Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption
Corresponding Author: Qingwen Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 7
Abstract
In the present paper, a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance. The inorganic–organic competitive coating strategy was employed, which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process. As a result, Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell. The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability, which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment. In addition, this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber. The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials. This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications.
Highlights:
1 Microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.
2 Outstanding reflection loss value (−62.7 dB), broadband wave absorption (6.4 dB with only 2.1 mm thickness) in combination with flexible adjustment abilities were acquired, which is superior to other relative graded distribution structures.
3 This strategy initiates a new method for designing and controlling wave absorber with excellent impedance matching property in practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
- G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116(16), 9196–9201 (2012). https://doi.org/10.1021/jp300050u
- T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She et al., Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 561 (2014). https://doi.org/10.1038/srep05619
- R. Shu, Y. Wu, Z. Li, J. Zhang, Z. Wan et al., Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 184, 107839 (2019). https://doi.org/10.1016/j.compscitech.2019.107839
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8(8), 2004640 (2021). https://doi.org/10.1002/advs.202004640
- P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
- B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core-shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
- C. Cui, R. Guo, E. Ren, H. Xiao, M. Zhou et al., MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 405, 126626 (2021). https://doi.org/10.1016/j.cej.2020.126626
- C. Cui, W. Bai, S. Jiang, W. Wang, E. Ren et al., FeNi LDH/loofah sponge-derived magnetic FeNi alloy nanosheet array/porous carbon hybrids with efficient electromagnetic wave absorption. Ind. Eng. Chem. Res. 61(28), 10078–10090 (2022). https://doi.org/10.2021/acs.iecr.2c01051
- X. Zhang, Y. Shi, J. Xu, Q. Ouyang, X. Zhang et al., Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 14, 27 (2022). https://doi.org/10.1007/s40820-021-00773-6
- F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Heterointerface engineering of β-chitin/carbon nano-onions/Ni–p composites with boosted Maxwell-Wagner-Sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14, 85 (2022). https://doi.org/10.1007/s40820-022-00804-w
- Z. Yang, Y. Ma, S. Jia, C. Zhang, P. Li et al., 3D-printed flexible phase-change nonwoven fabrics toward multifunctional clothing. ACS Appl. Mater. Interfaces 14(5), 7283–7291 (2022). https://doi.org/10.1021/acsami.1c21778
- X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
- X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
- I. Abdalla, A. Elhassan, J. Yu, Z. Li, B. Ding, A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon 157, 703–713 (2020). https://doi.org/10.1016/j.carbon.2019.11.004
- L. Wang, X. Yu, M. Huang, W. You, Q. Zeng et al., Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 172, 516–528 (2021). https://doi.org/10.1016/j.carbon.2020.09.050
- Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202204591
- M. Kamkar, A. Ghaffarkhah, R. Ajdary, Y. Lu, F. Ahmadijokani et al., Structured ultra-flyweight aerogels by interfacial complexation: self-assembly enabling multiscale designs. Small 18(20), 2200220 (2022). https://doi.org/10.1002/smll.202200220
- X. Feng, M. Pu, F. Zhang, R. Pan, S. Wang et al., Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv. Funct. Mater. 32(36), 2205547 (2022). https://doi.org/10.1002/adfm.202205547
- A. Sheng, W. Ren, Y. Yang, D.X. Yan, H. Duan et al., Multilayer wpu conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
- A. Shah, A. Ding, Y. Wang, L. Zhang, D. Wang et al., Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of fe nanops in epoxy resin composites. Carbon 96, 987–997 (2016). https://doi.org/10.1016/j.carbon.2015.10.047
- Y. Xu, Y. Yang, D.X. Yan, H. Duan, G. Zhao et al., Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater Interfaces 10(22), 19143–19152 (2018). https://doi.org/10.1021/acsami.8b05129
- K. Stalder, R. Vidmar, D. Eckstrom, Observations of strong microwave absorption in collisional plasmas with gradual density gradients. J. Appl. Phys. 72(11), 5089–5094 (1992). https://doi.org/10.1063/1.352038
- D. Smithe, P. Colestock, T. Kammash, R. Kashuba, Effect of parallel magnetic field gradients on absorption and mode conversion in the ion-cyclotron range of frequencies. Phys. Rev. Lett. 60(9), 801 (1988). https://doi.org/10.1103/PhysRevLett.60.801
- Y. Xia, T. Zhao, X. Zhu, Y. Zhao, H. He et al., Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery. Nat. Commun. 12, 2973 (2021). https://doi.org/10.1038/s41467-021-23150-8
- Q. Liu, Q. Cao, X. Zhao, H. Bi, C. Wang et al., Insights into size-dominant magnetic microwave absorption properties of coni microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7(7), 4233–4240 (2015). https://doi.org/10.1021/am508527s
- J. Zhou, J. He, G. Li, T. Wang, D. Sun et al., Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. J. Phys. Chem. C 114(17), 7611–7617 (2010). https://doi.org/10.1021/jp911030n
- H. Fu, S. Ma, P. Zhao, S. Xu, S. Zhan, Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: structure dependence and mechanism. Chem. Eng. J. 360, 157–170 (2019). https://doi.org/10.1016/j.cej.2018.11.207
- M. Arruebo, R. Fernandez-Pacheco, S. Irusta, J. Arbiol, M.R. Ibarra et al., Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation. Nanotechnology 17(16), 4057 (2006). https://doi.org/10.1088/0957-4484/17/16/011
- B. Ballesteros, G. Tobias, L. Shao, E. Pellicer, J. Nogués et al., Steam purification for the removal of graphitic shells coating catalytic ps and the shortening of single-walled carbon nanotubes. Small 4(9), 1501–1506 (2008). https://doi.org/10.1002/smll.200701283
- K. Laszlo, E. Tombacz, K. Josepovits, Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39(8), 1217–1228 (2001). https://doi.org/10.1016/S0008-6223(00)00245-1
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- H. Zhao, J.Z.Y. Seow, Y. Cheng, Z.J. Xu, G. Ji, Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption. Ceram. Int. 46(10), 15447–15455 (2020). https://doi.org/10.1016/j.ceramint.2020.03.089
- J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, Small magnetic nanops decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. 4(29), 7130–7140 (2016). https://doi.org/10.1039/C6TC02020H
- J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F− regulation engineering. Adv. Funct. Mater. 32(13), 2110496 (2022). https://doi.org/10.1002/adfm.202110496
- C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), 98–120 (2012). https://doi.org/10.1002/adma.201200674
- Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371
- S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen et al., Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 11(1), 530–541 (2018). https://doi.org/10.1007/s12274-017-1664-6
- M. Chen, Y. Zhu, Y. Pan, H. Kou, H. Xu et al., Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater. Des. 32(5), 3013–3016 (2011). https://doi.org/10.1016/j.matdes.2010.12.043
- B. Ji, S. Fan, S. Kou, X. Xia, J. Deng et al., Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2Tx MXene/polymer films. Carbon 181, 130–142 (2021). https://doi.org/10.1016/j.carbon.2021.05.018
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- C. Jin, Z. Wu, R. Zhang, X. Qian, H. Xu et al., 1D electromagnetic-gradient hierarchical carbon microtube via coaxial electrospinning design for enhanced microwave absorption. ACS Appl. Mater. Interfaces 13(13), 15939–15949 (2021). https://doi.org/10.1021/acsami.1c03129
- X.P. Li, Z. Deng, Y. Li, H.B. Zhang, S. Zhao et al., Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption. Carbon 147, 172–181 (2019). https://doi.org/10.1016/j.carbon.2019.02.073
- C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16(30), 2001686 (2020). https://doi.org/10.1002/smll.202001686
- M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987
- X. Sun, J. He, G. Li, J. Tang, T. Wang et al., Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1(4), 765–777 (2013). https://doi.org/10.1039/C2TC00159D
- J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm.202105018
- N. Zhou, Q. An, Z. Xiao, S. Zhai, Z. Shi, Solvothermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance. RSC Adv. 7(71), 45156–45169 (2017). https://doi.org/10.1039/C7RA06751H
- L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131
References
Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J. Phys. Chem. C 116(16), 9196–9201 (2012). https://doi.org/10.1021/jp300050u
T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She et al., Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 561 (2014). https://doi.org/10.1038/srep05619
R. Shu, Y. Wu, Z. Li, J. Zhang, Z. Wan et al., Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 184, 107839 (2019). https://doi.org/10.1016/j.compscitech.2019.107839
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8(8), 2004640 (2021). https://doi.org/10.1002/advs.202004640
P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236
B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core-shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
C. Cui, R. Guo, E. Ren, H. Xiao, M. Zhou et al., MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 405, 126626 (2021). https://doi.org/10.1016/j.cej.2020.126626
C. Cui, W. Bai, S. Jiang, W. Wang, E. Ren et al., FeNi LDH/loofah sponge-derived magnetic FeNi alloy nanosheet array/porous carbon hybrids with efficient electromagnetic wave absorption. Ind. Eng. Chem. Res. 61(28), 10078–10090 (2022). https://doi.org/10.2021/acs.iecr.2c01051
X. Zhang, Y. Shi, J. Xu, Q. Ouyang, X. Zhang et al., Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 14, 27 (2022). https://doi.org/10.1007/s40820-021-00773-6
F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Heterointerface engineering of β-chitin/carbon nano-onions/Ni–p composites with boosted Maxwell-Wagner-Sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14, 85 (2022). https://doi.org/10.1007/s40820-022-00804-w
Z. Yang, Y. Ma, S. Jia, C. Zhang, P. Li et al., 3D-printed flexible phase-change nonwoven fabrics toward multifunctional clothing. ACS Appl. Mater. Interfaces 14(5), 7283–7291 (2022). https://doi.org/10.1021/acsami.1c21778
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang et al., Tunable high-performance microwave absorption of Co1–xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 28(49), 1800761 (2018). https://doi.org/10.1002/adfm.201800761
X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
I. Abdalla, A. Elhassan, J. Yu, Z. Li, B. Ding, A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon 157, 703–713 (2020). https://doi.org/10.1016/j.carbon.2019.11.004
L. Wang, X. Yu, M. Huang, W. You, Q. Zeng et al., Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 172, 516–528 (2021). https://doi.org/10.1016/j.carbon.2020.09.050
Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202204591
M. Kamkar, A. Ghaffarkhah, R. Ajdary, Y. Lu, F. Ahmadijokani et al., Structured ultra-flyweight aerogels by interfacial complexation: self-assembly enabling multiscale designs. Small 18(20), 2200220 (2022). https://doi.org/10.1002/smll.202200220
X. Feng, M. Pu, F. Zhang, R. Pan, S. Wang et al., Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv. Funct. Mater. 32(36), 2205547 (2022). https://doi.org/10.1002/adfm.202205547
A. Sheng, W. Ren, Y. Yang, D.X. Yan, H. Duan et al., Multilayer wpu conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
A. Shah, A. Ding, Y. Wang, L. Zhang, D. Wang et al., Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of fe nanops in epoxy resin composites. Carbon 96, 987–997 (2016). https://doi.org/10.1016/j.carbon.2015.10.047
Y. Xu, Y. Yang, D.X. Yan, H. Duan, G. Zhao et al., Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater Interfaces 10(22), 19143–19152 (2018). https://doi.org/10.1021/acsami.8b05129
K. Stalder, R. Vidmar, D. Eckstrom, Observations of strong microwave absorption in collisional plasmas with gradual density gradients. J. Appl. Phys. 72(11), 5089–5094 (1992). https://doi.org/10.1063/1.352038
D. Smithe, P. Colestock, T. Kammash, R. Kashuba, Effect of parallel magnetic field gradients on absorption and mode conversion in the ion-cyclotron range of frequencies. Phys. Rev. Lett. 60(9), 801 (1988). https://doi.org/10.1103/PhysRevLett.60.801
Y. Xia, T. Zhao, X. Zhu, Y. Zhao, H. He et al., Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery. Nat. Commun. 12, 2973 (2021). https://doi.org/10.1038/s41467-021-23150-8
Q. Liu, Q. Cao, X. Zhao, H. Bi, C. Wang et al., Insights into size-dominant magnetic microwave absorption properties of coni microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7(7), 4233–4240 (2015). https://doi.org/10.1021/am508527s
J. Zhou, J. He, G. Li, T. Wang, D. Sun et al., Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. J. Phys. Chem. C 114(17), 7611–7617 (2010). https://doi.org/10.1021/jp911030n
H. Fu, S. Ma, P. Zhao, S. Xu, S. Zhan, Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: structure dependence and mechanism. Chem. Eng. J. 360, 157–170 (2019). https://doi.org/10.1016/j.cej.2018.11.207
M. Arruebo, R. Fernandez-Pacheco, S. Irusta, J. Arbiol, M.R. Ibarra et al., Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation. Nanotechnology 17(16), 4057 (2006). https://doi.org/10.1088/0957-4484/17/16/011
B. Ballesteros, G. Tobias, L. Shao, E. Pellicer, J. Nogués et al., Steam purification for the removal of graphitic shells coating catalytic ps and the shortening of single-walled carbon nanotubes. Small 4(9), 1501–1506 (2008). https://doi.org/10.1002/smll.200701283
K. Laszlo, E. Tombacz, K. Josepovits, Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39(8), 1217–1228 (2001). https://doi.org/10.1016/S0008-6223(00)00245-1
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
H. Zhao, J.Z.Y. Seow, Y. Cheng, Z.J. Xu, G. Ji, Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption. Ceram. Int. 46(10), 15447–15455 (2020). https://doi.org/10.1016/j.ceramint.2020.03.089
J.Z. He, X.X. Wang, Y.L. Zhang, M.S. Cao, Small magnetic nanops decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. 4(29), 7130–7140 (2016). https://doi.org/10.1039/C6TC02020H
J. Liu, L. Zhang, H. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F− regulation engineering. Adv. Funct. Mater. 32(13), 2110496 (2022). https://doi.org/10.1002/adfm.202110496
C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), 98–120 (2012). https://doi.org/10.1002/adma.201200674
Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371
S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen et al., Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 11(1), 530–541 (2018). https://doi.org/10.1007/s12274-017-1664-6
M. Chen, Y. Zhu, Y. Pan, H. Kou, H. Xu et al., Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater. Des. 32(5), 3013–3016 (2011). https://doi.org/10.1016/j.matdes.2010.12.043
B. Ji, S. Fan, S. Kou, X. Xia, J. Deng et al., Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2Tx MXene/polymer films. Carbon 181, 130–142 (2021). https://doi.org/10.1016/j.carbon.2021.05.018
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
C. Jin, Z. Wu, R. Zhang, X. Qian, H. Xu et al., 1D electromagnetic-gradient hierarchical carbon microtube via coaxial electrospinning design for enhanced microwave absorption. ACS Appl. Mater. Interfaces 13(13), 15939–15949 (2021). https://doi.org/10.1021/acsami.1c03129
X.P. Li, Z. Deng, Y. Li, H.B. Zhang, S. Zhao et al., Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption. Carbon 147, 172–181 (2019). https://doi.org/10.1016/j.carbon.2019.02.073
C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16(30), 2001686 (2020). https://doi.org/10.1002/smll.202001686
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987
X. Sun, J. He, G. Li, J. Tang, T. Wang et al., Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1(4), 765–777 (2013). https://doi.org/10.1039/C2TC00159D
J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm.202105018
N. Zhou, Q. An, Z. Xiao, S. Zhai, Z. Shi, Solvothermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance. RSC Adv. 7(71), 45156–45169 (2017). https://doi.org/10.1039/C7RA06751H
L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131