Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction
Corresponding Author: Yuhui Chen
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 62
Abstract
The increasing concentration of CO2 in the atmosphere has led to the greenhouse effect, which greatly affects the climate and the ecological balance of nature. Therefore, converting CO2 into renewable fuels via clean and economical chemical processes has become a great concern for scientists. Electrocatalytic CO2 conversion is a prospective path toward carbon cycling. Among the different electrocatalysts, Sn-based electrocatalysts have been demonstrated as promising catalysts for CO2 electroreduction, producing formate and CO, which are important industrial chemicals. In this review, various Sn-based electrocatalysts are comprehensively summarized in terms of synthesis, catalytic performance, and reaction mechanisms for CO2 electroreduction. Finally, we concisely discuss the current challenges and opportunities of Sn-based electrocatalysts.
Highlights:
1 This review summarizes current developments in the fabrication of tin (Sn)-based electrocatalysts for CO2 reduction.
2 Sn-based electrocatalysts are comprehensively summarized in terms of synthesis, catalytic performance, and reaction mechanisms for CO2 electroreduction.
3 The remaining challenges and opportunities for Sn-based electrocatalysts in the field of CO2 electroreduction are briefly proposed and discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo, J.K. Norskov, Materials for solar fuels and chemicals. Nat. Mater. 16(1), 70–81 (2016). https://doi.org/10.1038/nmat4778
- D.U. Nielsen, X.-M. Hu, K. Daasbjerg, T. Skrydstrup, Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 1(4), 244–254 (2018). https://doi.org/10.1038/s41929-018-0051-3
- J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang, S. Zhang, P. Han, C. Yang, Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44(17), 5981–6000 (2015). https://doi.org/10.1039/C5CS00182J
- K. Li, B. Peng, T. Peng, Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6(11), 7485–7527 (2016). https://doi.org/10.1021/acscatal.6b02089
- L. Lin, K. Wang, K. Yang, X. Chen, X. Fu, W. Dai, The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2−x)Nx. Appl. Catal. B: Environ. 204, 440–455 (2017). https://doi.org/10.1016/j.apcatb.2016.11.054
- W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal–organic frameworks. Nano Micro Lett. 11(1), 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
- C. Costentin, M. Robert, J.M. Saveant, Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42(6), 2423–2436 (2013). https://doi.org/10.1039/C2CS35360A
- Z. Gu, H. Shen, L. Shang, X. Lv, L. Qian, G. Zheng, Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods 2(11), 1800121 (2018). https://doi.org/10.1002/smtd.201800121
- W.H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115(23), 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
- O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2(5), 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
- J. Zeng, K. Bejtka, W. Ju, M. Castellino, A. Chiodoni et al., Advanced Cu–Sn foam for selectively converting CO2 to CO in aqueous solution. Appl. Catal. B: Environ. 236, 475–482 (2018). https://doi.org/10.1016/j.apcatb.2018.05.056
- A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3(2), 251–258 (2012). https://doi.org/10.1021/jz201461p
- R. Kortlever, J. Shen, K.J. Schouten, F. Calle-Vallejo, M.T. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559
- D.T. Whipple, P.J.A. Kenis, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1(24), 3451–3458 (2010). https://doi.org/10.1021/jz1012627
- M. Azuma, Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J. Electrochem. Soc. 137(6), 1772 (1990). https://doi.org/10.1149/1.2086796
- A.S. Agarwal, Y. Zhai, D. Hill, N. Sridhar, Corrigendum: the electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility. Chemsuschem 4(12), 1705 (2011). https://doi.org/10.1002/cssc.201100752
- Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39(11–12), 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7
- X. Hou, Y. Cai, D. Zhang, L. Li, X. Zhang et al., 3D core-shell porous-structured Cu@Sn hybrid electrodes with unprecedented selective CO2-into-formate electroreduction achieving 100%. J. Mater. Chem. A 7(7), 3197–3205 (2019). https://doi.org/10.1039/C8TA10650A
- X.F. Bai, W. Chen, C.C. Zhao, S.G. Li, Y.F. Song et al., Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew. Chem. Int. Ed. 56(40), 12219–12223 (2017). https://doi.org/10.1002/anie.201707098
- Y. Zhao, J. Liang, C. Wang, J. Ma, G.G. Wallace, Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 8(10), 1702524 (2018). https://doi.org/10.1002/aenm.201702524
- T. Zheng, K. Jiang, H. Wang, Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 30(48), 1802066 (2018). https://doi.org/10.1002/adma.201802066
- Y. Wang, J. Liu, Y. Wang, A.M. Al-Enizi, G. Zheng, Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13(43), 1701809 (2017). https://doi.org/10.1002/smll.201701809
- J. He, N.J.J. Johnson, A. Huang, C.P. Berlinguette, Electrocatalytic alloys for CO2 reduction. Chemsuschem 11(1), 48–57 (2018). https://doi.org/10.1002/cssc.201701825
- Q. Li, X. Rao, J. Sheng, J. Xu, J. Yi, Y. Liu, J. Zhang, Energy storage through CO2 electroreduction: a brief review of advanced Sn-based electrocatalysts and electrodes. J. CO2 Util. 27, 48–59 (2018). https://doi.org/10.1016/j.jcou.2018.07.004
- Q. Zhang, W. Xu, J. Xu, Y. Liu, J. Zhang, High performing and cost-effective metal/metal oxide/metal alloy catalysts/electrodes for low temperature CO2 electroreduction. Catal. Today 318, 15–22 (2018). https://doi.org/10.1016/j.cattod.2018.03.029
- J.S. Yoo, R. Christensen, T. Vegge, J.K. Norskov, F. Studt, Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. Chemsuschem 9(4), 358–363 (2016). https://doi.org/10.1002/cssc.201501197
- W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 139(5), 1885–1893 (2017). https://doi.org/10.1021/jacs.6b10435
- Y. Chen, M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134(4), 1986–1989 (2012). https://doi.org/10.1021/ja2108799
- M.F. Baruch, J.E. Pander, J.L. White, A.B. Bocarsly, Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5(5), 3148–3156 (2015). https://doi.org/10.1021/acscatal.5b00402
- E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38(1), 89–99 (2009). https://doi.org/10.1039/B804323J
- Z.Y. Sun, T. Ma, H.C. Tao, Q. Fan, B.X. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
- J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7(7), 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
- J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4(11), 1700194 (2017). https://doi.org/10.1002/advs.201700194
- J. Gu, F. Heroguel, J. Luterbacher, X. Hu, Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 57(11), 2943–2947 (2018). https://doi.org/10.1002/anie.201713003
- A. Dutta, A. Kuzume, M. Rahaman, S. Vesztergom, P. Broekmann, Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS Catal. 5(12), 7498–7502 (2015). https://doi.org/10.1021/acscatal.5b02322
- Y. Hori, Electrochemical CO2 reduction on metal electrodes, in Modern Aspects of Electrochemistry Modern Aspects of Electrochemistry, vol. 42, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Springer, New York, 2008), pp. 89–189. https://doi.org/10.1007/978-0-387-49489-0_3
- M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd edn. (NACE International, Houston, 1974)
- F. Li, D.R. MacFarlane, J. Zhang, Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10(14), 6235–6260 (2018). https://doi.org/10.1039/C7NR09620H
- J. Lai, Y. Chao, P. Zhou, Y. Yang, Y. Zhang, W. Yang, D. Wu, J. Feng, S. Guo, One-pot seedless aqueous design of metal nanostructures for energy electrocatalytic applications. ElectroChem. Energy Rev. 1(4), 531–547 (2018). https://doi.org/10.1007/s41918-018-0018-8
- J. Wu, P.P. Sharma, B.H. Harris, X.-D. Zhou, Electrochemical reduction of carbon dioxide: IV dependence of the faradaic efficiency and current density on the microstructure and thickness of tin electrode. J. Power Sour. 258, 189–194 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.014
- A. Dutta, M. Rahaman, N.C. Luedi, M. Mohos, P. Broekmann, Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 6(6), 3804–3814 (2016). https://doi.org/10.1021/acscatal.6b00770
- W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135(45), 16833–16836 (2013). https://doi.org/10.1021/ja409445p
- S. Back, M.S. Yeom, Y. Jung, Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5(9), 5089–5096 (2015). https://doi.org/10.1021/acscatal.5b00462
- V.S.K. Yadav, Y. Noh, H. Han, W.B. Kim, Synthesis of Sn catalysts by solar electro-deposition method for electrochemical CO2 reduction reaction to HCOOH. Catal. Today 303, 276–281 (2018). https://doi.org/10.1016/j.cattod.2017.09.015
- J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29(14), 1605838 (2017). https://doi.org/10.1002/adma.201605838
- Z. Chen, S. Yao, L. Liu, 3D hierarchical porous structured carbon nanotube aerogel-supported Sn spheroidal particles: an efficient and selective catalyst for electrochemical reduction of CO2 to formate. J. Mater. Chem. A 5(47), 24651–24656 (2017). https://doi.org/10.1039/C7TA07495F
- F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu et al., Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7, 12697 (2016). https://doi.org/10.1038/ncomms12697
- S. Basu, A. Shegokar, D. Biswal, Synthesis and characterization of supported Sn/γ–Al2O3 and Sn/ZSM5 catalysts for CO2 reduction in electrochemical cell. J. CO2 Util. 18, 80–88 (2017). https://doi.org/10.1016/j.jcou.2017.01.015
- Q. Shao, P. Wang, X. Huang, Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 29(3), 1806419 (2019). https://doi.org/10.1002/adfm.201806419
- W. Wang, B. Lei, S. Guo, Engineering multimetallic nanocrystals for highly efficient oxygen reduction catalysts. Adv. Energy Mater. 6(17), 1600236 (2016). https://doi.org/10.1002/aenm.201600236
- Y. Zheng, S. Zhao, S. Liu, H. Yin, Y.Y. Chen, J. Bao, M. Han, Z. Dai, Component-controlled synthesis and assembly of Cu-Pd nanocrystals on graphene for oxygen reduction reaction. ACS Appl. Mater. Interfaces. 7(9), 5347–5357 (2015). https://doi.org/10.1021/acsami.5b01541
- C. Zhang, Y. Liu, Y. Chang, Y. Lu, S. Zhao et al., Component-controlled synthesis of necklace-like hollow NixRuy nanoalloys as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 9(20), 17326–17336 (2017). https://doi.org/10.1021/acsami.7b01114
- M. Watanabe, Design of alloy electrocatalysts for CO2 reduction. J. Electrochem. Soc. 138(11), 3382 (1991). https://doi.org/10.1149/1.2085417
- J.F. He, K.E. Dettelbach, D.A. Salvatore, T.F. Li, C.P. Berlinguette, High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 56(22), 6068–6072 (2017). https://doi.org/10.1002/anie.201612038
- D. Ren, B.S.-H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6(12), 8239–8247 (2016). https://doi.org/10.1021/acscatal.6b02162
- S. Rasul, D.H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo, K. Takanabe, A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. Int. Ed. 54(7), 2146–2150 (2015). https://doi.org/10.1002/anie.201410233
- S. Sarfraz, A.T. Garcia-Esparza, A. Jedidi, L. Cavallo, K. Takanabe, Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 6(5), 2842–2851 (2016). https://doi.org/10.1021/acscatal.6b00269
- J. He, K.E. Dettelbach, A. Huang, C.P. Berlinguette, Brass and bronze as effective CO2 reduction electrocatalysts. Angew. Chem. Int. Ed. 56(52), 16579–16582 (2017). https://doi.org/10.1002/anie.201709932
- S.Y. Choi, S.K. Jeong, H.J. Kim, I.-H. Baek, K.T. Park, Electrochemical reduction of carbon dioxide to formate on tin-lead alloys. ACS Sustain. Chem. Eng. 4(3), 1311–1318 (2016). https://doi.org/10.1021/acssuschemeng.5b01336
- J. Wang, Y. Ji, Q. Shao, R. Yin, J. Guo, Y. Li, X. Huang, Phase and structure modulating of bimetallic Cu–Sn nanowires boosts electrocatalytic conversion of CO2. Nano Energy 59, 138–145 (2019). https://doi.org/10.1016/j.nanoen.2019.02.037
- G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Carbon dioxide electroreduction: orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 8(31), 1870138 (2018). https://doi.org/10.1002/aenm.201870138
- Y. Zhao, C. Wang, G.G. Wallace, Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 4(27), 10710–10718 (2016). https://doi.org/10.1039/C6TA04155H
- X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu et al., Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2(1), 55–61 (2018). https://doi.org/10.1038/s41929-018-0200-8
- A.M. Ismail, G.F. Samu, Á. Balog, E. Csapó, C. Janáky, Composition-dependent electrocatalytic behavior of Au-Sn bimetallic nanoparticles in carbon dioxide reduction. ACS Energy Lett. 4(1), 48–53 (2019). https://doi.org/10.1021/acsenergylett.8b01996
- C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134(17), 7231–7234 (2012). https://doi.org/10.1021/ja3010978
- R. Kas, R. Kortlever, A. Milbrat, M.T. Koper, G. Mul, J. Baltrusaitis, Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16(24), 12194–12201 (2014). https://doi.org/10.1039/C4CP01520G
- R. Zhang, W. Lv, L. Lei, Role of the oxide layer on Sn electrode in electrochemical reduction of CO2 to formate. Appl. Surf. Sci. 356, 24–29 (2015). https://doi.org/10.1016/j.apsusc.2015.08.006
- Y.W. Choi, F. Scholten, I. Sinev, B. Roldan Cuenya, Enhanced stability and CO/formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction. J. Am. Chem. Soc. 141(13), 5261–5266 (2019). https://doi.org/10.1021/jacs.8b12766
- S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136(5), 1734–1737 (2014). https://doi.org/10.1021/ja4113885
- Y. Liu, M. Fan, X. Zhang, Q. Zhang, D. Guay, J. Qiao, Design and engineering of urchin-like nanostructured SnO2 catalysts via controlled facial hydrothermal synthesis for efficient electro-reduction of CO2. Electrochim. Acta 248, 123–132 (2017). https://doi.org/10.1016/j.electacta.2017.07.140
- Y. Li, J. Qiao, X. Zhang, T. Lei, A. Girma, Y. Liu, J. Zhang, Rational design and synthesis of SnOx electrocatalysts with coralline structure for highly improved aqueous CO2 reduction to formate. ChemElectroChem 3(10), 1618–1628 (2016). https://doi.org/10.1002/celc.201600290
- Y. Fu, Y. Li, X. Zhang, Y. Liu, J. Qiao, J. Zhang, D.P. Wilkinson, Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel. Appl. Energy 175, 536–544 (2016). https://doi.org/10.1016/j.apenergy.2016.03.115
- L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C-1 products. Adv. Funct. Mater. 28(17), 1706289 (2018). https://doi.org/10.1002/adfm.201706289
- A. Verdaguer-Casadevall, C.W. Li, T.P. Johansson, S.B. Scott, J.T. McKeown, M. Kumar, I.E. Stephens, M.W. Kanan, I. Chorkendorff, Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137(31), 9808–9811 (2015). https://doi.org/10.1021/jacs.5b06227
- X. Feng, K. Jiang, S. Fan, M.W. Kanan, A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2(3), 169–174 (2016). https://doi.org/10.1021/acscentsci.6b00022
- B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen, M. Sunkara, J.M. Spurgeon, Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. 56(13), 3645–3649 (2017). https://doi.org/10.1002/anie.201612194
- C. Liang, B. Kim, S. Yang, Y. Liu, C.F. Woellner et al., High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. J. Mater. Chem. A 6(22), 10313–10319 (2018). https://doi.org/10.1039/C8TA01367E
- X.L. Cai, C.H. Liu, J. Liu, Y. Lu, Y.N. Zhong et al., Synergistic effects in CNTs–PdAu/Pt trimetallic nanoparticles with high electrocatalytic activity and stability. Nano Micro Lett. 9(4), 48 (2017). https://doi.org/10.1007/s40820-017-0149-1
- F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Ed. 56(2), 505–509 (2017). https://doi.org/10.1002/anie.201608279
- S. Huo, Z. Weng, Z. Wu, Y. Zhong, Y. Wu, J. Fang, H. Wang, Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO2 reduction. ACS Appl. Mater. Interfaces. 9(34), 28519–28526 (2017). https://doi.org/10.1021/acsami.7b07707
- D. Gao, H. Zhou, F. Cai, D. Wang, Y. Hu et al., Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10(6), 2181–2191 (2017). https://doi.org/10.1007/s12274-017-1514-6
- W. Zhang, Q. Qin, L. Dai, R. Qin, X. Zhao et al., Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew. Chem. Int. Ed. 57(30), 9475–9479 (2018). https://doi.org/10.1002/anie.201804142
- P. Han, Z. Wang, M. Kuang, Y. Wang, J. Liu, L. Hu, L. Qian, G. Zheng, 2D assembly of confined space toward enhanced CO2 electroreduction. Adv. Energy Mater. 8(25), 1801230 (2018). https://doi.org/10.1002/aenm.201801230
- J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 55(6), 2230–2234 (2016). https://doi.org/10.1002/anie.201510495
- K. Saravanan, Y. Basdogan, J. Dean, J.A. Keith, Computational investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. J. Mater. Chem. A 5(23), 11756–11763 (2017). https://doi.org/10.1039/C7TA00405B
- S. Mu, J. Wu, Q. Shi, F. Zhang, Electrocatalytic reduction of carbon dioxide on nanosized fluorine doped tin oxide in the solution of extremely low supporting electrolyte concentration: low reduction potentials. ACS Appl. Energy Mater. 1(4), 1680–1687 (2018). https://doi.org/10.1021/acsaem.8b00146
- X. Hu, H. Yang, M. Guo, M. Gao, E. Zhang, H. Tian, Z. Liang, X. Liu, Synthesis and characterization of (Cu, S) Co-doped SnO2 for electrocatalytic reduction of CO2 to formate at low overpotential. ChemElectroChem 5(9), 1330–1335 (2018). https://doi.org/10.1002/celc.201800104
- X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
- T. Shinagawa, G.O. Larrazabal, A.J. Martin, F. Krumeich, J. Perez-Ramirez, Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate. ACS Catal. 8(2), 837–844 (2018). https://doi.org/10.1021/acscatal.7b03161
- W. Ma, S. Xie, X.-G. Zhang, F. Sun, J. Kang et al., Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10(1), 892 (2019). https://doi.org/10.1038/s41467-019-08805-x
- X. Zheng, P. De Luna, F.P. García de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
- F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D.R. MacFarlane, J. Zhang, Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets. Nano Energy 31, 270–277 (2017). https://doi.org/10.1016/j.nanoen.2016.11.004
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun et al., Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem. Int. Ed. 55(2), 698–702 (2016). https://doi.org/10.1002/anie.201509800
- J. He, X. Liu, H. Liu, Z. Zhao, Y. Ding, J. Luo, Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers. J. Catal. 364, 125–130 (2018). https://doi.org/10.1016/j.jcat.2018.05.005
- A. Zhang, R. He, H. Li, Y. Chen, T. Kong et al., Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem. Int. Ed. 57(34), 10954–10958 (2018). https://doi.org/10.1002/anie.201806043
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo, J.K. Norskov, Materials for solar fuels and chemicals. Nat. Mater. 16(1), 70–81 (2016). https://doi.org/10.1038/nmat4778
D.U. Nielsen, X.-M. Hu, K. Daasbjerg, T. Skrydstrup, Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 1(4), 244–254 (2018). https://doi.org/10.1038/s41929-018-0051-3
J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang, S. Zhang, P. Han, C. Yang, Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44(17), 5981–6000 (2015). https://doi.org/10.1039/C5CS00182J
K. Li, B. Peng, T. Peng, Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6(11), 7485–7527 (2016). https://doi.org/10.1021/acscatal.6b02089
L. Lin, K. Wang, K. Yang, X. Chen, X. Fu, W. Dai, The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2−x)Nx. Appl. Catal. B: Environ. 204, 440–455 (2017). https://doi.org/10.1016/j.apcatb.2016.11.054
W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal–organic frameworks. Nano Micro Lett. 11(1), 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
C. Costentin, M. Robert, J.M. Saveant, Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42(6), 2423–2436 (2013). https://doi.org/10.1039/C2CS35360A
Z. Gu, H. Shen, L. Shang, X. Lv, L. Qian, G. Zheng, Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods 2(11), 1800121 (2018). https://doi.org/10.1002/smtd.201800121
W.H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115(23), 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2(5), 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
J. Zeng, K. Bejtka, W. Ju, M. Castellino, A. Chiodoni et al., Advanced Cu–Sn foam for selectively converting CO2 to CO in aqueous solution. Appl. Catal. B: Environ. 236, 475–482 (2018). https://doi.org/10.1016/j.apcatb.2018.05.056
A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3(2), 251–258 (2012). https://doi.org/10.1021/jz201461p
R. Kortlever, J. Shen, K.J. Schouten, F. Calle-Vallejo, M.T. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559
D.T. Whipple, P.J.A. Kenis, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1(24), 3451–3458 (2010). https://doi.org/10.1021/jz1012627
M. Azuma, Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J. Electrochem. Soc. 137(6), 1772 (1990). https://doi.org/10.1149/1.2086796
A.S. Agarwal, Y. Zhai, D. Hill, N. Sridhar, Corrigendum: the electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility. Chemsuschem 4(12), 1705 (2011). https://doi.org/10.1002/cssc.201100752
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39(11–12), 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7
X. Hou, Y. Cai, D. Zhang, L. Li, X. Zhang et al., 3D core-shell porous-structured Cu@Sn hybrid electrodes with unprecedented selective CO2-into-formate electroreduction achieving 100%. J. Mater. Chem. A 7(7), 3197–3205 (2019). https://doi.org/10.1039/C8TA10650A
X.F. Bai, W. Chen, C.C. Zhao, S.G. Li, Y.F. Song et al., Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew. Chem. Int. Ed. 56(40), 12219–12223 (2017). https://doi.org/10.1002/anie.201707098
Y. Zhao, J. Liang, C. Wang, J. Ma, G.G. Wallace, Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 8(10), 1702524 (2018). https://doi.org/10.1002/aenm.201702524
T. Zheng, K. Jiang, H. Wang, Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 30(48), 1802066 (2018). https://doi.org/10.1002/adma.201802066
Y. Wang, J. Liu, Y. Wang, A.M. Al-Enizi, G. Zheng, Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13(43), 1701809 (2017). https://doi.org/10.1002/smll.201701809
J. He, N.J.J. Johnson, A. Huang, C.P. Berlinguette, Electrocatalytic alloys for CO2 reduction. Chemsuschem 11(1), 48–57 (2018). https://doi.org/10.1002/cssc.201701825
Q. Li, X. Rao, J. Sheng, J. Xu, J. Yi, Y. Liu, J. Zhang, Energy storage through CO2 electroreduction: a brief review of advanced Sn-based electrocatalysts and electrodes. J. CO2 Util. 27, 48–59 (2018). https://doi.org/10.1016/j.jcou.2018.07.004
Q. Zhang, W. Xu, J. Xu, Y. Liu, J. Zhang, High performing and cost-effective metal/metal oxide/metal alloy catalysts/electrodes for low temperature CO2 electroreduction. Catal. Today 318, 15–22 (2018). https://doi.org/10.1016/j.cattod.2018.03.029
J.S. Yoo, R. Christensen, T. Vegge, J.K. Norskov, F. Studt, Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. Chemsuschem 9(4), 358–363 (2016). https://doi.org/10.1002/cssc.201501197
W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, Ag–Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 139(5), 1885–1893 (2017). https://doi.org/10.1021/jacs.6b10435
Y. Chen, M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134(4), 1986–1989 (2012). https://doi.org/10.1021/ja2108799
M.F. Baruch, J.E. Pander, J.L. White, A.B. Bocarsly, Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5(5), 3148–3156 (2015). https://doi.org/10.1021/acscatal.5b00402
E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38(1), 89–99 (2009). https://doi.org/10.1039/B804323J
Z.Y. Sun, T. Ma, H.C. Tao, Q. Fan, B.X. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7(7), 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4(11), 1700194 (2017). https://doi.org/10.1002/advs.201700194
J. Gu, F. Heroguel, J. Luterbacher, X. Hu, Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 57(11), 2943–2947 (2018). https://doi.org/10.1002/anie.201713003
A. Dutta, A. Kuzume, M. Rahaman, S. Vesztergom, P. Broekmann, Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS Catal. 5(12), 7498–7502 (2015). https://doi.org/10.1021/acscatal.5b02322
Y. Hori, Electrochemical CO2 reduction on metal electrodes, in Modern Aspects of Electrochemistry Modern Aspects of Electrochemistry, vol. 42, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Springer, New York, 2008), pp. 89–189. https://doi.org/10.1007/978-0-387-49489-0_3
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd edn. (NACE International, Houston, 1974)
F. Li, D.R. MacFarlane, J. Zhang, Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10(14), 6235–6260 (2018). https://doi.org/10.1039/C7NR09620H
J. Lai, Y. Chao, P. Zhou, Y. Yang, Y. Zhang, W. Yang, D. Wu, J. Feng, S. Guo, One-pot seedless aqueous design of metal nanostructures for energy electrocatalytic applications. ElectroChem. Energy Rev. 1(4), 531–547 (2018). https://doi.org/10.1007/s41918-018-0018-8
J. Wu, P.P. Sharma, B.H. Harris, X.-D. Zhou, Electrochemical reduction of carbon dioxide: IV dependence of the faradaic efficiency and current density on the microstructure and thickness of tin electrode. J. Power Sour. 258, 189–194 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.014
A. Dutta, M. Rahaman, N.C. Luedi, M. Mohos, P. Broekmann, Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 6(6), 3804–3814 (2016). https://doi.org/10.1021/acscatal.6b00770
W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135(45), 16833–16836 (2013). https://doi.org/10.1021/ja409445p
S. Back, M.S. Yeom, Y. Jung, Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5(9), 5089–5096 (2015). https://doi.org/10.1021/acscatal.5b00462
V.S.K. Yadav, Y. Noh, H. Han, W.B. Kim, Synthesis of Sn catalysts by solar electro-deposition method for electrochemical CO2 reduction reaction to HCOOH. Catal. Today 303, 276–281 (2018). https://doi.org/10.1016/j.cattod.2017.09.015
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29(14), 1605838 (2017). https://doi.org/10.1002/adma.201605838
Z. Chen, S. Yao, L. Liu, 3D hierarchical porous structured carbon nanotube aerogel-supported Sn spheroidal particles: an efficient and selective catalyst for electrochemical reduction of CO2 to formate. J. Mater. Chem. A 5(47), 24651–24656 (2017). https://doi.org/10.1039/C7TA07495F
F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu et al., Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7, 12697 (2016). https://doi.org/10.1038/ncomms12697
S. Basu, A. Shegokar, D. Biswal, Synthesis and characterization of supported Sn/γ–Al2O3 and Sn/ZSM5 catalysts for CO2 reduction in electrochemical cell. J. CO2 Util. 18, 80–88 (2017). https://doi.org/10.1016/j.jcou.2017.01.015
Q. Shao, P. Wang, X. Huang, Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 29(3), 1806419 (2019). https://doi.org/10.1002/adfm.201806419
W. Wang, B. Lei, S. Guo, Engineering multimetallic nanocrystals for highly efficient oxygen reduction catalysts. Adv. Energy Mater. 6(17), 1600236 (2016). https://doi.org/10.1002/aenm.201600236
Y. Zheng, S. Zhao, S. Liu, H. Yin, Y.Y. Chen, J. Bao, M. Han, Z. Dai, Component-controlled synthesis and assembly of Cu-Pd nanocrystals on graphene for oxygen reduction reaction. ACS Appl. Mater. Interfaces. 7(9), 5347–5357 (2015). https://doi.org/10.1021/acsami.5b01541
C. Zhang, Y. Liu, Y. Chang, Y. Lu, S. Zhao et al., Component-controlled synthesis of necklace-like hollow NixRuy nanoalloys as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 9(20), 17326–17336 (2017). https://doi.org/10.1021/acsami.7b01114
M. Watanabe, Design of alloy electrocatalysts for CO2 reduction. J. Electrochem. Soc. 138(11), 3382 (1991). https://doi.org/10.1149/1.2085417
J.F. He, K.E. Dettelbach, D.A. Salvatore, T.F. Li, C.P. Berlinguette, High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 56(22), 6068–6072 (2017). https://doi.org/10.1002/anie.201612038
D. Ren, B.S.-H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6(12), 8239–8247 (2016). https://doi.org/10.1021/acscatal.6b02162
S. Rasul, D.H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo, K. Takanabe, A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. Int. Ed. 54(7), 2146–2150 (2015). https://doi.org/10.1002/anie.201410233
S. Sarfraz, A.T. Garcia-Esparza, A. Jedidi, L. Cavallo, K. Takanabe, Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 6(5), 2842–2851 (2016). https://doi.org/10.1021/acscatal.6b00269
J. He, K.E. Dettelbach, A. Huang, C.P. Berlinguette, Brass and bronze as effective CO2 reduction electrocatalysts. Angew. Chem. Int. Ed. 56(52), 16579–16582 (2017). https://doi.org/10.1002/anie.201709932
S.Y. Choi, S.K. Jeong, H.J. Kim, I.-H. Baek, K.T. Park, Electrochemical reduction of carbon dioxide to formate on tin-lead alloys. ACS Sustain. Chem. Eng. 4(3), 1311–1318 (2016). https://doi.org/10.1021/acssuschemeng.5b01336
J. Wang, Y. Ji, Q. Shao, R. Yin, J. Guo, Y. Li, X. Huang, Phase and structure modulating of bimetallic Cu–Sn nanowires boosts electrocatalytic conversion of CO2. Nano Energy 59, 138–145 (2019). https://doi.org/10.1016/j.nanoen.2019.02.037
G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Carbon dioxide electroreduction: orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 8(31), 1870138 (2018). https://doi.org/10.1002/aenm.201870138
Y. Zhao, C. Wang, G.G. Wallace, Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 4(27), 10710–10718 (2016). https://doi.org/10.1039/C6TA04155H
X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu et al., Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2(1), 55–61 (2018). https://doi.org/10.1038/s41929-018-0200-8
A.M. Ismail, G.F. Samu, Á. Balog, E. Csapó, C. Janáky, Composition-dependent electrocatalytic behavior of Au-Sn bimetallic nanoparticles in carbon dioxide reduction. ACS Energy Lett. 4(1), 48–53 (2019). https://doi.org/10.1021/acsenergylett.8b01996
C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134(17), 7231–7234 (2012). https://doi.org/10.1021/ja3010978
R. Kas, R. Kortlever, A. Milbrat, M.T. Koper, G. Mul, J. Baltrusaitis, Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16(24), 12194–12201 (2014). https://doi.org/10.1039/C4CP01520G
R. Zhang, W. Lv, L. Lei, Role of the oxide layer on Sn electrode in electrochemical reduction of CO2 to formate. Appl. Surf. Sci. 356, 24–29 (2015). https://doi.org/10.1016/j.apsusc.2015.08.006
Y.W. Choi, F. Scholten, I. Sinev, B. Roldan Cuenya, Enhanced stability and CO/formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction. J. Am. Chem. Soc. 141(13), 5261–5266 (2019). https://doi.org/10.1021/jacs.8b12766
S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136(5), 1734–1737 (2014). https://doi.org/10.1021/ja4113885
Y. Liu, M. Fan, X. Zhang, Q. Zhang, D. Guay, J. Qiao, Design and engineering of urchin-like nanostructured SnO2 catalysts via controlled facial hydrothermal synthesis for efficient electro-reduction of CO2. Electrochim. Acta 248, 123–132 (2017). https://doi.org/10.1016/j.electacta.2017.07.140
Y. Li, J. Qiao, X. Zhang, T. Lei, A. Girma, Y. Liu, J. Zhang, Rational design and synthesis of SnOx electrocatalysts with coralline structure for highly improved aqueous CO2 reduction to formate. ChemElectroChem 3(10), 1618–1628 (2016). https://doi.org/10.1002/celc.201600290
Y. Fu, Y. Li, X. Zhang, Y. Liu, J. Qiao, J. Zhang, D.P. Wilkinson, Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel. Appl. Energy 175, 536–544 (2016). https://doi.org/10.1016/j.apenergy.2016.03.115
L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C-1 products. Adv. Funct. Mater. 28(17), 1706289 (2018). https://doi.org/10.1002/adfm.201706289
A. Verdaguer-Casadevall, C.W. Li, T.P. Johansson, S.B. Scott, J.T. McKeown, M. Kumar, I.E. Stephens, M.W. Kanan, I. Chorkendorff, Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137(31), 9808–9811 (2015). https://doi.org/10.1021/jacs.5b06227
X. Feng, K. Jiang, S. Fan, M.W. Kanan, A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2(3), 169–174 (2016). https://doi.org/10.1021/acscentsci.6b00022
B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen, M. Sunkara, J.M. Spurgeon, Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. 56(13), 3645–3649 (2017). https://doi.org/10.1002/anie.201612194
C. Liang, B. Kim, S. Yang, Y. Liu, C.F. Woellner et al., High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. J. Mater. Chem. A 6(22), 10313–10319 (2018). https://doi.org/10.1039/C8TA01367E
X.L. Cai, C.H. Liu, J. Liu, Y. Lu, Y.N. Zhong et al., Synergistic effects in CNTs–PdAu/Pt trimetallic nanoparticles with high electrocatalytic activity and stability. Nano Micro Lett. 9(4), 48 (2017). https://doi.org/10.1007/s40820-017-0149-1
F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Ed. 56(2), 505–509 (2017). https://doi.org/10.1002/anie.201608279
S. Huo, Z. Weng, Z. Wu, Y. Zhong, Y. Wu, J. Fang, H. Wang, Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO2 reduction. ACS Appl. Mater. Interfaces. 9(34), 28519–28526 (2017). https://doi.org/10.1021/acsami.7b07707
D. Gao, H. Zhou, F. Cai, D. Wang, Y. Hu et al., Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10(6), 2181–2191 (2017). https://doi.org/10.1007/s12274-017-1514-6
W. Zhang, Q. Qin, L. Dai, R. Qin, X. Zhao et al., Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew. Chem. Int. Ed. 57(30), 9475–9479 (2018). https://doi.org/10.1002/anie.201804142
P. Han, Z. Wang, M. Kuang, Y. Wang, J. Liu, L. Hu, L. Qian, G. Zheng, 2D assembly of confined space toward enhanced CO2 electroreduction. Adv. Energy Mater. 8(25), 1801230 (2018). https://doi.org/10.1002/aenm.201801230
J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 55(6), 2230–2234 (2016). https://doi.org/10.1002/anie.201510495
K. Saravanan, Y. Basdogan, J. Dean, J.A. Keith, Computational investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. J. Mater. Chem. A 5(23), 11756–11763 (2017). https://doi.org/10.1039/C7TA00405B
S. Mu, J. Wu, Q. Shi, F. Zhang, Electrocatalytic reduction of carbon dioxide on nanosized fluorine doped tin oxide in the solution of extremely low supporting electrolyte concentration: low reduction potentials. ACS Appl. Energy Mater. 1(4), 1680–1687 (2018). https://doi.org/10.1021/acsaem.8b00146
X. Hu, H. Yang, M. Guo, M. Gao, E. Zhang, H. Tian, Z. Liang, X. Liu, Synthesis and characterization of (Cu, S) Co-doped SnO2 for electrocatalytic reduction of CO2 to formate at low overpotential. ChemElectroChem 5(9), 1330–1335 (2018). https://doi.org/10.1002/celc.201800104
X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
T. Shinagawa, G.O. Larrazabal, A.J. Martin, F. Krumeich, J. Perez-Ramirez, Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate. ACS Catal. 8(2), 837–844 (2018). https://doi.org/10.1021/acscatal.7b03161
W. Ma, S. Xie, X.-G. Zhang, F. Sun, J. Kang et al., Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10(1), 892 (2019). https://doi.org/10.1038/s41467-019-08805-x
X. Zheng, P. De Luna, F.P. García de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D.R. MacFarlane, J. Zhang, Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets. Nano Energy 31, 270–277 (2017). https://doi.org/10.1016/j.nanoen.2016.11.004
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun et al., Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem. Int. Ed. 55(2), 698–702 (2016). https://doi.org/10.1002/anie.201509800
J. He, X. Liu, H. Liu, Z. Zhao, Y. Ding, J. Luo, Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers. J. Catal. 364, 125–130 (2018). https://doi.org/10.1016/j.jcat.2018.05.005
A. Zhang, R. He, H. Li, Y. Chen, T. Kong et al., Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem. Int. Ed. 57(34), 10954–10958 (2018). https://doi.org/10.1002/anie.201806043