531-1
X. Guan, Q. Zhang, C. Dong, R. Zhang, M. Peng et al., A first-principles study of Janus monolayer MXY (M = Mo, W; X, Y = S, Se, Te)/SiO2 van der Waals heterojunctions for integrated optical fibers. Adv. Compos. Hybrid Mater. 5, 3232–3244 (2022). https://doi.org/10.1007/s42114-022-00557-5
Y. Yu, Y. Huang, L. Li, L. Huang, S. Zhang, Silica ceramic nanofiber membrane with ultra-softness and high temperature insulation. J. Mater. Sci. 57, 4080–4091 (2022). https://doi.org/10.1007/s10853-022-06913-6
S. Zhang, B. Cheng, Z. Jia, Z. Zhao, X. Jin et al., The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 1658–1698 (2022). https://doi.org/10.1007/s42114-022-00514-2
D.-Q. Zhang, T.-T. Liu, J.-C. Shu, S. Liang, X.-X. Wang et al., Self-assembly construction of WS2-rGO architecture with green EMI shielding. ACS Appl. Mater. Interfaces 11, 26807–26816 (2019). https://doi.org/10.1021/acsami.9b06509
R.B.J. Chandra, B. Shivamurthy, S.B.B. Gowda, M.S. Kumar, Flexible linear low-density polyethylene laminated aluminum and nickel foil composite tapes for electromagnetic interference shielding. Eng. Sci. 21, 777 (2023). https://doi.org/10.30919/es8d777
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
T. Gao, Y. Ma, L. Ji, Y. Zheng, S. Yan et al., Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2328–2338 (2022). https://doi.org/10.1007/s42114-022-00420-7
J.-L. Shie, Y.-H. Chen, C.-Y. Chang, J.-P. Lin, D.-J. Lee et al., Thermal pyrolysis of poly(vinyl alcohol) and its major products. Energy Fuels 16, 109–118 (2002). https://doi.org/10.1021/ef010082s
Z. Zhang, J. Liu, F. Wang, J. Kong, X. Wang, Fabrication of bulk macroporous zirconia by combining sol–gel with calcination processes. Ceram. Int. 37(7), 2549–2553 (2011). https://doi.org/10.1016/j.ceramint.2011.03.054
Z. Wu, X. Wang, S.H.K. Annamareddy, S. Gao, Q. Xu et al., Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@multi-walled carbon nanotubes and boron nitride. ES Mater. Manuf. 22, 847 (2023). https://doi.org/10.30919/esmm5f847
C. Lin, Y. Zhang, S. Zhang, X.X. Wang, J. Yang et al., Facile fabrication of a novel g-C3N4/CdS composites catalysts with enhanced photocatalytic performances. ES Energy Environ. 20, 860 (2023). https://doi.org/10.30919/esee8c860
H. Algadi, T. Das, J. Ren, H. Li, High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen doped graphene quantum dots (NH2 GQDs)/all-inorganic (CsPbBr3) perovskite nanocrystals triple junction. Adv. Compos. Hybrid Mater. 6, 56 (2023). https://doi.org/10.1007/s42114-023-00634-3
Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang et al., High-frequency FTIR absorption of SiO2/Si nanowires. Chem. Phys. Lett. 378, 299–304 (2003). https://doi.org/10.1016/j.cplett.2003.07.015
V.S. Sivasankarapillai, T.S.K. Sharma, K.-Y. Hwa, S.M. Wabaidur, S. Angaiah et al., MXene based sensing materials: current status and future perspectives. ES Energy Environ. 15, 4–14 (2022). https://doi.org/10.30919/esee8c618
N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan et al., Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35, e2207969 (2023). https://doi.org/10.1002/adma.202207969
J. Wang, H. Kang, H. Ma, Y. Liu, Z. Xie et al., Super-fast fabrication of MXene film through a combination of ion induced gelation and vacuum-assisted filtration. Eng. Sci. 15, 57–66 (2021). https://doi.org/10.30919/es8d446
Y. Cao, M. Weng, M.H.H. Mahmoud, A.Y. Elnaggar, L. Zhang et al., Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv. Compos. Hybrid Mater. 5, 1253–1267 (2022). https://doi.org/10.1007/s42114-022-00504-4
Y. Wei, W. Luo, Z. Zhuang, B. Dai, J. Ding et al., Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid Mater. 4, 1082–1091 (2021). https://doi.org/10.1007/s42114-021-00323-z
F. Jia, Z. Lu, S. Li, J. Zhang, Y. Liu et al., Asymmetric c-MWCNT/AgNWs/PANFs hybrid film constructed by tailoring conductive-blocks strategy for efficient EMI shielding. Carbon 217, 118600 (2024). https://doi.org/10.1016/j.carbon.2023.118600
B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma et al., Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 704–754 (2022). https://doi.org/10.1007/s42114-022-00510-6
S. Kowshik, U.S. Rao, S. Sharma, P. Hiremath, R. Prasad K.S., et al., Mechanical properties of eggshell filled non-post-cured and post-cured GFRP composites: a comparative study. ES Mater. Manuf. 22, 1043 (2023). https://doi.org/10.30919/esmm1043
W. Zou, X. Zheng, X. Hu, J. Huang, G. Wang et al., Recent Advances in Injection Molding of Carbon Fiber Reinforced Thermoplastic Polymer Composites: A Review. ES. Gen. 1, 938 (2023). https://doi.org/10.30919/esg938
V. Managuli, Y.S. Bothra, S. Sujith Kumar, P. Gaur, P.L. Chandracharya et al., Overview of mechanical characterization of bone using nanoindentation technique and its applications. Eng. Sci. 22, 820 (2023). https://doi.org/10.30919/es8d820
B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33, 2213357 (2023). https://doi.org/10.1002/adfm.202213357
H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
D. Zhang, S. Liang, J. Chai, T. Liu, X. Yang et al., Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 134, 77–82 (2019). https://doi.org/10.1016/j.jpcs.2019.05.041
P. Wang, L. Yang, J. Ling, J. Song, T. Song et al., Frontal ring-opening metathesis polymerized polydicyclopentadiene carbon nanotube/graphene aerogel composites with enhanced electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2066–2077 (2022). https://doi.org/10.1007/s42114-022-00543-x
J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32, 2200123 (2022). https://doi.org/10.1002/adfm.202200123
D. Zhang, H. Wang, J. Cheng, C. Han, X. Yang et al., Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl. Surf. Sci. 528, 147052 (2020). https://doi.org/10.1016/j.apsusc.2020.147052
C. Xiong, Q. Xiong, M. Zhao, B. Wang, L. Dai et al., Recent advances in non-biomass and biomass-based electromagnetic shielding materials. Adv. Compos. Hybrid Mater. 6, 205 (2023). https://doi.org/10.1007/s42114-023-00774-6
H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S.B. Lee et al., Absorption-Dominant mmWave EMI shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nano-Micro Lett. 15, 76 (2023). https://doi.org/10.1007/s40820-023-01058-w
H. Zhang, T. Liu, Z. Huang, J. Cheng, H. Wang et al., Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 8, 327–334 (2022). https://doi.org/10.1016/j.jmat.2021.09.003
M. Seol, U. Hwang, J. Kim, D. Eom, I.-K. Park et al., Solution printable multifunctional polymer-based composites for smart electromagnetic interference shielding with tunable frequency and on–off selectivities. Adv. Compos. Hybrid Mater. 6, 46 (2023). https://doi.org/10.1007/s42114-022-00609-w
K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62, e202309010 (2023). https://doi.org/10.1002/anie.202309010
T. Zhang, J. Xu, T. Luo, Extremely high thermal conductivity of aligned polyacetylene predicted using first-principles-informed united-atom force field. ES Energy Environ. 16, 67–73 (2022). https://doi.org/10.30919/esee8c719
Q. Xu, Z. Wu, W. Zhao, M. He, N. Guo et al., Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview. Adv. Compos. Hybrid Mater. 6, 203 (2023). https://doi.org/10.1007/s42114-023-00783-5
J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32, 2201129 (2022). https://doi.org/10.1002/adfm.202201129
D. Skoda, J. Vilcakova, R.S. Yadav, B. Hanulikova, T. Capkova et al., Nickel nanop–decorated reduced graphene oxide via one-step microwave-assisted synthesis and its lightweight and flexible composite with Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene polymer for electromagnetic wave shielding application. Adv. Compos. Hybrid Mater. 6, 113 (2023). https://doi.org/10.1007/s42114-023-00692-7
X. Zhang, Q. Tian, B. Wang, N. Wu, C. Han et al., Flexible porous SiZrOC ultrafine fibers for high-temperature thermal insulation. Mater. Lett. 299, 130131 (2021). https://doi.org/10.1016/j.matlet.2021.130131
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544