A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
Corresponding Author: Jian Zhu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 50
Abstract
Silicon monoxide (SiO) is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g−1. The studies to date have been limited to electrodes with a relatively low mass loading (< 3.5 mg cm−2), which has seriously restricted the areal capacity and its potential in practical devices. Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practical technologies. Herein, we report a monolithic three-dimensional (3D) large-sheet holey graphene framework/SiO (LHGF/SiO) composite for high-mass-loading electrode. By specifically using large-sheet holey graphene building blocks, we construct LHGF with super-elasticity and exceptional mechanical robustness, which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading. Additionally, the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport. By systematically tailoring microstructure design, we show the LHGF/SiO anode with a mass loading of 44 mg cm−2 delivers a high areal capacity of 35.4 mAh cm−2 at a current of 8.8 mA cm−2 and retains a capacity of 10.6 mAh cm−2 at 17.6 mA cm−2, greatly exceeding those of the state-of-the-art commercial or research devices. Furthermore, we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm−2 delivers an unprecedented areal capacity up to 140.8 mAh cm−2. The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries.
Highlights:
1 The large-sheet holey graphene framework/SiO (LHGF/SiO) composite displays notably high recoverable strain, suggesting considerably improved mechanical flexibility and robustness
2 The LHGF/SiO anode with a mass loading of 44 mg cm−2 delivers a high areal capacity of 35.4 mAh cm−2 at current density of 8.8 mA cm−2 and retains a capacity of 10.6 mAh cm−2 at 17.6 mA cm−2
3 The LHGF/SiO anode with an ultra-high mass loading of 94 mg cm−2 delivers an extraordinary areal capacity up to 140.8 mAh cm−2, about 1–2 order of magnitude higher than those in typical commercial devices
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.H. Park, P.J. King, R. Tian, C.S. Boland, J. Coelho et al., High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019). https://doi.org/10.1038/s41560-019-0398-y
- Y. Li, K. Yan, H.W. Lee, Z. Lu, N. Liu et al., Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29
- Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019). https://doi.org/10.1039/C8CS00441B
- Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu et al., Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 20, 76–83 (2021). https://doi.org/10.1038/s41563-020-0756-y
- L. Zhang, C. Wang, Y. Dou, N. Cheng, D. Cui et al., A unique yolk-shell structured silicon anode with superior conductivity and high tap density for full Li-ion batteries. Angew. Chem. Int. Ed. 58(26), 8824–8828 (2019). https://doi.org/10.1002/anie.201903709
- Z. Liu, Y. Zhao, R. He, W. Luo, J. Meng et al., Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater. 19, 299–305 (2018). https://doi.org/10.1016/j.ensm.2018.10.011
- Q. Ai, Q. Fang, J. Liang, X. Xu, T. Zhai et al., Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 72, 104657 (2020). https://doi.org/10.1016/j.nanoen.2020.104657
- Q. Xu, J.K. Sun, Z.L. Yu, Y.X. Yin, S. Xin et al., SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv. Mater. 30(25), 1707430 (2018). https://doi.org/10.1002/adma.201707430
- G. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(5), 1307–1338 (2018). https://doi.org/10.1039/C7EE03617E
- F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018). https://doi.org/10.1038/s41565-018-0097-z
- H.M. Cheng, F. Li, Charge delivery goes the distance. Science 356(6338), 582–583 (2017). https://doi.org/10.1126/science.aan1472
- H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene-niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599–604 (2017). https://doi.org/10.1126/science.aam5852
- H. Jin, S. Xin, W. Li, L. Wang, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370(6513), 192–197 (2020). https://doi.org/10.1126/science.aav5842
- Z. Lin, T. Liu, X. Ai, C. Liang, Aligning academia and industry for unified battery performance metrics. Nat. Commun. 9, 5262 (2018). https://doi.org/10.1038/s41467-018-07599-8
- Y. Dong, Z.S. Wu, W. Ren, H.M. Cheng, X. Bao, Graphene: a promising 2D material for electrochemical energy storage. Sci. Bull. 62(10), 724–740 (2017). https://doi.org/10.1016/j.scib.2017.04.010
- Y. Xu, C. Chen, Z. Zhao, Z. Lin, C. Lee et al., Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15(7), 4605–4610 (2015). https://doi.org/10.1021/acs.nanolett.5b01212
- H. Shi, X. Zhao, Z.S. Wu, Y. Dong, P. Lu et al., Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. Nano Energy 60, 743–751 (2019). https://doi.org/10.1016/j.nanoen.2019.04.006
- F. Su, Z.S. Wu, A perspective on graphene for supercapacitors: current status and future challenges. J. Energy Chem. 53, 354–357 (2021). https://doi.org/10.1016/j.jechem.2020.05.041
- P. Wang, H. Ye, Y.X. Yin, H. Chen, Y.B. Bian et al., Fungi-enabled synthesis of ultrahigh-surface-area porous carbon. Adv. Mater. 31(4), 1805134 (2019). https://doi.org/10.1002/adma.201805134
- X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363(6428), 723–727 (2019). https://doi.org/10.1126/science.aav7304
- Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong et al., Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv. Mater. 28(41), 9223–9230 (2016). https://doi.org/10.1002/adma.201603079
- Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong et al., Hyperbolically patterned 3D graphene metamaterial with negative Poisson’s ratio and superelasticity. Adv. Mater. 28(11), 2229–2237 (2016). https://doi.org/10.1002/adma.201505409
- B. Wang, J. Ryu, S. Choi, X. Zhang, D. Pribat et al., Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13(2), 2307–2315 (2019). https://doi.org/10.1021/acsnano.8b09034
- S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120(14), 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
- J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
- Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang et al., Mxene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13(2), 2167–2175 (2019). https://doi.org/10.1021/acsnano.8b08821
- G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen et al., A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28(19), 3646–3652 (2016). https://doi.org/10.1002/adma.201600689
- B.H. Shen, S. Wang, W.E. Tenhaeff, Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability. Sci. Adv. 5(7), aaw4856 (2019). https://doi.org/10.1126/sciadv.aaw4856
- P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003). https://doi.org/10.1149/1.1543948
- N. Wang, X. Zhang, Z. Ju, X. Yu, Y. Wang et al., Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519 (2021). https://doi.org/10.1038/s41467-021-24873-4
- N. Ogihara, Y. Itou, S. Kawauchi, Ion transport in porous electrodes obtained by impedance using a symmetric cell with predictable low-temperature battery performance. J. Phys. Chem. Lett. 10(17), 5013–5018 (2019). https://doi.org/10.1021/acs.jpclett.9b01670
- K. Pan, F. Zou, M. Canova, Y. Zhu, J. Kim, Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries. J. Power Sources 413, 20–28 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.010
- J. Liang, H. Sun, Z. Zhao, Y. Wang, Z. Feng et al., Ultra-high areal capacity realized in three-dimensional holey graphene/SnO2 composite anodes. iScience 19, 728–736 (2019). https://doi.org/10.1016/j.isci.2019.08.025
- W. An, B. Gao, S. Mei, B. Xiang, J. Fu et al., Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 10, 1447 (2019). https://doi.org/10.1038/s41467-019-09510-5
- Y. Zhang, Y. Shi, X.C. Hu, W.P. Wang, R. Wen et al., A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries. Adv. Energy Mater. 10(3), 1903325 (2020). https://doi.org/10.1002/aenm.201903325
- Q. Xu, J.K. Sun, Y.X. Yin, Y.G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 28(8), 1705235 (2018). https://doi.org/10.1002/adfm.201705235
- X. Chang, Y. Ma, M. Yang, T. Xing, L. Tang et al., In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Storage Mater. 23, 358–366 (2019). https://doi.org/10.1016/j.ensm.2019.04.039
- M. Xu, Q. Xia, J. Yue, X. Zhu, Q. Guo et al., Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv. Funct. Mater. 29(6), 1807377 (2019). https://doi.org/10.1002/adfm.201807377
- L. Fang, J. Xu, S. Sun, B. Lin, Q. Guo et al., Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 15(10), 1804806 (2019). https://doi.org/10.1002/smll.201804806
- H. Wang, J. Fu, C. Wang, J. Wang, A. Yang et al., A binder-free high silicon content flexible anode for Li-ion batteries. Energy Environ. Sci. 13(3), 848–858 (2020). https://doi.org/10.1039/C9EE02615K
- B. Lu, B. Ma, X. Deng, B. Wu, Z. Wu et al., Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery. Chem. Eng. J. 351, 269–279 (2018). https://doi.org/10.1016/j.cej.2018.06.109
- L. Shi, C. Pang, S. Chen, M. Wang, K. Wang et al., Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes. Nano Lett. 17(6), 3681–3687 (2017). https://doi.org/10.1021/acs.nanolett.7b00906
- X. Kong, Y. Zheng, Y. Wang, S. Liang, G. Cao et al., Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Sci. Bull. 64(4), 261–269 (2019). https://doi.org/10.1016/j.scib.2019.01.015
- D. He, P. Li, W.A. Wang, Q. Wan, J. Zhang et al., Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage. Small 16(5), 1905736 (2019). https://doi.org/10.1002/smll.201905736
- N. Kim, H. Park, N. Yoon, J.K. Lee, Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes. ACS Nano 12(4), 3853–3864 (2018). https://doi.org/10.1021/acsnano.8b01129
- T. Ma, H. Xu, X. Yu, H. Li, W. Zhang et al., Lithiation behavior of coaxial hollow nano-cables of carbon-silicon composite. ACS Nano 3(2), 2274–2280 (2019). https://doi.org/10.1021/acsnano.8b08962
- Y. Zheng, H.J. Seifert, H. Shi, Y. Zhang, C. Kübel et al., 3D silicon/graphite composite electrodes for high-energy lithium-ion batteries. Electrochim. Acta 317, 502–508 (2019). https://doi.org/10.1016/j.electacta.2019.05.064
References
S.H. Park, P.J. King, R. Tian, C.S. Boland, J. Coelho et al., High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019). https://doi.org/10.1038/s41560-019-0398-y
Y. Li, K. Yan, H.W. Lee, Z. Lu, N. Liu et al., Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29
Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019). https://doi.org/10.1039/C8CS00441B
Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu et al., Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 20, 76–83 (2021). https://doi.org/10.1038/s41563-020-0756-y
L. Zhang, C. Wang, Y. Dou, N. Cheng, D. Cui et al., A unique yolk-shell structured silicon anode with superior conductivity and high tap density for full Li-ion batteries. Angew. Chem. Int. Ed. 58(26), 8824–8828 (2019). https://doi.org/10.1002/anie.201903709
Z. Liu, Y. Zhao, R. He, W. Luo, J. Meng et al., Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater. 19, 299–305 (2018). https://doi.org/10.1016/j.ensm.2018.10.011
Q. Ai, Q. Fang, J. Liang, X. Xu, T. Zhai et al., Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 72, 104657 (2020). https://doi.org/10.1016/j.nanoen.2020.104657
Q. Xu, J.K. Sun, Z.L. Yu, Y.X. Yin, S. Xin et al., SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv. Mater. 30(25), 1707430 (2018). https://doi.org/10.1002/adma.201707430
G. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(5), 1307–1338 (2018). https://doi.org/10.1039/C7EE03617E
F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018). https://doi.org/10.1038/s41565-018-0097-z
H.M. Cheng, F. Li, Charge delivery goes the distance. Science 356(6338), 582–583 (2017). https://doi.org/10.1126/science.aan1472
H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene-niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599–604 (2017). https://doi.org/10.1126/science.aam5852
H. Jin, S. Xin, W. Li, L. Wang, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370(6513), 192–197 (2020). https://doi.org/10.1126/science.aav5842
Z. Lin, T. Liu, X. Ai, C. Liang, Aligning academia and industry for unified battery performance metrics. Nat. Commun. 9, 5262 (2018). https://doi.org/10.1038/s41467-018-07599-8
Y. Dong, Z.S. Wu, W. Ren, H.M. Cheng, X. Bao, Graphene: a promising 2D material for electrochemical energy storage. Sci. Bull. 62(10), 724–740 (2017). https://doi.org/10.1016/j.scib.2017.04.010
Y. Xu, C. Chen, Z. Zhao, Z. Lin, C. Lee et al., Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15(7), 4605–4610 (2015). https://doi.org/10.1021/acs.nanolett.5b01212
H. Shi, X. Zhao, Z.S. Wu, Y. Dong, P. Lu et al., Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. Nano Energy 60, 743–751 (2019). https://doi.org/10.1016/j.nanoen.2019.04.006
F. Su, Z.S. Wu, A perspective on graphene for supercapacitors: current status and future challenges. J. Energy Chem. 53, 354–357 (2021). https://doi.org/10.1016/j.jechem.2020.05.041
P. Wang, H. Ye, Y.X. Yin, H. Chen, Y.B. Bian et al., Fungi-enabled synthesis of ultrahigh-surface-area porous carbon. Adv. Mater. 31(4), 1805134 (2019). https://doi.org/10.1002/adma.201805134
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363(6428), 723–727 (2019). https://doi.org/10.1126/science.aav7304
Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong et al., Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv. Mater. 28(41), 9223–9230 (2016). https://doi.org/10.1002/adma.201603079
Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong et al., Hyperbolically patterned 3D graphene metamaterial with negative Poisson’s ratio and superelasticity. Adv. Mater. 28(11), 2229–2237 (2016). https://doi.org/10.1002/adma.201505409
B. Wang, J. Ryu, S. Choi, X. Zhang, D. Pribat et al., Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13(2), 2307–2315 (2019). https://doi.org/10.1021/acsnano.8b09034
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120(14), 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang et al., Mxene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13(2), 2167–2175 (2019). https://doi.org/10.1021/acsnano.8b08821
G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen et al., A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28(19), 3646–3652 (2016). https://doi.org/10.1002/adma.201600689
B.H. Shen, S. Wang, W.E. Tenhaeff, Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability. Sci. Adv. 5(7), aaw4856 (2019). https://doi.org/10.1126/sciadv.aaw4856
P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003). https://doi.org/10.1149/1.1543948
N. Wang, X. Zhang, Z. Ju, X. Yu, Y. Wang et al., Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519 (2021). https://doi.org/10.1038/s41467-021-24873-4
N. Ogihara, Y. Itou, S. Kawauchi, Ion transport in porous electrodes obtained by impedance using a symmetric cell with predictable low-temperature battery performance. J. Phys. Chem. Lett. 10(17), 5013–5018 (2019). https://doi.org/10.1021/acs.jpclett.9b01670
K. Pan, F. Zou, M. Canova, Y. Zhu, J. Kim, Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries. J. Power Sources 413, 20–28 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.010
J. Liang, H. Sun, Z. Zhao, Y. Wang, Z. Feng et al., Ultra-high areal capacity realized in three-dimensional holey graphene/SnO2 composite anodes. iScience 19, 728–736 (2019). https://doi.org/10.1016/j.isci.2019.08.025
W. An, B. Gao, S. Mei, B. Xiang, J. Fu et al., Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 10, 1447 (2019). https://doi.org/10.1038/s41467-019-09510-5
Y. Zhang, Y. Shi, X.C. Hu, W.P. Wang, R. Wen et al., A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries. Adv. Energy Mater. 10(3), 1903325 (2020). https://doi.org/10.1002/aenm.201903325
Q. Xu, J.K. Sun, Y.X. Yin, Y.G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 28(8), 1705235 (2018). https://doi.org/10.1002/adfm.201705235
X. Chang, Y. Ma, M. Yang, T. Xing, L. Tang et al., In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Storage Mater. 23, 358–366 (2019). https://doi.org/10.1016/j.ensm.2019.04.039
M. Xu, Q. Xia, J. Yue, X. Zhu, Q. Guo et al., Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv. Funct. Mater. 29(6), 1807377 (2019). https://doi.org/10.1002/adfm.201807377
L. Fang, J. Xu, S. Sun, B. Lin, Q. Guo et al., Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 15(10), 1804806 (2019). https://doi.org/10.1002/smll.201804806
H. Wang, J. Fu, C. Wang, J. Wang, A. Yang et al., A binder-free high silicon content flexible anode for Li-ion batteries. Energy Environ. Sci. 13(3), 848–858 (2020). https://doi.org/10.1039/C9EE02615K
B. Lu, B. Ma, X. Deng, B. Wu, Z. Wu et al., Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery. Chem. Eng. J. 351, 269–279 (2018). https://doi.org/10.1016/j.cej.2018.06.109
L. Shi, C. Pang, S. Chen, M. Wang, K. Wang et al., Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes. Nano Lett. 17(6), 3681–3687 (2017). https://doi.org/10.1021/acs.nanolett.7b00906
X. Kong, Y. Zheng, Y. Wang, S. Liang, G. Cao et al., Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Sci. Bull. 64(4), 261–269 (2019). https://doi.org/10.1016/j.scib.2019.01.015
D. He, P. Li, W.A. Wang, Q. Wan, J. Zhang et al., Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage. Small 16(5), 1905736 (2019). https://doi.org/10.1002/smll.201905736
N. Kim, H. Park, N. Yoon, J.K. Lee, Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes. ACS Nano 12(4), 3853–3864 (2018). https://doi.org/10.1021/acsnano.8b01129
T. Ma, H. Xu, X. Yu, H. Li, W. Zhang et al., Lithiation behavior of coaxial hollow nano-cables of carbon-silicon composite. ACS Nano 3(2), 2274–2280 (2019). https://doi.org/10.1021/acsnano.8b08962
Y. Zheng, H.J. Seifert, H. Shi, Y. Zhang, C. Kübel et al., 3D silicon/graphite composite electrodes for high-energy lithium-ion batteries. Electrochim. Acta 317, 502–508 (2019). https://doi.org/10.1016/j.electacta.2019.05.064