Significantly Enhanced Electromagnetic Interference Shielding Performances of Epoxy Nanocomposites with Long-Range Aligned Lamellar Structures
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 224
Abstract
High‑efficiency electromagnetic interference (EMI) shielding materials are of great importance for electronic equipment reliability, information security and human health. In this work, bidirectional aligned Ti3C2Tx@Fe3O4/CNF aerogels (BTFCA) were firstly assembled by bidirectional freezing and freeze-drying technique, and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins. Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect, when the mass fraction of Ti3C2Tx and Fe3O4 are 2.96 and 1.48 wt%, BTFCA/epoxy nanocomposites show outstanding EMI shielding effectiveness of 79 dB, about 10 times of that of blended Ti3C2Tx@Fe3O4/epoxy (8 dB) nanocomposites with the same loadings of Ti3C2Tx and Fe3O4. Meantime, the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability (Theat-resistance index of 198.7 °C) and mechanical properties (storage modulus of 9902.1 MPa, Young's modulus of 4.51 GPa and hardness of 0.34 GPa). Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security, aerospace and weapon manufacturing, etc.
Highlights:
1 Ti3C2Tx@Fe3O4/CNF aerogels (BTFCA)/epoxy electromagnetic interference (EMI) shielding nanocomposites with long-range aligned lamellar structures were prepared by bidirectional freezing, freeze-drying and vacuum-assisted impregnation of epoxy resins.
2 Successful construction of 3D long-range aligned lamellar structures and electromagnetic synergistic effect could significantly increase the EMI shielding effectiveness and reduce the secondary contamination.
3 BTFCA/epoxy EMI shielding nanocomposites possessed outstanding EMI shielding effectiveness of 79 dB, and also presented excellent thermal stabilities and mechanical properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Shahzad, M. Alhabeb, C. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano. Micro. Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
- Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
- Y.J. Mao, L. Xu, H. Lin, J. Li, D.X. Yan et al., Effective electromagnetic interference shielding properties of micro-truss structured CNT/epoxy composites fabricated based on visible light processing. Compos. Sci. Technol. 221, 109296 (2022). https://doi.org/10.1016/j.compscitech.2022.109296
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano. Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- P. Hu, J. Lyu, C. Fu, W. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14(1), 688–697 (2019). https://doi.org/10.1021/acsnano.9b07459
- C.B. Li, Y.J. Li, Q. Zhao, Y. Luo, G.Y. Yang et al., Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression. ACS Appl. Mater. Interfaces 12(27), 30686–30694 (2020). https://doi.org/10.1021/acsami.0c05688
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- Y. Li, X. Lan, F. Wu, J. Liu, P. Huang et al., Steam-chest molding of polypropylene/carbon black composite foams as broadband EMI shields with high absorptivity. Compos. Commun. 22, 100508 (2020). https://doi.org/10.1016/j.coco.2020.100508
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- J. Chen, X. Liao, W. Xiao, J. Yang, Q. Jiang et al., Facile and green method to structure ultralow-threshold and lightweight polystyrene/MWCNT composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustainable. Chem. Eng. 7(11), 9904–9915 (2019). https://doi.org/10.1021/acssuschemeng.9b00678
- S. Zhao, H.B. Zhang, J. Luo, Q. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2019). https://doi.org/10.1002/aelm.201901094
- K. Pang, X. Liu, Y. Liu, Y. Chen, Z. Xu et al., Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding. Carbon 179, 202–208 (2021). https://doi.org/10.1016/j.carbon.2021.04.027
- M. Ying, R. Zhao, X. Hu, Z. Zhang, W. Liu et al., Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem. Int. Ed. 134(16), e202201323 (2022). https://doi.org/10.1002/ange.202201323
- X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932–940 (2021). https://doi.org/10.1016/j.carbon.2020.11.036
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2T x: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- B. Zhou, Q. Li, P. Xu, Y. Feng, J. Ma et al., An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. ACS Appl. Mater. Interfaces 13(4), 2378–2388 (2021). https://doi.org/10.1039/D0NR07840A
- B. Zhou, M. Su, D. Yang, G. Han, C. Shen, Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12(36), 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
- Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
- L. Li, Y. Cao, X. Liu, J. Wang, Y. Yang et al., Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 12(24), 27350–27360 (2020). https://doi.org/10.1021/acsami.0c05692
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
- N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
- H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- F. Zou, J. Chen, X. Liao, P. Song, G. Li, Efficient electrical conductivity and electromagnetic interference shielding performance of double percolated polymer composite foams by phase coarsening in supercritical CO2. Compos. Sci. Technol. 213, 108895 (2021). https://doi.org/10.1016/j.compscitech.2021.108895
- Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- S. Shi, B. Qian, X. Wu, H. Sun, H. Wang et al., Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58(50), 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- Z. Wu, T. Shang, Y. Deng, Y. Tao, Q.H. Yang, The assembly of MXenes from 2D to 3D. Adv. Sci. 7(7), 1903077 (2020). https://doi.org/10.1002/advs.201903077
- G.S. Lee, T. Yun, H. Kim, I.H. Kim, J. Choi et al., Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14(9), 11722–11732 (2020). https://doi.org/10.1021/acsnano.0c04411
- H. Liu, Z. Huang, T. Chen, X. Su, Y. Liu et al., Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 427, 131540 (2022). https://doi.org/10.1016/j.cej.2021.131540
- Z. Deng, P. Tang, X. Wu, H.B. Zhang, Z.Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
- Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- X. Wu, B. Han, H.B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- Z. Lu, F. Jia, L. Zhuo, D. Ning, K. Gao et al., Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B Eng. 217, 108853 (2021). https://doi.org/10.1016/j.compositesb.2021.108853
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1016/j.compositesb.2021.108853
- B.W. Liu, M. Cao, Y.Y. Zhang, Y.Z. Wang, H.B. Zhao, Multifunctional protective aerogel with superelasticity over -196 to 500 °C. Nano Res. 15, 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2
- M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
- P. Sambyal, A. Iqbal, J. Hong, H. Kim, M. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
- S. Cao, X. Feng, Y. Song, X. Xue, H. Liu et al., Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(20), 10695–10701 (2015). https://doi.org/10.1021/acsami.5b02693
- W. Chen, D. Zhang, K. Yang, M. Luo, P. Yang et al., MXene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. Chem. Eng. J. 413, 127524 (2021). https://doi.org/10.1016/j.cej.2020.127524
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- H. Peng, M. He, Y. Zhou, Z. Song, Y. Wang et al., Low-temperature carbonized biomimetic cellulose nanofiber/MXene composite membrane with excellent microwave absorption performance and tunable absorption bands. Chem. Eng. J. 433, 133269 (2022). https://doi.org/10.1016/j.cej.2021.133269
- L. Li, S. Zhao, X.J. Luo, H.B. Zhang, Z.Z. Yu, Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
- C. Lei, Y. Zhang, D. Liu, K. Wu, Q. Fu, Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 12(23), 26485–26495 (2020). https://doi.org/10.1021/acsami.0c07387
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- Y. Zhang, Z. Ma, K. Ruan, J. Gu, Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano. Res. 15, 5601–5609 (2022). https://doi.org/10.1007/s12274-022-4358-7
- N. Liu, Y. Dou, X. Zhang, L. Yu, X. Yan, Design of porous FeNi-carbon nanosheets by a double-effect synergistic strategy for electromagnetic wave absorption. Carbon 190, 125–135 (2022). https://doi.org/10.1016/j.carbon.2022.01.007
- Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
- V. Shukla, Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites. J. Mater. Sci. 55(7), 2826–2835 (2020). https://doi.org/10.1007/s10853-019-04198-w
- H. Fang, H. Guo, Y. Hu, Y. Ren, P.C. Hsu et al., In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020). https://doi.org/10.1016/j.compscitech.2019.107975
- S. Zhu, Q. Cheng, C. Yu, X. Pan, X. Zuo et al., Flexible Fe3O4/graphene foam/poly dimethylsiloxane composite for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 189, 108012 (2020). https://doi.org/10.1016/j.compscitech.2020.108012
- T. Ozkaya, M.S. Toprak, A. Baykal, H. Kavas, Y. Köseoğlu et al., Synthesis of Fe3O4 nanops at 100 C and its magnetic characterization. J. Alloys. Compd. 472(2), 18–23 (2009). https://doi.org/10.1016/j.compscitech.2020.108012
- C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang et al., In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem. Int. Ed. 134(11), e202116282 (2022). https://doi.org/10.1002/ange.202116282
- W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13(2), 1547–1554 (2019). https://doi.org/10.1021/acsnano.8b07337
- X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan et al., One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6(14), 8140–8148 (2014). https://doi.org/10.1039/C4NR01738B
- M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang et al., High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10(12), 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597
- C. Zhu, E. Chalmers, L. Chen, Y. Wang, B.B. Xu et al., A nature-inspired, flexible substrate strategy for future wearable electronics. Small 15(35), 1902440 (2019). https://doi.org/10.1002/smll.201902440
- Z. Liu, X. Fan, L. Cheng, J. Zhang, L. Tang et al., Hybrid polymer membrane functionalized PBO fibers/cyanate esters wave-transparent laminated composites. Adv. Fiber. Mater. 4(3), 520–531 (2022). https://doi.org/10.1007/s42765-021-00125-4
References
F. Shahzad, M. Alhabeb, C. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano. Micro. Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
Y.J. Mao, L. Xu, H. Lin, J. Li, D.X. Yan et al., Effective electromagnetic interference shielding properties of micro-truss structured CNT/epoxy composites fabricated based on visible light processing. Compos. Sci. Technol. 221, 109296 (2022). https://doi.org/10.1016/j.compscitech.2022.109296
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano. Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
P. Hu, J. Lyu, C. Fu, W. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14(1), 688–697 (2019). https://doi.org/10.1021/acsnano.9b07459
C.B. Li, Y.J. Li, Q. Zhao, Y. Luo, G.Y. Yang et al., Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression. ACS Appl. Mater. Interfaces 12(27), 30686–30694 (2020). https://doi.org/10.1021/acsami.0c05688
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
Y. Li, X. Lan, F. Wu, J. Liu, P. Huang et al., Steam-chest molding of polypropylene/carbon black composite foams as broadband EMI shields with high absorptivity. Compos. Commun. 22, 100508 (2020). https://doi.org/10.1016/j.coco.2020.100508
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
J. Chen, X. Liao, W. Xiao, J. Yang, Q. Jiang et al., Facile and green method to structure ultralow-threshold and lightweight polystyrene/MWCNT composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustainable. Chem. Eng. 7(11), 9904–9915 (2019). https://doi.org/10.1021/acssuschemeng.9b00678
S. Zhao, H.B. Zhang, J. Luo, Q. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2019). https://doi.org/10.1002/aelm.201901094
K. Pang, X. Liu, Y. Liu, Y. Chen, Z. Xu et al., Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding. Carbon 179, 202–208 (2021). https://doi.org/10.1016/j.carbon.2021.04.027
M. Ying, R. Zhao, X. Hu, Z. Zhang, W. Liu et al., Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem. Int. Ed. 134(16), e202201323 (2022). https://doi.org/10.1002/ange.202201323
X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932–940 (2021). https://doi.org/10.1016/j.carbon.2020.11.036
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2T x: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
B. Zhou, Q. Li, P. Xu, Y. Feng, J. Ma et al., An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. ACS Appl. Mater. Interfaces 13(4), 2378–2388 (2021). https://doi.org/10.1039/D0NR07840A
B. Zhou, M. Su, D. Yang, G. Han, C. Shen, Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12(36), 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films: preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
L. Li, Y. Cao, X. Liu, J. Wang, Y. Yang et al., Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 12(24), 27350–27360 (2020). https://doi.org/10.1021/acsami.0c05692
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
N. Li, Y. Huang, F. Du, X. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
F. Zou, J. Chen, X. Liao, P. Song, G. Li, Efficient electrical conductivity and electromagnetic interference shielding performance of double percolated polymer composite foams by phase coarsening in supercritical CO2. Compos. Sci. Technol. 213, 108895 (2021). https://doi.org/10.1016/j.compscitech.2021.108895
Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
S. Shi, B. Qian, X. Wu, H. Sun, H. Wang et al., Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58(50), 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
Z. Wu, T. Shang, Y. Deng, Y. Tao, Q.H. Yang, The assembly of MXenes from 2D to 3D. Adv. Sci. 7(7), 1903077 (2020). https://doi.org/10.1002/advs.201903077
G.S. Lee, T. Yun, H. Kim, I.H. Kim, J. Choi et al., Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14(9), 11722–11732 (2020). https://doi.org/10.1021/acsnano.0c04411
H. Liu, Z. Huang, T. Chen, X. Su, Y. Liu et al., Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 427, 131540 (2022). https://doi.org/10.1016/j.cej.2021.131540
Z. Deng, P. Tang, X. Wu, H.B. Zhang, Z.Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
X. Wu, B. Han, H.B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
Z. Lu, F. Jia, L. Zhuo, D. Ning, K. Gao et al., Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B Eng. 217, 108853 (2021). https://doi.org/10.1016/j.compositesb.2021.108853
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1016/j.compositesb.2021.108853
B.W. Liu, M. Cao, Y.Y. Zhang, Y.Z. Wang, H.B. Zhao, Multifunctional protective aerogel with superelasticity over -196 to 500 °C. Nano Res. 15, 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2
M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
P. Sambyal, A. Iqbal, J. Hong, H. Kim, M. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
S. Cao, X. Feng, Y. Song, X. Xue, H. Liu et al., Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(20), 10695–10701 (2015). https://doi.org/10.1021/acsami.5b02693
W. Chen, D. Zhang, K. Yang, M. Luo, P. Yang et al., MXene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. Chem. Eng. J. 413, 127524 (2021). https://doi.org/10.1016/j.cej.2020.127524
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
H. Peng, M. He, Y. Zhou, Z. Song, Y. Wang et al., Low-temperature carbonized biomimetic cellulose nanofiber/MXene composite membrane with excellent microwave absorption performance and tunable absorption bands. Chem. Eng. J. 433, 133269 (2022). https://doi.org/10.1016/j.cej.2021.133269
L. Li, S. Zhao, X.J. Luo, H.B. Zhang, Z.Z. Yu, Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
C. Lei, Y. Zhang, D. Liu, K. Wu, Q. Fu, Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 12(23), 26485–26495 (2020). https://doi.org/10.1021/acsami.0c07387
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
Y. Zhang, Z. Ma, K. Ruan, J. Gu, Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano. Res. 15, 5601–5609 (2022). https://doi.org/10.1007/s12274-022-4358-7
N. Liu, Y. Dou, X. Zhang, L. Yu, X. Yan, Design of porous FeNi-carbon nanosheets by a double-effect synergistic strategy for electromagnetic wave absorption. Carbon 190, 125–135 (2022). https://doi.org/10.1016/j.carbon.2022.01.007
Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
V. Shukla, Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites. J. Mater. Sci. 55(7), 2826–2835 (2020). https://doi.org/10.1007/s10853-019-04198-w
H. Fang, H. Guo, Y. Hu, Y. Ren, P.C. Hsu et al., In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020). https://doi.org/10.1016/j.compscitech.2019.107975
S. Zhu, Q. Cheng, C. Yu, X. Pan, X. Zuo et al., Flexible Fe3O4/graphene foam/poly dimethylsiloxane composite for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 189, 108012 (2020). https://doi.org/10.1016/j.compscitech.2020.108012
T. Ozkaya, M.S. Toprak, A. Baykal, H. Kavas, Y. Köseoğlu et al., Synthesis of Fe3O4 nanops at 100 C and its magnetic characterization. J. Alloys. Compd. 472(2), 18–23 (2009). https://doi.org/10.1016/j.compscitech.2020.108012
C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang et al., In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem. Int. Ed. 134(11), e202116282 (2022). https://doi.org/10.1002/ange.202116282
W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13(2), 1547–1554 (2019). https://doi.org/10.1021/acsnano.8b07337
X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan et al., One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6(14), 8140–8148 (2014). https://doi.org/10.1039/C4NR01738B
M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang et al., High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10(12), 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597
C. Zhu, E. Chalmers, L. Chen, Y. Wang, B.B. Xu et al., A nature-inspired, flexible substrate strategy for future wearable electronics. Small 15(35), 1902440 (2019). https://doi.org/10.1002/smll.201902440
Z. Liu, X. Fan, L. Cheng, J. Zhang, L. Tang et al., Hybrid polymer membrane functionalized PBO fibers/cyanate esters wave-transparent laminated composites. Adv. Fiber. Mater. 4(3), 520–531 (2022). https://doi.org/10.1007/s42765-021-00125-4