Advanced Functional Electromagnetic Shielding Materials: A Review Based on Micro-Nano Structure Interface Control of Biomass Cell Walls
Corresponding Author: Xiangmeng Chen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 3
Abstract
Research efforts on electromagnetic interference (EMI) shielding materials have begun to converge on green and sustainable biomass materials. These materials offer numerous advantages such as being lightweight, porous, and hierarchical. Due to their porous nature, interfacial compatibility, and electrical conductivity, biomass materials hold significant potential as EMI shielding materials. Despite concerted efforts on the EMI shielding of biomass materials have been reported, this research area is still relatively new compared to traditional EMI shielding materials. In particular, a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment, preparation process, and micro-control would be valuable. The preparation methods and characteristics of wood, bamboo, cellulose and lignin in EMI shielding field are critically discussed in this paper, and similar biomass EMI materials are summarized and analyzed. The composite methods and fillers of various biomass materials were reviewed. this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
Highlights:
1 The advantages of biomass materials for electromagnetic interference (EMI) shielding are analyzed, the mechanism of EMI shielding is summarized, and the factors affecting EMI shielding are analyzed systematically.
2 Various biomass materials (wood, bamboo, lignin, cellulose) were modified to obtain unique structures and improve EMI shielding performance.
3 The problems encountered in the application of biomass materials for EMI shielding are summarized, and the potential development and application in the future are prospected.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.K. Shetty, J. Bhagawati, S. Shetty, L.R. Rodrigues, A. Kumar et al., Enhancing technology acceptance through user experience evaluation: comparative analysis of banking website versus mobile application. Eng. Sci. 19, 154–166 (2022). https://doi.org/10.30919/es8e678
- K. Thenkumari, K.S. Sankaran, J.M. Mathana, Design and implementation of frequency reconfigurable antenna for Wi-Fi applications. Eng. Sci. 23, 876 (2023). https://doi.org/10.30919/es8d876
- S.K. Singh, T. Sharan, A.K. Singh, Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-fed antenna for multiband wireless communications. Eng. Sci. 17, 274–284 (2021). https://doi.org/10.30919/es8d557
- X. Zhang, T. Zhang, J. Lu, X. Fu, F. Reveriano et al., The effect of high performance computer on deep neural network. Eng. Sci. 15, 67–79 (2021). https://doi.org/10.30919/es8d461
- A. Yang, B. Li, Z. Yan, M. Yang, A bi-directional carrier sense collision avoidance neighbor discovery algorithm in directional wireless ad hoc sensor networks. Sensors 19, 2120 (2019)
- T. Li, H. Wei, Y. Zhang, T. Wan, D. Cui et al., Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr. Polym. 309, 120678 (2023). https://doi.org/10.1016/j.carbpol.2023.120678
- J. Tang, S. Wu, N. AlMasoud, T.S. Alomar, P. Wasnik et al., Defect passivation in perovskite films by p-methoxy phenylacetonitrile for improved device efficiency and stability. Adv. Compos. Hybrid Mater. 6, 155 (2023). https://doi.org/10.1007/s42114-023-00732-2
- J. Tang, Z. Chen, Y. Ma, H. Zhang, Characterization of wicking performance for open rectangular microgrooves under planar EHD effects in two-phase heat transfer devices. Eng. Sci. 19, 100–113 (2022). https://doi.org/10.30919/es8d642
- G.J. Navathe, S.R. Prasad, A.M. Mane, S.H. Barge, T.D. Dongale et al., A critical review on design and development of new generation energy storage devices. ES Energy Environ. 17, 11–32 (2022). https://doi.org/10.30919/esee8c739
- S. Balsure, V. More, S. Kadam, R. Kadam, A. Kadam et al., Synthesis, structural, magnetic, dielectric and optical properties of co doped Cr-Zn oxide nanops for spintronic devices. Eng. Sci. 21, 774 (2022). https://doi.org/10.30919/es8d774
- G. Wu, X. Gao, K. Wan, Mobility control of unmanned aerial vehicle as communication relay to optimize ground-to-air uplinks. Sensors 20, 2332 (2020)
- Y. Lu, Y. Yue, Q. Ding, C. Mei, X. Xu et al., Environment-tolerant ionic hydrogel–elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical–thermal multimode sensor. InfoMat 5, e12409 (2023). https://doi.org/10.1002/inf2.12409
- Z. Li, D. Pan, Z. Han, D.J.P. Kumar, J. Ren et al., Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites. Adv. Compos. Hybrid Mater. 6, 224 (2023). https://doi.org/10.1007/s42114-023-00804-3
- X. Wang, Z. Liu, H. Wang, C. Zeng et al., Direct 3D printing of piezoelectrets: process feasibility, prototypes fabrication and device performance. Eng. Sci. 21, 800 (2022). https://doi.org/10.30919/es8d800
- Z. Wu, X. Deng, X. Yu, J. Gu, Z.M. El-Bahy et al., Electrospun thermoplastic polyurethane membrane decorated with carbon nanotubes: a platform of flexible strain sensors for human motion monitoring. Polymer 303, 127120 (2024). https://doi.org/10.1016/j.polymer.2024.127120
- C. Wei, M. He, M. Li, X. Ma, W. Dang et al., Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 36, 101142 (2023). https://doi.org/10.1016/j.mtphys.2023.101142
- D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites—A review. Polym. Rev. 59, 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
- S. Said, O.E. melhaoui, Y. Guetbach, B. Elhadi, A. Faize, Design of a patch antenna for high-gain applications using one-dimensional electromagnetic band gap structures. Eng. Sci. 27, 1040 (2024). https://doi.org/10.30919/es1040
- L. Wang, J. Cheng, Y. Zou, W. Zheng, Y. Wang et al., Current advances and future perspectives of MXene-based electromagnetic interference shielding materials. Adv. Compos. Hybrid Mater. 6, 172 (2023). https://doi.org/10.1007/s42114-023-00752-y
- S. Zheng, N. Wu, Y. Liu, Q. Wu, Y. Yang et al., Multifunctional flexible, crosslinked composites composed of trashed MXene sediment with high electromagnetic interference shielding performance. Adv. Compos. Hybrid Mater. 6, 161 (2023). https://doi.org/10.1007/s42114-023-00741-1
- J. Liu, M. Wei, H. Li, X. Wang, X. Wang et al., Measurement and mapping of the electromagnetic radiation in the urban environment. Electromagn. Biol. Med. 39, 38–43 (2020). https://doi.org/10.1080/15368378.2019.1685540
- R. Bera, A. Maitra, S. Paria, S.K. Karan, A.K. Das et al., An approach to widen the electromagnetic shielding efficiency in PDMS/ferrous ferric oxide decorated RGO–SWCNH composite through pressure induced tunability. Chem. Eng. J. 335, 501–509 (2018). https://doi.org/10.1016/j.cej.2017.10.178
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
- C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
- T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat 6, e12568 (2024). https://doi.org/10.1002/inf2.12568
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- Y. Yi, C. Zhao, H.L. Shindume, J. Ren, L. Chen et al., Enhanced electromagnetic wave absorption of magnetite-spinach derived carbon composite. Colloids Surf. A Physicochem. Eng. Aspects 694, 134149 (2024). https://doi.org/10.1016/j.colsurfa.2024.134149
- F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15, 220 (2023). https://doi.org/10.1007/s40820-023-01197-0
- S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. 5, 2440–2460 (2022). https://doi.org/10.1007/s42114-022-00458-7
- K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 1078–1089 (2022). https://doi.org/10.1007/s42114-022-00425-2
- Q. Zhang, D. Lan, S. Deng, J. Gu, Y. Wang et al., Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption. Carbon 226, 119233 (2024). https://doi.org/10.1016/j.carbon.2024.119233
- N. Wu, B. Zhao, Y. Lian, S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
- Y. Shi, B. Liang, H. Gao, R. Zhao, Q. Dong et al., Research progress on spherical carbon-based electromagnetic wave absorbing composites. Carbon 227, 119244 (2024). https://doi.org/10.1016/j.carbon.2024.119244
- S. Zhang, D. Lan, J. Zheng, J. Kong, J. Gu et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption. Carbon 221, 118925 (2024). https://doi.org/10.1016/j.carbon.2024.118925
- J. Yan, Z. Ye, D. Lan, W. Chen, Z. Jia et al., Transition metal carbides towards electromagnetic wave absorption application: state of the art and perspectives. Compos. Commun. 48, 101954 (2024). https://doi.org/10.1016/j.coco.2024.101954
- B. Miao, Y. Cao, Q. Zhu, M.A. Nawaz, J.A. Ordiozola et al., Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv. Compos. Hybrid Mater. 6, 61 (2023). https://doi.org/10.1007/s42114-023-00643-2
- H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
- N. Wu, B. Zhao, X. Chen, C. Hou, M. Huang et al., Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv. Compos. Hybrid Mater. 5, 1548–1556 (2022). https://doi.org/10.1007/s42114-022-00490-7
- Y. Wang, P. Wang, Z. Du, C. Liu, C. Shen et al., Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv. Compos. Hybrid Mater. 5, 209–219 (2022). https://doi.org/10.1007/s42114-021-00320-2
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023). https://doi.org/10.1016/j.jcis.2023.08.019
- J. Guo, Z. Chen, X. Xu, X. Li, H. Liu et al., Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5, 1769–1777 (2022). https://doi.org/10.1007/s42114-022-00417-2
- Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, e1800534 (2018). https://doi.org/10.1002/smll.201800534
- M. Arjmand, A.A. Moud, Y. Li, U. Sundararaj, Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes. RSC Adv. 5, 56590–56598 (2015). https://doi.org/10.1039/C5RA08118A
- T. Gao, Y. Ma, L. Ji, Y. Zheng, S. Yan et al., Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2328–2338 (2022). https://doi.org/10.1007/s42114-022-00420-7
- Z. Cui, J. Zhou, X. Wang, Q. Wang, J. Si et al., In situ growth of bimetallic nickel cobalt sulfide (NiCo2S4) nanowire arrays encapsulated by nitrogen-doped carbon on carbon cloth as binder-free and flexible electrode for high-performance aqueous Zn batteries. Adv. Compos. Hybrid Mater. 6, 95 (2023). https://doi.org/10.1007/s42114-023-00668-7
- Z. Zhou, D. Lan, J. Ren, Y. Cheng, Z. Jia et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 185, 165–173 (2024). https://doi.org/10.1016/j.jmst.2023.11.010
- J. Yin, W. Ma, Z. Gao, X. Lei, C. Jia, A review of electromagnetic shielding fabric, wave-absorbing fabric and wave-transparent fabric. Polymers 14, 377 (2022). https://doi.org/10.3390/polym14030377
- J. Chang, H. Zhai, Z. Hu, J. Li, Ultra-thin metal composites for electromagnetic interference shielding. Compos. Part B Eng. 246, 110269 (2022). https://doi.org/10.1016/j.compositesb.2022.110269
- Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 28, 1703801 (2018). https://doi.org/10.1002/adfm.201703801
- N. Wu, X. Liu, C. Zhao, C. Cui, A. Xia, Effects of p size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 656, 628–634 (2016). https://doi.org/10.1016/j.jallcom.2015.10.027
- X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang et al., Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115 (2006). https://doi.org/10.1063/1.2236965
- H. Wang, H. Zhang, K. Zhao, A. Nie, S. Alharthi et al., Research progress on electromagnetic wave absorption based on magnetic metal oxides and their composites. Adv. Compos. Hybrid Mater. 6, 120 (2023). https://doi.org/10.1007/s42114-023-00694-5
- J. Bednárek, L. Matějová, Z. Jankovská, M. Vaštyl, B. Sokolová et al., The influence of structural properties on the adsorption capacities of microwave-assisted biochars for metazachlor removal from aqueous solutions. J. Environ. Chem. Eng. 10, 108003 (2022). https://doi.org/10.1016/j.jece.2022.108003
- L. Zhang, B.-W. Liu, Y.-Z. Wang, T. Fu, H.-B. Zhao, P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Compos. Part B Eng. 238, 109944 (2022). https://doi.org/10.1016/j.compositesb.2022.109944
- L. Zou, C. Lan, S. Zhang, X. Zheng, Z. Xu et al., Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding. Nano-Micro Lett. 13, 190 (2021). https://doi.org/10.1007/s40820-021-00709-0
- Y. Li, X. Chen, Q. Wei, W. Liu, Y. Zhang et al., Oxygen-sulfur Co-substitutional Fe@C nanocapsules for improving microwave absorption properties. Sci. Bull. 65, 623–630 (2020). https://doi.org/10.1016/j.scib.2020.01.009
- R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15, 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
- L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu et al., 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 123, 293–300 (2019). https://doi.org/10.1016/j.compositesa.2019.05.030
- Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
- Y. Jiao, C. Wan, W. Zhang, W. Bao, J. Li, Carbon fibers encapsulated with nano-copper: a core-shell structured composite for antibacterial and electromagnetic interference shielding applications. Nanomaterials (Basel) 9, 460 (2019). https://doi.org/10.3390/nano9030460
- C. Wan, J. Li, Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole. Carbohydr. Polym. 161, 158–165 (2017). https://doi.org/10.1016/j.carbpol.2017.01.003
- C. Wan, Y. Jiao, T. Qiang, J. Li, Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding. Carbohydr. Polym. 156, 427–434 (2017). https://doi.org/10.1016/j.carbpol.2016.09.028
- X.Y. Jiang, Q.K. Zhang, S.P. Deng, B. Zhou, B. Wang et al., Enhanced thermoelectric performanceof polythiophene/carbon nanotube-based composites. J. Electron. Mater. 49, 2371–2380 (2020). https://doi.org/10.1007/s11664-019-07935-8
- Y. Long, Z. Zhang, K. Sun, C. Wang, N. Zeng et al., Enhanced electromagnetic wave absorption performance of hematite@carbon nanotubes/polyacrylamide hydrogel composites with good flexibility and biocompatibility. Adv. Compos. Hybrid Mater. 6, 173 (2023). https://doi.org/10.1007/s42114-023-00749-7
- Y. Huang, G. Liu, D. Liu, M. Hao, P. Xie et al., Excellent microwave absorption performance in porous Co/C nanocomposites by biomass conversion. ES Food Agrofor. 12, 888 (2023). https://doi.org/10.30919/esfaf888
- S.H. Kim, W.I. Choi, K.H. Kim, D.J. Yang, S. Heo et al., Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes. Sci. Rep. 6, 33074 (2016). https://doi.org/10.1038/srep33074
- N. Ucar, B.K. Kayaoğlu, A. Bilge, G. Gurel, P. Sencandan et al., Electromagnetic shielding effectiveness of carbon fabric/epoxy composite with continuous graphene oxide fiber and multiwalled carbon nanotube. J. Compos. Mater. 52, 3341–3350 (2018). https://doi.org/10.1177/0021998318765273
- Y. Zhong, D. Liu, Q. Yang, Y. Qu, C. Yu et al., Boosting microwave absorption performance of bio-gel derived Co/C nanocomposites. Eng. Sci. 26, 988 (2023). https://doi.org/10.30919/es988
- S.-S. Wang, D.-Y. Feng, Z.-M. Zhang, X. Liu, K.-P. Ruan et al., Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 42, 897–906 (2024). https://doi.org/10.1007/s10118-024-3098-4
- C. Tang, S. Zhang, J. Zhang, X. Zhang, Z. Hang et al., Silicon carbide coated carbon nanotube porous sponge with super elasticity, low density, high thermal resistivity, and synergistically enhanced electromagnetic interference shielding performances. Chem. Eng. J. 469, 144011 (2023). https://doi.org/10.1016/j.cej.2023.144011
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- H. Wang, J. Fu, C. Wang, J. Wang, A. Yang et al., A binder-free high silicon content flexible anode for Li-ion batteries. Energy Environ. Sci. 13, 848–858 (2020). https://doi.org/10.1039/c9ee02615k
- C. Wang, H. Wang, B. Dang, Z. Wang, X. Shen et al., Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor. Renew. Energy 156, 370–376 (2020). https://doi.org/10.1016/j.renene.2020.04.092
- Y. Chen, J. Fu, B. Dang, Q. Sun, H. Li et al., Artificial wooden nacre: a high specific strength engineering material. ACS Nano 14, 2036–2043 (2020). https://doi.org/10.1021/acsnano.9b08647
- G. Chen, T. Li, C. Chen, C. Wang, Y. Liu et al., A highly conductive cationic wood membrane. Adv. Funct. Mater. 29, 1902772 (2019). https://doi.org/10.1002/adfm.201902772
- X. Han, Y. Ye, F. Lam, J. Pu, F. Jiang, Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 7, 27023–27031 (2019). https://doi.org/10.1039/C9TA11118B
- A.N. Subba Rao, G.B. Nagarajappa, S. Nair, A.M. Chathoth, K.K. Pandey, Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos. Sci. Technol. 182, 107719 (2019). https://doi.org/10.1016/j.compscitech.2019.107719
- W. Cao, W. Zhang, L. Dong, Z. Ma, J. Xu et al., Progress on quantum dot photocatalysts for biomass valorization. Exploration 3, 20220169 (2023). https://doi.org/10.1002/exp.20220169
- Y. Xing, Y. Xue, J. Song, Y. Sun, L. Huang et al., Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding. Appl. Surf. Sci. 436, 865–872 (2018). https://doi.org/10.1016/j.apsusc.2017.12.083
- W. He, J. Li, J. Tian, H. Jing, Y. Li, Characteristics and properties of wood/polyaniline electromagnetic shielding composites synthesized via in situ polymerization. Polym. Compos. 39, 537–543 (2018). https://doi.org/10.1002/pc.23966
- W. Gan, C. Chen, M. Giroux, G. Zhong, M.M. Goyal et al., Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32, 5280–5289 (2020). https://doi.org/10.1021/acs.chemmater.0c01507
- L. Xiang, A.K. Darboe, Z. Luo, X. Qi, J.-J. Shao et al., Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: a combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 6, 215 (2023). https://doi.org/10.1007/s42114-023-00793-3
- Q. Guo, Y. Pan, D. Yin, Y. Wang, J. Huang, High hydrophobic wood/Cu-Fe3O4@graphene/Ni composites for electromagnetic interference shielding. J. Inorg. Organomet. Polym. Mater. 33, 502–514 (2023). https://doi.org/10.1007/s10904-022-02512-9
- Y. Hui, W. Xie, H. Gu, Reduced graphene oxide/nanocellulose/amino-multiwalled carbon nanotubes nanocomposite aerogel for excellent oil adsorption. ES Food Agrofor. 5, 38–44 (2021). https://doi.org/10.30919/esfaf531
- Z. Sun, H. Qi, M. Chen, S. Guo, Z. Huang et al., Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng. Sci. 18, 59–74 (2022). https://doi.org/10.30919/es8d588
- C. Sang, S. Wang, X. Jin, X. Cheng, H. Xiao et al., Nanocellulose-mediated conductive hydrogels with NIR photoresponse and fatigue resistance for multifunctional wearable sensors. Carbohydr. Polym. 333, 121947 (2024). https://doi.org/10.1016/j.carbpol.2024.121947
- D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
- G. Han, Z. Ma, B. Zhou, C. He, B. Wang et al., Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. J. Colloid Interface Sci. 583, 571–578 (2021). https://doi.org/10.1016/j.jcis.2020.09.072
- Q. Zhang, L. Ning, C. Wang, M. Wang, Y. Shen et al., Study of an energy-efficient and cost-friendly electromagnetic shielding material with three-dimensional conductive network fabricated by dispersing Ni–Fe–P alloys coated bamboo fibers in a HDPE matrix. J. Mater. Sci. Mater. Electron. 30, 14631–14645 (2019). https://doi.org/10.1007/s10854-019-01835-7
- Y. Gu, D. Wang, Y. Gao, Y. Yue, W. Yang et al., Solar-powered high-performance lignin-wood evaporator for solar steam generation. Adv. Funct. Mater. 33, 2306947 (2023). https://doi.org/10.1002/adfm.202306947
- C. Wu, L. Zeng, G. Chang, Y. Zhou, K. Yan et al., Composite phase change materials embedded into cellulose/polyacrylamide/graphene nanosheets/silver nanowire hybrid aerogels simultaneously with effective thermal management and anisotropic electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 6, 31 (2023). https://doi.org/10.1007/s42114-022-00618-9
- W. Wang, Y. Liu, S. Li, K. Dong, S. Wang et al., Lead-free and wearing comfort 3D composite fiber-needled fabric for highly efficient X-ray shielding. Adv. Compos. Hybrid Mater. 6, 76 (2023). https://doi.org/10.1007/s42114-023-00642-3
- J.-W. Gu, D.-J. Wang, Special issue: functional polymer materials. Chin. J. Polym. Sci. 42, 895–896 (2024). https://doi.org/10.1007/s10118-024-3165-x
- W. Yuan, J. Yang, F. Yin, Y. Li, Y. Yuan, Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Compos. Commun. 19, 90–98 (2020). https://doi.org/10.1016/j.coco.2020.03.003
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- T. Zhao, J. Zhou, W. Wu, K. Qian, Y. Zhu et al., Antibacterial conductive polyacrylamide/quaternary ammonium chitosan hydrogel for electromagnetic interference shielding and strain sensing. Int. J. Biol. Macromol. 265, 130795 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130795
- W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5, 3748–3756 (2017). https://doi.org/10.1039/C7TC00400A
- Z.-H. Zhou, Y. Liang, H.-D. Huang, L. Li, B. Yang et al., Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 152, 316–324 (2019). https://doi.org/10.1016/j.carbon.2019.06.027
- X. Ma, B. Shen, L. Zhang, Z. Chen, Y. Liu et al., Novel straw-derived carbon materials for electromagnetic interference shielding: a waste-to-wealth and sustainable initiative. ACS Sustainable Chem. Eng. 7, 9663–9670 (2019). https://doi.org/10.1021/acssuschemeng.9b01288
- S. Li, J. Li, N. Ma, D. Liu, G. Sui, Super-compression-resistant multiwalled carbon nanotube/nickel-coated carbonized loofah fiber/polyether ether ketone composite with excellent electromagnetic shielding performance. ACS Sustainable Chem. Eng. 7, 13970–13980 (2019). https://doi.org/10.1021/acssuschemeng.9b02447
- X.-Y. Ye, Y. Chen, J. Yang, H.-Y. Yang, D.-W. Wang et al., Sustainable wearable infrared shielding bamboo fiber fabrics loaded with antimony doped tin oxide/silver binary nanops. Adv. Compos. Hybrid Mater. 6, 106 (2023). https://doi.org/10.1007/s42114-023-00683-8
- X. Wan, Y. Zhao, Z. Li, L. Li, Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration (Beijing) 2, 20210029 (2022). https://doi.org/10.1002/EXP.20210029
- Q. Wang, Z. Liang, F. Li, J. Lee, L.E. Low et al., Dynamically switchable magnetic resonance imaging contrast agents. Exploration (Beijing) 1, 20210009 (2021). https://doi.org/10.1002/EXP.20210009
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- L. Yang, R. Jie, H.-T. Jiang, S. Yong, C. Hong, Quantum spin Hall effect in metamaterials. Acta Phys. Sin. 66, 227803 (2017). https://doi.org/10.7498/aps.66.227803
- E. Hosseini, M. Arjmand, U. Sundararaj, K. Karan, Filler-free conducting polymers as a new class of transparent electromagnetic interference shields. ACS Appl. Mater. Interfaces 12, 28596–28606 (2020). https://doi.org/10.1021/acsami.0c03544
- Y. Liu, Z. Jia, Q. Zhan, Y. Dong, Q. Xu et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 15, 5590–5600 (2022). https://doi.org/10.1007/s12274-022-4287-5
- P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- S.H. Lee, S. Yu, F. Shahzad, W.N. Kim, C. Park et al., Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9, 13432–13440 (2017). https://doi.org/10.1039/C7NR02618H
- H. Guo, Y. Chen, Y. Li, W. Zhou, W. Xu et al., Electrospun fibrous materials and their applications for electromagnetic interference shielding: a review. Compos. Part A Appl. Sci. Manuf. 143, 106309 (2021). https://doi.org/10.1016/j.compositesa.2021.106309
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- R. Ravindren, S. Mondal, K. Nath, N.C. Das, Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos. Part A Appl. Sci. Manuf. 118, 75–89 (2019). https://doi.org/10.1016/j.compositesa.2018.12.012
- V. Shukla, Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 1, 1640–1671 (2019). https://doi.org/10.1039/C9NA00108E
- Y. Cheng, W. Zhu, X. Lu, C. Wang, Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding. Compos. Commun. 27, 100823 (2021). https://doi.org/10.1016/j.coco.2021.100823
- Y. Huangfu, C. Liang, Y. Han, H. Qiu, P. Song et al., Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 169, 70–75 (2019). https://doi.org/10.1016/j.compscitech.2018.11.012
- C. Xiong, T. Wang, Y. Zhang, M. Zhu, Y. Ni, Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 15, 7506–7532 (2022). https://doi.org/10.1007/s12274-022-4512-2
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
- H.C. Chen, K.C. Lee, J.H. Lin, A. Koch, Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical Eq. J Mater Process Tech. 184, 124–130 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.030
- S.A. Hashemi, A. Ghaffarkhah, E. Hosseini, S. Bahrani, P. Najmi et al., Recent progress on hybrid fibrous electromagnetic shields: Key protectors of living species against electromagnetic radiation. Matter 5, 3807–3868 (2022). https://doi.org/10.1016/j.matt.2022.09.012
- L. Wang, P. Song, C.-T. Lin, J. Kong, J. Gu, 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 4093732 (2020). https://doi.org/10.34133/2020/4093732
- M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
- Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I. Seyed Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10, 8205–8213 (2018). https://doi.org/10.1021/acsami.7b19427
- F. Luo, D. Liu, T. Cao, H. Cheng, J. Kuang et al., Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 4, 591–601 (2021). https://doi.org/10.1007/s42114-021-00275-4
- Y. Zhang, S.-H. Yang, Y. Xin, B. Cai, P.-F. Hu et al., Designing symmetric gradient honeycomb structures with carbon-coated iron-based composites for high-efficiency microwave absorption. Nano-Micro Lett. 16, 234 (2024). https://doi.org/10.1007/s40820-024-01435-z
- Y. Wang, W. Zhao, L. Tan, Y. Li, L. Qin et al., Review of polymer-based composites for electromagnetic shielding application. Molecules 28, 5628 (2023). https://doi.org/10.3390/molecules28155628
- Z. Dai, C. Hu, Y. Wei, W. Zhang, J. Xu et al., Highly anisotropic carbonized wood as electronic materials for electromagnetic interference shielding and thermal management. Adv. Electron. Mater. 9, 2300162 (2023). https://doi.org/10.1002/aelm.202300162
- T. Chu, Y. Gao, L. Yi, C. Fan, L. Yan et al., Highly fire-retardant optical wood enabled by transparent fireproof coatings. Adv. Compos. Hybrid Mater. 5, 1821–1829 (2022). https://doi.org/10.1007/s42114-022-00440-3
- C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z
- M. Saiful Islam, S. Hamdan, I. Jusoh, M. Rezaur Rahman, A.S. Ahmed, The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Mater. Des. 33, 419–424 (2012). https://doi.org/10.1016/j.matdes.2011.04.044
- S. Ge, H. Ouyang, H. Ye, Y. Shi, Y. Sheng et al., High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv. Compos. Hybrid Mater. 6, 44 (2023). https://doi.org/10.1007/s42114-023-00628-1
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
- C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
- X. Zeng, X. Jiang, Y. Ning, Y. Gao, R. Che, Constructing built-In electric fields with semiconductor junctions and Schottky junctions based on Mo-MXene/Mo-metal sulfides for electromagnetic response. Nano-Micro Lett. 16, 213 (2024). https://doi.org/10.1007/s40820-024-01449-7
- M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3 C2 Tx MXene films with outstanding conductivity. Adv. Mater. 32, e2001093 (2020). https://doi.org/10.1002/adma.202001093
- Y. Wei, C. Hu, Z. Dai, Y. Zhang, W. Zhang et al., Highly anisotropic MXene@Wood composites for tunable electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 168, 107476 (2023). https://doi.org/10.1016/j.compositesa.2023.107476
- Y. Wei, Z. Dai, Y. Zhang, W. Zhang, J. Gu et al., Multifunctional waterproof MXene-coated wood with high electromagnetic shielding performance. Cellulose 29, 5883–5893 (2022). https://doi.org/10.1007/s10570-022-04609-3
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
- Y. Jiang, X. Ru, W. Che, Z. Jiang, H. Chen et al., Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. Part B Eng. 229, 109460 (2022). https://doi.org/10.1016/j.compositesb.2021.109460
- Z. Wang, X. Han, S. Wang, X. Han, J. Pu, MXene/wood-based composite materials with electromagnetic shielding properties. Holzforschung 75, 494–499 (2021). https://doi.org/10.1515/hf-2020-0090
- Z. Wang, X. Han, X. Han, Z. Chen, S. Wang et al., MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohydr. Polym. 254, 117033 (2021). https://doi.org/10.1016/j.carbpol.2020.117033
- Y. Wei, D. Liang, H. Zhou, S. Huang, W. Zhang et al., Facile preparation of MXene-decorated wood with excellent electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 153, 106739 (2022). https://doi.org/10.1016/j.compositesa.2021.106739
- C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
- S. Bai, X. Guo, X. Zhang, X. Zhao, H. Yang, Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos. Part A Appl. Sci. Manuf. 149, 106545 (2021). https://doi.org/10.1016/j.compositesa.2021.106545
- S. Zhu, S. Kumar Biswas, Z. Qiu, Y. Yue, Q. Fu et al., Transparent wood-based functional materials via a top-down approach. Prog. Mater. Sci. 132, 101025 (2023). https://doi.org/10.1016/j.pmatsci.2022.101025
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- A. Iqbal, J. Kwon, M.-K. Kim, C.M. Koo, MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021). https://doi.org/10.1016/j.mtadv.2020.100124
- Z. Wang, K. Yin, Y. Zhang, K. Sun, L. Xie et al., Two-dimensional Ti3C2Tx/carbonized wood metacomposites with weakly negative permittivity. Adv. Compos. Hybrid Mater. 5, 2369–2377 (2022). https://doi.org/10.1007/s42114-022-00442-1
- Y. Chen, Y. Meng, J. Zhang, Y. Xie, H. Guo et al., Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nano-Micro Lett. 16, 196 (2024). https://doi.org/10.1007/s40820-024-01414-4
- Y. Pan, M. Dai, H. Zhao, N. Hu, Q. Guo et al., Wood-based composites with high electromagnetic interference shielding effectiveness and ultra-low reflection. Coatings 12, 1117 (2022). https://doi.org/10.3390/coatings12081117
- Y. Pan, S. Hu, X. Zheng, N. Hu, F. Qiu et al., Efficient electromagnetic interference shielding of three-dimensional hydrophobic Cu/wood/Cu porous composites. J. Wood Chem. Technol. 43, 206–220 (2023). https://doi.org/10.1080/02773813.2023.2213691
- Z. Shen, J. Feng, Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustainable Chem. Eng. 7, 6259–6266 (2019). https://doi.org/10.1021/acssuschemeng.8b06661
- T. Tang, Z. Wang, J. Guan, Guan Achievements and challenges of copper-based single-atom catalysts for the reduction of carbon dioxide to C2+ products. Exploration. 3, 20230011 (2023). https://doi.org/10.1002/EXP.20230011
- K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
- Z. Leng, Z. Yang, X. Tang, M.H. Helal, Y. Qu et al., Progress in percolative composites with negative permittivity for applications in electromagnetic interference shielding and capacitors. Adv. Compos. Hybrid Mater. 6, 195 (2023). https://doi.org/10.1007/s42114-023-00778-2
- Y. Pan, Q. Guo, D. Yin, M. Dai, X. Yu et al., Micro-nanoarchitectonics of electroless Cu/Ni composite materials based on wood. J. Inorg. Organomet. Polym. Mater. 32, 687–699 (2022). https://doi.org/10.1007/s10904-021-02155-2
- J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023). https://doi.org/10.1016/j.carbon.2023.118208
- Y. Pan, M. Dai, Q. Guo, D. Yin, S. Hu et al., Construction of sandwich-structured Cu-Ni wood-based composites for electromagnetic interference shielding. Chem. Eng. J. 471, 144301 (2023). https://doi.org/10.1016/j.cej.2023.144301
- C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024). https://doi.org/10.1007/s40820-024-01395-4
- I. Karteri, M. Altun, M. Gunes, Electromagnetic interference shielding performance and electromagnetic properties of wood-plastic nanocomposite with graphene nanoplatelets. J. Mater. Sci. Mater. Electron. 28, 6704–6711 (2017). https://doi.org/10.1007/s10854-017-6364-1
- C. Chen, W. Feng, W. Wu, Y. Yu, G. Qian et al., A highly strong PEDOT modified wood towards efficient electromagnetic interference shielding. Ind. Crops Prod. 202, 117109 (2023). https://doi.org/10.1016/j.indcrop.2023.117109
- J. Chen, Z. Zhu, H. Zhang, S. Tian, S. Fu, Wood-derived nanostructured hybrid for efficient flame retarding and electromagnetic shielding. Mater. Des. 204, 109695 (2021). https://doi.org/10.1016/j.matdes.2021.109695
- S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34, 783–810 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.003
- Z. Ma, R. Jiang, J. Jing, S. Kang, L. Ma et al., Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding. Nano-Micro Lett. 16, 223 (2024). https://doi.org/10.1007/s40820-024-01450-0
- Y. Xu, X. Zhang, G. Wang, X. Zhang, J. Luo et al., Preparation of a strong soy protein adhesive with mildew proof, flame-retardant, and electromagnetic shielding properties via constructing nanophase-reinforced organic–inorganic hybrid structure. Chem. Eng. J. 447, 137536 (2022). https://doi.org/10.1016/j.cej.2022.137536
- X. Zhang, Z. Liu, L. Cai, X. Zhang, C. Long et al., Development of a strong and conductive soy protein adhesive by building a hybrid structure based on multifunctional wood composite materials. J. Clean. Prod. 412, 137461 (2023). https://doi.org/10.1016/j.jclepro.2023.137461
- H.-C. Zhang, C.-N. Yu, X.-Z. Li, L.-F. Wang, J. Huang et al., Recent developments of nanocellulose and its applications in polymeric composites. ES Food Agrofor. 9, 1–14 (2022). https://doi.org/10.30919/esfaf768
- Y. Yang, L. Zhang, J. Zhang, Y. Ren, H. Huo et al., Fabrication of environmentally, high-strength, fire-retardant biocomposites from small-diameter wood lignin in situ reinforced cellulose matrix. Adv. Compos. Hybrid Mater. 6, 140 (2023). https://doi.org/10.1007/s42114-023-00721-5
- X. Bi, M. Li, G. Zhou, C. Liu, R. Huang et al., High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Res. 16, 7696–7709 (2023). https://doi.org/10.1007/s12274-023-5586-1
- O.M. Atta, S. Manan, M. Ul-Islam, A.A.Q. Ahmed, M.W. Ullah et al., Development and characterization of plant oil-incorporated carboxymethyl cellulose/bacterial cellulose/glycerol-based antimicrobial edible films for food packaging applications. Adv. Compos. Hybrid Mater. 5, 973–990 (2022). https://doi.org/10.1007/s42114-021-00408-9
- B.O.O. Boni, L. Lamboni, L. Mao, B.M. Bakadia, Z. Shi et al., In vivo performance of microstructured bacterial cellulose-silk sericin wound dressing: effects on fibrosis and scar formation. Eng. Sci. 19, 175–185 (2022). https://doi.org/10.30919/es8d700
- Z. Zhang, N. Abidi, L.A. Lucia, S. Yu, A “bird nest” bioinspired strategy deployed for inducing cellulose gelation without concomitant dissolution. Adv. Compos. Hybrid Mater. 6, 178 (2023). https://doi.org/10.1007/s42114-023-00745-x
- W. Liu, Q. Lin, S. Chen, H. Yang, K. Liu et al., Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Adv. Compos. Hybrid Mater. 6, 149 (2023). https://doi.org/10.1007/s42114-023-00725-1
- X. Wang, Y. Zhang, J. Luo, T. Xu, C. Si et al., Printability of hybridized composite from maleic acid-treated bacterial cellulose with gelatin for bone tissue regeneration. Adv. Compos. Hybrid Mater. 6, 134 (2023). https://doi.org/10.1007/s42114-023-00711-7
- Z. Ding, Z. Tian, X. Ji, H. Dai, C. Si, Bio-inspired catalytic one-step prepared R-siloxane cellulose composite membranes with highly efficient oil separation. Adv. Compos. Hybrid Mater. 5, 2138–2153 (2022). https://doi.org/10.1007/s42114-022-00517-z
- F. Zhang, M. Lian, A. Alhadhrami, M. Huang, B. Li et al., Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water. Adv. Compos. Hybrid Mater. 5, 1852–1864 (2022). https://doi.org/10.1007/s42114-022-00476-5
- Y. Li, J. Guo, M. Li, Y. Tang, V. Murugadoss et al., Recent application of cellulose gel in flexible sensing-a review. ES Food Agrofor. 4, 9–27 (2021). https://doi.org/10.30919/esfaf466
- O.M. Atta, S. Manan, M. Ul-Islam, A.A.Q. Ahmed, M.W. Ullah et al., Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food Agrofor. 6, 12–26 (2021). https://doi.org/10.30919/esfaf590
- Y. Duan, H. Yang, K. Liu, T. Xu, J. Chen et al., Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv. Compos. Hybrid Mater. 6, 123 (2023). https://doi.org/10.1007/s42114-023-00700-w
- Z. Li, C. Wang, T. Liu, X. Ye, M. He et al., Interfacial interaction enhancement between biodegradable poly (butylene adipate-co-terephthalate) and microcrystalline cellulose based on covalent bond for improving puncture, tearing, and enzymatic degradation properties. Adv. Compos. Hybrid Mater. 6, 69 (2023). https://doi.org/10.1007/s42114-023-00638-z
- S. Khan, M. Ul-Islam, A. Fatima, S. Manan, W. Ahmad Khattak et al., Potential of food and agro-industrial wastes for cost-effective bacterial cellulose production: an updated review of literature. ES Food Agrofor. 13, 905 (2023). https://doi.org/10.30919/esfaf905
- H. Gu, X. Huo, J. Chen, S.M. El-Bahy, Z.M. El-Bahy et al., An overview of cellulose aerogel: classification and applications. ES Food Agrofor. 10, 1–9 (2022). https://doi.org/10.30919/esfaf782
- N. Al-Harbi, M. Ali Hussein, Y. Al-Hadeethi, A. Umar et al., Cellulose acetate-hydroxyapatite-bioglass-zirconia nanocomposite ps as potential biomaterial: synthesis, characterization, and biological properties for bone application. Eng. Sci. 17, 70–82 (2021). https://doi.org/10.30919/es8d528
- J. Xiong, Q. Hu, J. Wu, Z. Jia, S. Ge et al., Structurally stable electrospun nanofibrous cellulose acetate/chitosan biocomposite membranes for the removal of chromium ions from the polluted water. Adv. Compos. Hybrid Mater. 6, 99 (2023). https://doi.org/10.1007/s42114-023-00680-x
- J. Zhou, T. Yi, Z. Zhang, D.-G. Yu, P. Liu et al., Electrospun Janus core (ethyl cellulose// polyethylene oxide) @ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv. Compos. Hybrid Mater. 6, 189 (2023). https://doi.org/10.1007/s42114-023-00766-6
- M. Ye, S. Wang, X. Ji, Z. Tian, L. Dai et al., Nanofibrillated cellulose-based superhydrophobic coating with antimicrobial performance. Adv. Compos. Hybrid Mater. 6, 30 (2022). https://doi.org/10.1007/s42114-022-00602-3
- R. Li, H. Lin, P. Lan, J. Gao, Y. Huang et al., Lightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shielding. Polymers 10, 1319 (2018). https://doi.org/10.3390/polym10121319
- T.W. Lee, S.E. Lee, Y.G. Jeong, Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl. Mater. Interfaces 8, 13123–13132 (2016). https://doi.org/10.1021/acsami.6b02218
- G. Wang, D. Lai, X. Xu, Y. Wang, Lightweight, stiff and heat-resistant bamboo-derived carbon scaffolds with gradient aligned microchannels for highly efficient EMI shielding. Chem. Eng. J. 446, 136911 (2022). https://doi.org/10.1016/j.cej.2022.136911
- X. Zhu, J. Xu, F. Qin, Z. Yan, A. Guo et al., Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 12, 14589–14597 (2020). https://doi.org/10.1039/d0nr03790g
- J. Liu, S. Lin, K. Huang, C. Jia, Q. Wang et al., A large-area AgNW-modified textile with high-performance electromagnetic interference shielding. npj Flex. Electron. 4, 10 (2020). https://doi.org/10.1038/s41528-020-0074-0
- M. Zhu, X. Yan, Y. Lei, J. Guo, Y. Xu et al., An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 14520–14531 (2022). https://doi.org/10.1021/acsami.1c23515
- Y. Xu, K. Qian, D. Deng, L. Luo, J. Ye et al., Electroless deposition of silver nanops on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydr. Polym. 250, 116915 (2020). https://doi.org/10.1016/j.carbpol.2020.116915
- Z. Cui, C. Gao, Z. Fan, J. Wang, Z. Cheng et al., Lightweight MXene/cellulose nanofiber composite film for electromagnetic interference shielding. J. Electron. Mater. 50, 2101–2110 (2021). https://doi.org/10.1007/s11664-020-08718-2
- Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017). https://doi.org/10.1016/j.carbon.2017.01.054
- B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16, 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
- G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 (2020). https://doi.org/10.1002/adma.201907176
- S. Wang, X. Jin, Y. Yue, C. Mei, X. Xu et al., Biomimetic patternable polyhydroxyl nanocellulose/MXene films sequentially bridged through a synergistic hydrogen and ionic interaction with tunable multi-photoresponsive performances. Chem. Eng. J. 470, 144225 (2023). https://doi.org/10.1016/j.cej.2023.144225
- Z. Zhou, Q. Song, B. Huang, S. Feng, C. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/ photothermal performance. ACS Nano 15, 12405–12417 (2021). https://doi.org/10.1021/acsnano.1c04526
- X. Zhang, K. Qian, J. Fang, S. Thaiboonrod, M. Miao et al., Synchronous deprotonation–protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding. Nano Res. 17, 2038–2049 (2024). https://doi.org/10.1007/s12274-023-6189-6
- Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
- M. Culebras, G.A. Collins, A. Beaucamp, H. Geaney, M.N. Collins et al., Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng. Sci. 17, 195–203 (2022). https://doi.org/10.30919/es8d608
- Y. Xu, W. Li, T. Xu, G. Wang, W. Huan et al., Straightforward fabrication of lignin-derived carbon-bridged graphitic carbon nitride for improved visible photocatalysis of tetracycline hydrochloride assisted by peroxymonosulfate activation. Adv. Compos. Hybrid Mater. 6, 197 (2023). https://doi.org/10.1007/s42114-023-00779-1
- W. Hu, J. Zhang, B. Liu, C. Zhang, Q. Zhao et al., Synergism between lignin, functionalized carbon nanotubes and Fe3O4 nanops for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Compos. Commun. 24, 100616 (2021). https://doi.org/10.1016/j.coco.2020.100616
- S.-X. Wang, L. Yang, L.P. Stubbs, X. Li, C. He, Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 12275–12282 (2013). https://doi.org/10.1021/am4043867
- D. Wang, Y. Wang, W. Wang, T. Li, J. Jiang et al., Modified alkaline lignin for ductile polylactide composites. Compos. Commun. 22, 100501 (2020). https://doi.org/10.1016/j.coco.2020.100501
- D. Wang, H. Yang, J. Yang, B. Wang, P. Wasnik et al., Efficient visible light-induced photodegradation of industrial lignin using silver-CuO catalysts derived from Cu-metal organic framework. Adv. Compos. Hybrid Mater. 6, 138 (2023). https://doi.org/10.1007/s42114-023-00708-2
- L. Mu, Y. Dong, L. Li, X. Gu, Y. Shi et al., Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. ES Mater. Manuf. 11, 72–80 (2021). https://doi.org/10.30919/esmm5f1146
- J. Xu, R. Liu, L. Wang, A. Pranovich, J. Hemming et al., Towards a deep understanding of the biomass fractionation in respect of lignin nanop formation. Adv. Compos. Hybrid Mater. 6, 214 (2023). https://doi.org/10.1007/s42114-023-00797-z
- W. Pei, Y. Yusufu, Y. Zhan, X. Wang, J. Gan et al., Biosynthesizing lignin dehydrogenation polymer to fabricate hybrid hydrogel composite with hyaluronic acid for cartilage repair. Adv. Compos. Hybrid Mater. 6, 180 (2023). https://doi.org/10.1007/s42114-023-00758-6
- J. Zhang, Y. Qi, Y. Zhang, J. Duan, B. Liu et al., Lignin based flexible electromagnetic shielding PU synergized with graphite. Fibres. Polym. 22, 1–8 (2021). https://doi.org/10.1007/s12221-021-9227-6
- Z. Shi, G. Xu, J. Deng, M. Dong, V. Murugadoss et al., Structural characterization of lignin from D.sinicus by FTIR and NMR techniques. Green Chem. Lett. Rev. 12, 235–243 (2019). https://doi.org/10.1080/17518253.2019.1627428
- X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
- C. Zhang, J. Zhang, B. Liu, B. Liu, Q. Wang et al., Lignin doped epoxy acrylate sandwich electromagnetic shielding material synergized with Fe3O4 and CNT. J. Dispers. Sci. Technol. 43, 2209–2217 (2022). https://doi.org/10.1080/01932691.2021.1929286
- B. Zhan, Y. Qu, X. Qi, J. Ding, J.-J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16, 221 (2024). https://doi.org/10.1007/s40820-024-01447-9
- Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16, 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
- Y. Liu, X. Zhao, Z. Liu, B. Sun, X. Liu et al., Functionalized lignin nanops assembled with MXene reinforced polypropylene with favorable UV-aging resistance, electromagnetic shielding effects and superior fire-safety. Int. J. Biol. Macromol. 265, 130957 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130957
- Z. Han, Y. Niu, X. Shi, D. Pan, H. Liu et al., MXene@c-MWCNT adhesive silica nanofiber membranes enhancing electromagnetic interference shielding and thermal insulation performance in extreme environments. Nano-Micro Lett. 16, 195 (2024). https://doi.org/10.1007/s40820-024-01398-1
- B. Fei, H. Yang, J. Yang, D. Wang, H. Guo et al., Sustainable compression-molded bamboo fibers/poly(lactic acid) green composites with excellent UV shielding performance. J. Mater. Sci. Technol. 205, 247–257 (2025). https://doi.org/10.1016/j.jmst.2024.03.074
- S. Ge, G. Zheng, Y. Shi, Z. Zhang, A. Jazzar et al., Facile fabrication of high-strength biocomposite through Mg2+-enhanced bonding in bamboo fiber. Giant 18, 100253 (2024). https://doi.org/10.1016/j.giant.2024.100253
- B. Fei, D. Wang, N. AlMasoud, H. Yang, J. Yang et al., Bamboo fiber strengthened poly(lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy. Int. J. Biol. Macromol. 249, 126018 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126018
- Q. Zhang, L. Ning, Y. Shen, M. Wang, C. Wang et al., Study on shielding effectiveness, electrical conductivity and thermal property of bamboo-plastic shielding composite based on Ni-Fe-P coated bamboo fibers. Mater. Lett. 268, 127578 (2020). https://doi.org/10.1016/j.matlet.2020.127578
- Q. Zhang, K. Wang, X. Chen, X. Tang, Q. Zhao et al., Biomass composite based on metallized bamboo fiber for electromagnetic interference shielding, joule heating, and solar heating. Compos. Sci. Technol. 243, 110228 (2023). https://doi.org/10.1016/j.compscitech.2023.110228
- Y. Zuo, W. Li, P. Li, W. Liu, X. Li et al., Preparation and characterization of polylactic acid-g-bamboo fiber based on in situ solid phase polymerization. Ind. Crops Prod. 123, 646–653 (2018). https://doi.org/10.1016/j.indcrop.2018.07.024
- K. Zhang, Z. Chen, L.M. Smith, G. Hong, W. Song et al., Polypyrrole-modified bamboo fiber/polylactic acid with enhanced mechanical, the antistatic properties and thermal stability. Ind. Crops Prod. 162, 113227 (2021). https://doi.org/10.1016/j.indcrop.2020.113227
- K. Zhang, Z. Chen, M. Boukhir, W. Song, S. Zhang, Bioinspired polydopamine deposition and silane grafting modification of bamboo fiber for improved interface compatibility of poly (lactic acid) composites. Int. J. Biol. Macromol. 201, 121–132 (2022). https://doi.org/10.1016/j.ijbiomac.2021.12.119
- Q. Zhang, L. Ning, C. Wang, M. Wang, Y. Shen et al., Fabrication and characterization of bio-based shielding material with dissimilar surface resistivity prepared by electroless Ni–Fe–P alloy plating on bamboo (N. affinis). J. Mater. Sci. Mater. Electron. 30, 21064–21078 (2019). https://doi.org/10.1007/s10854-019-02476-6
- Q. Zhang, K. Wang, X. Chen, X. Tang, Q. Zhao et al., Improving the thermal stability and functionality of bamboo fibers by electroless plating. ACS Sustainable Chem. Eng. 10, 16935–16947 (2022). https://doi.org/10.1021/acssuschemeng.2c06017
- J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15, 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
- Q. Niu, X. Yue, Z. Guo, H. Yan, Z. Fang et al., Flame retardant bamboo fiber reinforced polylactic acid composites regulated by interfacial phosphorus-silicon aerogel. Polymer 252, 124961 (2022). https://doi.org/10.1016/j.polymer.2022.124961
- Y. Wu, K. Huang, X. Weng, R. Wang, P. Du et al., PVB coating efficiently improves the high stability of EMI shielding fabric with Cu/Ni. Adv. Compos. Hybrid Mater. 5, 71–82 (2022). https://doi.org/10.1007/s42114-021-00401-2
- Y. He, M. Zhou, M.H.H. Mahmoud, X. Lu, G. He et al., Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv. Compos. Hybrid Mater. 5, 1939–1950 (2022). https://doi.org/10.1007/s42114-022-00525-z
- Z. Ma, Z. Zhang, F. Zhao, Y. Wang, A multifunctional coating for cotton fabrics integrating superior performance of flame-retardant and self-cleaning. Adv. Compos. Hybrid Mater. 5, 2817–2833 (2022). https://doi.org/10.1007/s42114-022-00464-9
- C. Stephen, B. Shivamurthy, M. Mohan, A.-H.I. Mourad, R. Selvam et al., Low velocity impact behavior of fabric reinforced polymer composites–A review. Eng. Sci. 18, 75–97 (2022). https://doi.org/10.30919/es8d670
- C. Hu, F. Wang, X. Cui, Y. Zhu, Recent progress in textile-based triboelectric force sensors for wearable electronics. Adv. Compos. Hybrid Mater. 6, 70 (2023). https://doi.org/10.1007/s42114-023-00650-3
- A.S. Desai, V. Dabir, A. Ashok, Z. Wu, H.M. Pathan et al., Microbicidal study of zinc oxide nanocomposites based coir geotextile with image processing. ES Gen. 3, 1101 (2024). https://doi.org/10.30919/esg1101
- L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
- X. Peng, X. Meng, B. Yu, H. Chen, Z. Liu et al., Graphitized and flexible porous textile updated from waste cotton for wearable electromagnetic interference shielding. Carbon 207, 144–153 (2023). https://doi.org/10.1016/j.carbon.2023.02.044
- Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16, 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
- F. Huang, Z. Tian, H. Ma, Z. Ding, X. Ji et al., Combined alkali impregnation and poly dimethyl diallyl ammonium chloride-assisted cellulase absorption for high-efficiency pretreatment of wheat straw. Adv. Compos. Hybrid Mater. 6, 230 (2023). https://doi.org/10.1007/s42114-023-00789-z
- Y. Wang, X.-X. Ji, S. Liu, Z. Tian, C. Si et al., Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Adv. Compos. Hybrid Mater. 5, 934–947 (2022). https://doi.org/10.1007/s42114-021-00395-x
- D. Skoda, J. Vilcakova, R.S. Yadav, B. Hanulikova, T. Capkova et al., Nickel nanop–decorated reduced graphene oxide via one-step microwave-assisted synthesis and its lightweight and flexible composite with Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene polymer for electromagnetic wave shielding application. Adv. Compos. Hybrid Mater. 6, 113 (2023). https://doi.org/10.1007/s42114-023-00692-7
- H. Cheng, L. Xing, Y. Zuo, Y. Pan, M. Huang et al., Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 755–765 (2022). https://doi.org/10.1007/s42114-022-00487-2
- T. Li, M. Zhu, Z. Yang, J. Song, J. Dai et al., Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6, 1601122 (2016). https://doi.org/10.1002/aenm.201601122
- J. Zhou, B. Wang, C. Xu, Y. Xu, H. Tan et al., Performance of composite materials by wood fiber/polydopamine/silver modified PLA and the antibacterial property. J. Mater. Res. Technol. 18, 428–438 (2022). https://doi.org/10.1016/j.jmrt.2022.02.113
- S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A Appl. Sci. Manuf. 114, 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
- L.-X. Lu, X.-L. Wang, S.-L. Li, Y. Tang, X.-M. Mai, Thermal performance of Lonicera rupicola grass as a building insulation composite material. Adv. Compos. Hybrid Mater. 6, 8 (2022). https://doi.org/10.1007/s42114-022-00578-0
- B.S. Maddodi, A. Lathashri, S. Devesh, A.U. Rao, G.B. Shenoy et al., Repurposing plastic wastes in non-conventional engineered wood building bricks for constructional application–a mechanical characterization using experimental and statistical analys. Eng. Sci. 18, 329–336 (2022). https://doi.org/10.30919/es8d696
- M. Weng, S. Liu, J. Su, W. Xu, J. Huang et al., Hydrophobic and antimicrobial polyimide based composite phase change materials with thermal energy storage capacity, applied as multifunctional construction material. Eng. Sci. 19, 301–311 (2022). https://doi.org/10.30919/es8e735
- S.N. Mahdi, T. Imjai, C. Wattanapanich, R. Garcia, H. Kaur et al., Life cycle cost analysis of flexible pavements reinforced with geo-synthetics: a case study of new construction or repair overlays in Thailand’s Roads. Eng. Sci. 28, 1071 (2024). https://doi.org/10.30919/es1071
- H.A. Colorado, E.I. Gutierrez-Velasquez, L.D. Gil, I.L. de Camargo, Exploring the advantages and applications of nanocomposites produced via vat photopolymerization in additive manufacturing: a review. Adv. Compos. Hybrid Mater. 7, 1 (2023). https://doi.org/10.1007/s42114-023-00808-z
- H.A. Colorado, J.M. Henkin, Fire-resistant plants: a review of plant morphology, tissues, habits, ecological adaptations, and other factors contributing to bioderived environmental solutions and technologies. Eng. Sci. 27, 1024 (2023). https://doi.org/10.30919/es1024
- M.V. Singh, A. Kuma
References
D.K. Shetty, J. Bhagawati, S. Shetty, L.R. Rodrigues, A. Kumar et al., Enhancing technology acceptance through user experience evaluation: comparative analysis of banking website versus mobile application. Eng. Sci. 19, 154–166 (2022). https://doi.org/10.30919/es8e678
K. Thenkumari, K.S. Sankaran, J.M. Mathana, Design and implementation of frequency reconfigurable antenna for Wi-Fi applications. Eng. Sci. 23, 876 (2023). https://doi.org/10.30919/es8d876
S.K. Singh, T. Sharan, A.K. Singh, Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-fed antenna for multiband wireless communications. Eng. Sci. 17, 274–284 (2021). https://doi.org/10.30919/es8d557
X. Zhang, T. Zhang, J. Lu, X. Fu, F. Reveriano et al., The effect of high performance computer on deep neural network. Eng. Sci. 15, 67–79 (2021). https://doi.org/10.30919/es8d461
A. Yang, B. Li, Z. Yan, M. Yang, A bi-directional carrier sense collision avoidance neighbor discovery algorithm in directional wireless ad hoc sensor networks. Sensors 19, 2120 (2019)
T. Li, H. Wei, Y. Zhang, T. Wan, D. Cui et al., Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr. Polym. 309, 120678 (2023). https://doi.org/10.1016/j.carbpol.2023.120678
J. Tang, S. Wu, N. AlMasoud, T.S. Alomar, P. Wasnik et al., Defect passivation in perovskite films by p-methoxy phenylacetonitrile for improved device efficiency and stability. Adv. Compos. Hybrid Mater. 6, 155 (2023). https://doi.org/10.1007/s42114-023-00732-2
J. Tang, Z. Chen, Y. Ma, H. Zhang, Characterization of wicking performance for open rectangular microgrooves under planar EHD effects in two-phase heat transfer devices. Eng. Sci. 19, 100–113 (2022). https://doi.org/10.30919/es8d642
G.J. Navathe, S.R. Prasad, A.M. Mane, S.H. Barge, T.D. Dongale et al., A critical review on design and development of new generation energy storage devices. ES Energy Environ. 17, 11–32 (2022). https://doi.org/10.30919/esee8c739
S. Balsure, V. More, S. Kadam, R. Kadam, A. Kadam et al., Synthesis, structural, magnetic, dielectric and optical properties of co doped Cr-Zn oxide nanops for spintronic devices. Eng. Sci. 21, 774 (2022). https://doi.org/10.30919/es8d774
G. Wu, X. Gao, K. Wan, Mobility control of unmanned aerial vehicle as communication relay to optimize ground-to-air uplinks. Sensors 20, 2332 (2020)
Y. Lu, Y. Yue, Q. Ding, C. Mei, X. Xu et al., Environment-tolerant ionic hydrogel–elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical–thermal multimode sensor. InfoMat 5, e12409 (2023). https://doi.org/10.1002/inf2.12409
Z. Li, D. Pan, Z. Han, D.J.P. Kumar, J. Ren et al., Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites. Adv. Compos. Hybrid Mater. 6, 224 (2023). https://doi.org/10.1007/s42114-023-00804-3
X. Wang, Z. Liu, H. Wang, C. Zeng et al., Direct 3D printing of piezoelectrets: process feasibility, prototypes fabrication and device performance. Eng. Sci. 21, 800 (2022). https://doi.org/10.30919/es8d800
Z. Wu, X. Deng, X. Yu, J. Gu, Z.M. El-Bahy et al., Electrospun thermoplastic polyurethane membrane decorated with carbon nanotubes: a platform of flexible strain sensors for human motion monitoring. Polymer 303, 127120 (2024). https://doi.org/10.1016/j.polymer.2024.127120
C. Wei, M. He, M. Li, X. Ma, W. Dang et al., Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 36, 101142 (2023). https://doi.org/10.1016/j.mtphys.2023.101142
D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites—A review. Polym. Rev. 59, 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
S. Said, O.E. melhaoui, Y. Guetbach, B. Elhadi, A. Faize, Design of a patch antenna for high-gain applications using one-dimensional electromagnetic band gap structures. Eng. Sci. 27, 1040 (2024). https://doi.org/10.30919/es1040
L. Wang, J. Cheng, Y. Zou, W. Zheng, Y. Wang et al., Current advances and future perspectives of MXene-based electromagnetic interference shielding materials. Adv. Compos. Hybrid Mater. 6, 172 (2023). https://doi.org/10.1007/s42114-023-00752-y
S. Zheng, N. Wu, Y. Liu, Q. Wu, Y. Yang et al., Multifunctional flexible, crosslinked composites composed of trashed MXene sediment with high electromagnetic interference shielding performance. Adv. Compos. Hybrid Mater. 6, 161 (2023). https://doi.org/10.1007/s42114-023-00741-1
J. Liu, M. Wei, H. Li, X. Wang, X. Wang et al., Measurement and mapping of the electromagnetic radiation in the urban environment. Electromagn. Biol. Med. 39, 38–43 (2020). https://doi.org/10.1080/15368378.2019.1685540
R. Bera, A. Maitra, S. Paria, S.K. Karan, A.K. Das et al., An approach to widen the electromagnetic shielding efficiency in PDMS/ferrous ferric oxide decorated RGO–SWCNH composite through pressure induced tunability. Chem. Eng. J. 335, 501–509 (2018). https://doi.org/10.1016/j.cej.2017.10.178
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat 6, e12568 (2024). https://doi.org/10.1002/inf2.12568
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
Y. Yi, C. Zhao, H.L. Shindume, J. Ren, L. Chen et al., Enhanced electromagnetic wave absorption of magnetite-spinach derived carbon composite. Colloids Surf. A Physicochem. Eng. Aspects 694, 134149 (2024). https://doi.org/10.1016/j.colsurfa.2024.134149
F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15, 220 (2023). https://doi.org/10.1007/s40820-023-01197-0
S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. 5, 2440–2460 (2022). https://doi.org/10.1007/s42114-022-00458-7
K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 1078–1089 (2022). https://doi.org/10.1007/s42114-022-00425-2
Q. Zhang, D. Lan, S. Deng, J. Gu, Y. Wang et al., Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption. Carbon 226, 119233 (2024). https://doi.org/10.1016/j.carbon.2024.119233
N. Wu, B. Zhao, Y. Lian, S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
Y. Shi, B. Liang, H. Gao, R. Zhao, Q. Dong et al., Research progress on spherical carbon-based electromagnetic wave absorbing composites. Carbon 227, 119244 (2024). https://doi.org/10.1016/j.carbon.2024.119244
S. Zhang, D. Lan, J. Zheng, J. Kong, J. Gu et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption. Carbon 221, 118925 (2024). https://doi.org/10.1016/j.carbon.2024.118925
J. Yan, Z. Ye, D. Lan, W. Chen, Z. Jia et al., Transition metal carbides towards electromagnetic wave absorption application: state of the art and perspectives. Compos. Commun. 48, 101954 (2024). https://doi.org/10.1016/j.coco.2024.101954
B. Miao, Y. Cao, Q. Zhu, M.A. Nawaz, J.A. Ordiozola et al., Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv. Compos. Hybrid Mater. 6, 61 (2023). https://doi.org/10.1007/s42114-023-00643-2
H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
N. Wu, B. Zhao, X. Chen, C. Hou, M. Huang et al., Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv. Compos. Hybrid Mater. 5, 1548–1556 (2022). https://doi.org/10.1007/s42114-022-00490-7
Y. Wang, P. Wang, Z. Du, C. Liu, C. Shen et al., Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv. Compos. Hybrid Mater. 5, 209–219 (2022). https://doi.org/10.1007/s42114-021-00320-2
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023). https://doi.org/10.1016/j.jcis.2023.08.019
J. Guo, Z. Chen, X. Xu, X. Li, H. Liu et al., Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5, 1769–1777 (2022). https://doi.org/10.1007/s42114-022-00417-2
Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, e1800534 (2018). https://doi.org/10.1002/smll.201800534
M. Arjmand, A.A. Moud, Y. Li, U. Sundararaj, Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes. RSC Adv. 5, 56590–56598 (2015). https://doi.org/10.1039/C5RA08118A
T. Gao, Y. Ma, L. Ji, Y. Zheng, S. Yan et al., Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 2328–2338 (2022). https://doi.org/10.1007/s42114-022-00420-7
Z. Cui, J. Zhou, X. Wang, Q. Wang, J. Si et al., In situ growth of bimetallic nickel cobalt sulfide (NiCo2S4) nanowire arrays encapsulated by nitrogen-doped carbon on carbon cloth as binder-free and flexible electrode for high-performance aqueous Zn batteries. Adv. Compos. Hybrid Mater. 6, 95 (2023). https://doi.org/10.1007/s42114-023-00668-7
Z. Zhou, D. Lan, J. Ren, Y. Cheng, Z. Jia et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 185, 165–173 (2024). https://doi.org/10.1016/j.jmst.2023.11.010
J. Yin, W. Ma, Z. Gao, X. Lei, C. Jia, A review of electromagnetic shielding fabric, wave-absorbing fabric and wave-transparent fabric. Polymers 14, 377 (2022). https://doi.org/10.3390/polym14030377
J. Chang, H. Zhai, Z. Hu, J. Li, Ultra-thin metal composites for electromagnetic interference shielding. Compos. Part B Eng. 246, 110269 (2022). https://doi.org/10.1016/j.compositesb.2022.110269
Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 28, 1703801 (2018). https://doi.org/10.1002/adfm.201703801
N. Wu, X. Liu, C. Zhao, C. Cui, A. Xia, Effects of p size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 656, 628–634 (2016). https://doi.org/10.1016/j.jallcom.2015.10.027
X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang et al., Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115 (2006). https://doi.org/10.1063/1.2236965
H. Wang, H. Zhang, K. Zhao, A. Nie, S. Alharthi et al., Research progress on electromagnetic wave absorption based on magnetic metal oxides and their composites. Adv. Compos. Hybrid Mater. 6, 120 (2023). https://doi.org/10.1007/s42114-023-00694-5
J. Bednárek, L. Matějová, Z. Jankovská, M. Vaštyl, B. Sokolová et al., The influence of structural properties on the adsorption capacities of microwave-assisted biochars for metazachlor removal from aqueous solutions. J. Environ. Chem. Eng. 10, 108003 (2022). https://doi.org/10.1016/j.jece.2022.108003
L. Zhang, B.-W. Liu, Y.-Z. Wang, T. Fu, H.-B. Zhao, P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Compos. Part B Eng. 238, 109944 (2022). https://doi.org/10.1016/j.compositesb.2022.109944
L. Zou, C. Lan, S. Zhang, X. Zheng, Z. Xu et al., Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding. Nano-Micro Lett. 13, 190 (2021). https://doi.org/10.1007/s40820-021-00709-0
Y. Li, X. Chen, Q. Wei, W. Liu, Y. Zhang et al., Oxygen-sulfur Co-substitutional Fe@C nanocapsules for improving microwave absorption properties. Sci. Bull. 65, 623–630 (2020). https://doi.org/10.1016/j.scib.2020.01.009
R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017). https://doi.org/10.1002/adfm.201702807
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15, 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu et al., 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 123, 293–300 (2019). https://doi.org/10.1016/j.compositesa.2019.05.030
Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
Y. Jiao, C. Wan, W. Zhang, W. Bao, J. Li, Carbon fibers encapsulated with nano-copper: a core-shell structured composite for antibacterial and electromagnetic interference shielding applications. Nanomaterials (Basel) 9, 460 (2019). https://doi.org/10.3390/nano9030460
C. Wan, J. Li, Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole. Carbohydr. Polym. 161, 158–165 (2017). https://doi.org/10.1016/j.carbpol.2017.01.003
C. Wan, Y. Jiao, T. Qiang, J. Li, Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding. Carbohydr. Polym. 156, 427–434 (2017). https://doi.org/10.1016/j.carbpol.2016.09.028
X.Y. Jiang, Q.K. Zhang, S.P. Deng, B. Zhou, B. Wang et al., Enhanced thermoelectric performanceof polythiophene/carbon nanotube-based composites. J. Electron. Mater. 49, 2371–2380 (2020). https://doi.org/10.1007/s11664-019-07935-8
Y. Long, Z. Zhang, K. Sun, C. Wang, N. Zeng et al., Enhanced electromagnetic wave absorption performance of hematite@carbon nanotubes/polyacrylamide hydrogel composites with good flexibility and biocompatibility. Adv. Compos. Hybrid Mater. 6, 173 (2023). https://doi.org/10.1007/s42114-023-00749-7
Y. Huang, G. Liu, D. Liu, M. Hao, P. Xie et al., Excellent microwave absorption performance in porous Co/C nanocomposites by biomass conversion. ES Food Agrofor. 12, 888 (2023). https://doi.org/10.30919/esfaf888
S.H. Kim, W.I. Choi, K.H. Kim, D.J. Yang, S. Heo et al., Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes. Sci. Rep. 6, 33074 (2016). https://doi.org/10.1038/srep33074
N. Ucar, B.K. Kayaoğlu, A. Bilge, G. Gurel, P. Sencandan et al., Electromagnetic shielding effectiveness of carbon fabric/epoxy composite with continuous graphene oxide fiber and multiwalled carbon nanotube. J. Compos. Mater. 52, 3341–3350 (2018). https://doi.org/10.1177/0021998318765273
Y. Zhong, D. Liu, Q. Yang, Y. Qu, C. Yu et al., Boosting microwave absorption performance of bio-gel derived Co/C nanocomposites. Eng. Sci. 26, 988 (2023). https://doi.org/10.30919/es988
S.-S. Wang, D.-Y. Feng, Z.-M. Zhang, X. Liu, K.-P. Ruan et al., Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 42, 897–906 (2024). https://doi.org/10.1007/s10118-024-3098-4
C. Tang, S. Zhang, J. Zhang, X. Zhang, Z. Hang et al., Silicon carbide coated carbon nanotube porous sponge with super elasticity, low density, high thermal resistivity, and synergistically enhanced electromagnetic interference shielding performances. Chem. Eng. J. 469, 144011 (2023). https://doi.org/10.1016/j.cej.2023.144011
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
H. Wang, J. Fu, C. Wang, J. Wang, A. Yang et al., A binder-free high silicon content flexible anode for Li-ion batteries. Energy Environ. Sci. 13, 848–858 (2020). https://doi.org/10.1039/c9ee02615k
C. Wang, H. Wang, B. Dang, Z. Wang, X. Shen et al., Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor. Renew. Energy 156, 370–376 (2020). https://doi.org/10.1016/j.renene.2020.04.092
Y. Chen, J. Fu, B. Dang, Q. Sun, H. Li et al., Artificial wooden nacre: a high specific strength engineering material. ACS Nano 14, 2036–2043 (2020). https://doi.org/10.1021/acsnano.9b08647
G. Chen, T. Li, C. Chen, C. Wang, Y. Liu et al., A highly conductive cationic wood membrane. Adv. Funct. Mater. 29, 1902772 (2019). https://doi.org/10.1002/adfm.201902772
X. Han, Y. Ye, F. Lam, J. Pu, F. Jiang, Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 7, 27023–27031 (2019). https://doi.org/10.1039/C9TA11118B
A.N. Subba Rao, G.B. Nagarajappa, S. Nair, A.M. Chathoth, K.K. Pandey, Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos. Sci. Technol. 182, 107719 (2019). https://doi.org/10.1016/j.compscitech.2019.107719
W. Cao, W. Zhang, L. Dong, Z. Ma, J. Xu et al., Progress on quantum dot photocatalysts for biomass valorization. Exploration 3, 20220169 (2023). https://doi.org/10.1002/exp.20220169
Y. Xing, Y. Xue, J. Song, Y. Sun, L. Huang et al., Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding. Appl. Surf. Sci. 436, 865–872 (2018). https://doi.org/10.1016/j.apsusc.2017.12.083
W. He, J. Li, J. Tian, H. Jing, Y. Li, Characteristics and properties of wood/polyaniline electromagnetic shielding composites synthesized via in situ polymerization. Polym. Compos. 39, 537–543 (2018). https://doi.org/10.1002/pc.23966
W. Gan, C. Chen, M. Giroux, G. Zhong, M.M. Goyal et al., Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32, 5280–5289 (2020). https://doi.org/10.1021/acs.chemmater.0c01507
L. Xiang, A.K. Darboe, Z. Luo, X. Qi, J.-J. Shao et al., Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: a combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 6, 215 (2023). https://doi.org/10.1007/s42114-023-00793-3
Q. Guo, Y. Pan, D. Yin, Y. Wang, J. Huang, High hydrophobic wood/Cu-Fe3O4@graphene/Ni composites for electromagnetic interference shielding. J. Inorg. Organomet. Polym. Mater. 33, 502–514 (2023). https://doi.org/10.1007/s10904-022-02512-9
Y. Hui, W. Xie, H. Gu, Reduced graphene oxide/nanocellulose/amino-multiwalled carbon nanotubes nanocomposite aerogel for excellent oil adsorption. ES Food Agrofor. 5, 38–44 (2021). https://doi.org/10.30919/esfaf531
Z. Sun, H. Qi, M. Chen, S. Guo, Z. Huang et al., Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng. Sci. 18, 59–74 (2022). https://doi.org/10.30919/es8d588
C. Sang, S. Wang, X. Jin, X. Cheng, H. Xiao et al., Nanocellulose-mediated conductive hydrogels with NIR photoresponse and fatigue resistance for multifunctional wearable sensors. Carbohydr. Polym. 333, 121947 (2024). https://doi.org/10.1016/j.carbpol.2024.121947
D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
G. Han, Z. Ma, B. Zhou, C. He, B. Wang et al., Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. J. Colloid Interface Sci. 583, 571–578 (2021). https://doi.org/10.1016/j.jcis.2020.09.072
Q. Zhang, L. Ning, C. Wang, M. Wang, Y. Shen et al., Study of an energy-efficient and cost-friendly electromagnetic shielding material with three-dimensional conductive network fabricated by dispersing Ni–Fe–P alloys coated bamboo fibers in a HDPE matrix. J. Mater. Sci. Mater. Electron. 30, 14631–14645 (2019). https://doi.org/10.1007/s10854-019-01835-7
Y. Gu, D. Wang, Y. Gao, Y. Yue, W. Yang et al., Solar-powered high-performance lignin-wood evaporator for solar steam generation. Adv. Funct. Mater. 33, 2306947 (2023). https://doi.org/10.1002/adfm.202306947
C. Wu, L. Zeng, G. Chang, Y. Zhou, K. Yan et al., Composite phase change materials embedded into cellulose/polyacrylamide/graphene nanosheets/silver nanowire hybrid aerogels simultaneously with effective thermal management and anisotropic electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 6, 31 (2023). https://doi.org/10.1007/s42114-022-00618-9
W. Wang, Y. Liu, S. Li, K. Dong, S. Wang et al., Lead-free and wearing comfort 3D composite fiber-needled fabric for highly efficient X-ray shielding. Adv. Compos. Hybrid Mater. 6, 76 (2023). https://doi.org/10.1007/s42114-023-00642-3
J.-W. Gu, D.-J. Wang, Special issue: functional polymer materials. Chin. J. Polym. Sci. 42, 895–896 (2024). https://doi.org/10.1007/s10118-024-3165-x
W. Yuan, J. Yang, F. Yin, Y. Li, Y. Yuan, Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Compos. Commun. 19, 90–98 (2020). https://doi.org/10.1016/j.coco.2020.03.003
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
T. Zhao, J. Zhou, W. Wu, K. Qian, Y. Zhu et al., Antibacterial conductive polyacrylamide/quaternary ammonium chitosan hydrogel for electromagnetic interference shielding and strain sensing. Int. J. Biol. Macromol. 265, 130795 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130795
W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5, 3748–3756 (2017). https://doi.org/10.1039/C7TC00400A
Z.-H. Zhou, Y. Liang, H.-D. Huang, L. Li, B. Yang et al., Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 152, 316–324 (2019). https://doi.org/10.1016/j.carbon.2019.06.027
X. Ma, B. Shen, L. Zhang, Z. Chen, Y. Liu et al., Novel straw-derived carbon materials for electromagnetic interference shielding: a waste-to-wealth and sustainable initiative. ACS Sustainable Chem. Eng. 7, 9663–9670 (2019). https://doi.org/10.1021/acssuschemeng.9b01288
S. Li, J. Li, N. Ma, D. Liu, G. Sui, Super-compression-resistant multiwalled carbon nanotube/nickel-coated carbonized loofah fiber/polyether ether ketone composite with excellent electromagnetic shielding performance. ACS Sustainable Chem. Eng. 7, 13970–13980 (2019). https://doi.org/10.1021/acssuschemeng.9b02447
X.-Y. Ye, Y. Chen, J. Yang, H.-Y. Yang, D.-W. Wang et al., Sustainable wearable infrared shielding bamboo fiber fabrics loaded with antimony doped tin oxide/silver binary nanops. Adv. Compos. Hybrid Mater. 6, 106 (2023). https://doi.org/10.1007/s42114-023-00683-8
X. Wan, Y. Zhao, Z. Li, L. Li, Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration (Beijing) 2, 20210029 (2022). https://doi.org/10.1002/EXP.20210029
Q. Wang, Z. Liang, F. Li, J. Lee, L.E. Low et al., Dynamically switchable magnetic resonance imaging contrast agents. Exploration (Beijing) 1, 20210009 (2021). https://doi.org/10.1002/EXP.20210009
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
L. Yang, R. Jie, H.-T. Jiang, S. Yong, C. Hong, Quantum spin Hall effect in metamaterials. Acta Phys. Sin. 66, 227803 (2017). https://doi.org/10.7498/aps.66.227803
E. Hosseini, M. Arjmand, U. Sundararaj, K. Karan, Filler-free conducting polymers as a new class of transparent electromagnetic interference shields. ACS Appl. Mater. Interfaces 12, 28596–28606 (2020). https://doi.org/10.1021/acsami.0c03544
Y. Liu, Z. Jia, Q. Zhan, Y. Dong, Q. Xu et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 15, 5590–5600 (2022). https://doi.org/10.1007/s12274-022-4287-5
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
S.H. Lee, S. Yu, F. Shahzad, W.N. Kim, C. Park et al., Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9, 13432–13440 (2017). https://doi.org/10.1039/C7NR02618H
H. Guo, Y. Chen, Y. Li, W. Zhou, W. Xu et al., Electrospun fibrous materials and their applications for electromagnetic interference shielding: a review. Compos. Part A Appl. Sci. Manuf. 143, 106309 (2021). https://doi.org/10.1016/j.compositesa.2021.106309
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
R. Ravindren, S. Mondal, K. Nath, N.C. Das, Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos. Part A Appl. Sci. Manuf. 118, 75–89 (2019). https://doi.org/10.1016/j.compositesa.2018.12.012
V. Shukla, Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 1, 1640–1671 (2019). https://doi.org/10.1039/C9NA00108E
Y. Cheng, W. Zhu, X. Lu, C. Wang, Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding. Compos. Commun. 27, 100823 (2021). https://doi.org/10.1016/j.coco.2021.100823
Y. Huangfu, C. Liang, Y. Han, H. Qiu, P. Song et al., Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 169, 70–75 (2019). https://doi.org/10.1016/j.compscitech.2018.11.012
C. Xiong, T. Wang, Y. Zhang, M. Zhu, Y. Ni, Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 15, 7506–7532 (2022). https://doi.org/10.1007/s12274-022-4512-2
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
H.C. Chen, K.C. Lee, J.H. Lin, A. Koch, Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical Eq. J Mater Process Tech. 184, 124–130 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.030
S.A. Hashemi, A. Ghaffarkhah, E. Hosseini, S. Bahrani, P. Najmi et al., Recent progress on hybrid fibrous electromagnetic shields: Key protectors of living species against electromagnetic radiation. Matter 5, 3807–3868 (2022). https://doi.org/10.1016/j.matt.2022.09.012
L. Wang, P. Song, C.-T. Lin, J. Kong, J. Gu, 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 4093732 (2020). https://doi.org/10.34133/2020/4093732
M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I. Seyed Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10, 8205–8213 (2018). https://doi.org/10.1021/acsami.7b19427
F. Luo, D. Liu, T. Cao, H. Cheng, J. Kuang et al., Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 4, 591–601 (2021). https://doi.org/10.1007/s42114-021-00275-4
Y. Zhang, S.-H. Yang, Y. Xin, B. Cai, P.-F. Hu et al., Designing symmetric gradient honeycomb structures with carbon-coated iron-based composites for high-efficiency microwave absorption. Nano-Micro Lett. 16, 234 (2024). https://doi.org/10.1007/s40820-024-01435-z
Y. Wang, W. Zhao, L. Tan, Y. Li, L. Qin et al., Review of polymer-based composites for electromagnetic shielding application. Molecules 28, 5628 (2023). https://doi.org/10.3390/molecules28155628
Z. Dai, C. Hu, Y. Wei, W. Zhang, J. Xu et al., Highly anisotropic carbonized wood as electronic materials for electromagnetic interference shielding and thermal management. Adv. Electron. Mater. 9, 2300162 (2023). https://doi.org/10.1002/aelm.202300162
T. Chu, Y. Gao, L. Yi, C. Fan, L. Yan et al., Highly fire-retardant optical wood enabled by transparent fireproof coatings. Adv. Compos. Hybrid Mater. 5, 1821–1829 (2022). https://doi.org/10.1007/s42114-022-00440-3
C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z
M. Saiful Islam, S. Hamdan, I. Jusoh, M. Rezaur Rahman, A.S. Ahmed, The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Mater. Des. 33, 419–424 (2012). https://doi.org/10.1016/j.matdes.2011.04.044
S. Ge, H. Ouyang, H. Ye, Y. Shi, Y. Sheng et al., High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv. Compos. Hybrid Mater. 6, 44 (2023). https://doi.org/10.1007/s42114-023-00628-1
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
X. Zeng, X. Jiang, Y. Ning, Y. Gao, R. Che, Constructing built-In electric fields with semiconductor junctions and Schottky junctions based on Mo-MXene/Mo-metal sulfides for electromagnetic response. Nano-Micro Lett. 16, 213 (2024). https://doi.org/10.1007/s40820-024-01449-7
M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3 C2 Tx MXene films with outstanding conductivity. Adv. Mater. 32, e2001093 (2020). https://doi.org/10.1002/adma.202001093
Y. Wei, C. Hu, Z. Dai, Y. Zhang, W. Zhang et al., Highly anisotropic MXene@Wood composites for tunable electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 168, 107476 (2023). https://doi.org/10.1016/j.compositesa.2023.107476
Y. Wei, Z. Dai, Y. Zhang, W. Zhang, J. Gu et al., Multifunctional waterproof MXene-coated wood with high electromagnetic shielding performance. Cellulose 29, 5883–5893 (2022). https://doi.org/10.1007/s10570-022-04609-3
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
Y. Jiang, X. Ru, W. Che, Z. Jiang, H. Chen et al., Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. Part B Eng. 229, 109460 (2022). https://doi.org/10.1016/j.compositesb.2021.109460
Z. Wang, X. Han, S. Wang, X. Han, J. Pu, MXene/wood-based composite materials with electromagnetic shielding properties. Holzforschung 75, 494–499 (2021). https://doi.org/10.1515/hf-2020-0090
Z. Wang, X. Han, X. Han, Z. Chen, S. Wang et al., MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohydr. Polym. 254, 117033 (2021). https://doi.org/10.1016/j.carbpol.2020.117033
Y. Wei, D. Liang, H. Zhou, S. Huang, W. Zhang et al., Facile preparation of MXene-decorated wood with excellent electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 153, 106739 (2022). https://doi.org/10.1016/j.compositesa.2021.106739
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
S. Bai, X. Guo, X. Zhang, X. Zhao, H. Yang, Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos. Part A Appl. Sci. Manuf. 149, 106545 (2021). https://doi.org/10.1016/j.compositesa.2021.106545
S. Zhu, S. Kumar Biswas, Z. Qiu, Y. Yue, Q. Fu et al., Transparent wood-based functional materials via a top-down approach. Prog. Mater. Sci. 132, 101025 (2023). https://doi.org/10.1016/j.pmatsci.2022.101025
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
A. Iqbal, J. Kwon, M.-K. Kim, C.M. Koo, MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021). https://doi.org/10.1016/j.mtadv.2020.100124
Z. Wang, K. Yin, Y. Zhang, K. Sun, L. Xie et al., Two-dimensional Ti3C2Tx/carbonized wood metacomposites with weakly negative permittivity. Adv. Compos. Hybrid Mater. 5, 2369–2377 (2022). https://doi.org/10.1007/s42114-022-00442-1
Y. Chen, Y. Meng, J. Zhang, Y. Xie, H. Guo et al., Leakage proof, flame-retardant, and electromagnetic shield wood morphology genetic composite phase change materials for solar thermal energy harvesting. Nano-Micro Lett. 16, 196 (2024). https://doi.org/10.1007/s40820-024-01414-4
Y. Pan, M. Dai, H. Zhao, N. Hu, Q. Guo et al., Wood-based composites with high electromagnetic interference shielding effectiveness and ultra-low reflection. Coatings 12, 1117 (2022). https://doi.org/10.3390/coatings12081117
Y. Pan, S. Hu, X. Zheng, N. Hu, F. Qiu et al., Efficient electromagnetic interference shielding of three-dimensional hydrophobic Cu/wood/Cu porous composites. J. Wood Chem. Technol. 43, 206–220 (2023). https://doi.org/10.1080/02773813.2023.2213691
Z. Shen, J. Feng, Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustainable Chem. Eng. 7, 6259–6266 (2019). https://doi.org/10.1021/acssuschemeng.8b06661
T. Tang, Z. Wang, J. Guan, Guan Achievements and challenges of copper-based single-atom catalysts for the reduction of carbon dioxide to C2+ products. Exploration. 3, 20230011 (2023). https://doi.org/10.1002/EXP.20230011
K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
Z. Leng, Z. Yang, X. Tang, M.H. Helal, Y. Qu et al., Progress in percolative composites with negative permittivity for applications in electromagnetic interference shielding and capacitors. Adv. Compos. Hybrid Mater. 6, 195 (2023). https://doi.org/10.1007/s42114-023-00778-2
Y. Pan, Q. Guo, D. Yin, M. Dai, X. Yu et al., Micro-nanoarchitectonics of electroless Cu/Ni composite materials based on wood. J. Inorg. Organomet. Polym. Mater. 32, 687–699 (2022). https://doi.org/10.1007/s10904-021-02155-2
J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023). https://doi.org/10.1016/j.carbon.2023.118208
Y. Pan, M. Dai, Q. Guo, D. Yin, S. Hu et al., Construction of sandwich-structured Cu-Ni wood-based composites for electromagnetic interference shielding. Chem. Eng. J. 471, 144301 (2023). https://doi.org/10.1016/j.cej.2023.144301
C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024). https://doi.org/10.1007/s40820-024-01395-4
I. Karteri, M. Altun, M. Gunes, Electromagnetic interference shielding performance and electromagnetic properties of wood-plastic nanocomposite with graphene nanoplatelets. J. Mater. Sci. Mater. Electron. 28, 6704–6711 (2017). https://doi.org/10.1007/s10854-017-6364-1
C. Chen, W. Feng, W. Wu, Y. Yu, G. Qian et al., A highly strong PEDOT modified wood towards efficient electromagnetic interference shielding. Ind. Crops Prod. 202, 117109 (2023). https://doi.org/10.1016/j.indcrop.2023.117109
J. Chen, Z. Zhu, H. Zhang, S. Tian, S. Fu, Wood-derived nanostructured hybrid for efficient flame retarding and electromagnetic shielding. Mater. Des. 204, 109695 (2021). https://doi.org/10.1016/j.matdes.2021.109695
S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34, 783–810 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.003
Z. Ma, R. Jiang, J. Jing, S. Kang, L. Ma et al., Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding. Nano-Micro Lett. 16, 223 (2024). https://doi.org/10.1007/s40820-024-01450-0
Y. Xu, X. Zhang, G. Wang, X. Zhang, J. Luo et al., Preparation of a strong soy protein adhesive with mildew proof, flame-retardant, and electromagnetic shielding properties via constructing nanophase-reinforced organic–inorganic hybrid structure. Chem. Eng. J. 447, 137536 (2022). https://doi.org/10.1016/j.cej.2022.137536
X. Zhang, Z. Liu, L. Cai, X. Zhang, C. Long et al., Development of a strong and conductive soy protein adhesive by building a hybrid structure based on multifunctional wood composite materials. J. Clean. Prod. 412, 137461 (2023). https://doi.org/10.1016/j.jclepro.2023.137461
H.-C. Zhang, C.-N. Yu, X.-Z. Li, L.-F. Wang, J. Huang et al., Recent developments of nanocellulose and its applications in polymeric composites. ES Food Agrofor. 9, 1–14 (2022). https://doi.org/10.30919/esfaf768
Y. Yang, L. Zhang, J. Zhang, Y. Ren, H. Huo et al., Fabrication of environmentally, high-strength, fire-retardant biocomposites from small-diameter wood lignin in situ reinforced cellulose matrix. Adv. Compos. Hybrid Mater. 6, 140 (2023). https://doi.org/10.1007/s42114-023-00721-5
X. Bi, M. Li, G. Zhou, C. Liu, R. Huang et al., High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Res. 16, 7696–7709 (2023). https://doi.org/10.1007/s12274-023-5586-1
O.M. Atta, S. Manan, M. Ul-Islam, A.A.Q. Ahmed, M.W. Ullah et al., Development and characterization of plant oil-incorporated carboxymethyl cellulose/bacterial cellulose/glycerol-based antimicrobial edible films for food packaging applications. Adv. Compos. Hybrid Mater. 5, 973–990 (2022). https://doi.org/10.1007/s42114-021-00408-9
B.O.O. Boni, L. Lamboni, L. Mao, B.M. Bakadia, Z. Shi et al., In vivo performance of microstructured bacterial cellulose-silk sericin wound dressing: effects on fibrosis and scar formation. Eng. Sci. 19, 175–185 (2022). https://doi.org/10.30919/es8d700
Z. Zhang, N. Abidi, L.A. Lucia, S. Yu, A “bird nest” bioinspired strategy deployed for inducing cellulose gelation without concomitant dissolution. Adv. Compos. Hybrid Mater. 6, 178 (2023). https://doi.org/10.1007/s42114-023-00745-x
W. Liu, Q. Lin, S. Chen, H. Yang, K. Liu et al., Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Adv. Compos. Hybrid Mater. 6, 149 (2023). https://doi.org/10.1007/s42114-023-00725-1
X. Wang, Y. Zhang, J. Luo, T. Xu, C. Si et al., Printability of hybridized composite from maleic acid-treated bacterial cellulose with gelatin for bone tissue regeneration. Adv. Compos. Hybrid Mater. 6, 134 (2023). https://doi.org/10.1007/s42114-023-00711-7
Z. Ding, Z. Tian, X. Ji, H. Dai, C. Si, Bio-inspired catalytic one-step prepared R-siloxane cellulose composite membranes with highly efficient oil separation. Adv. Compos. Hybrid Mater. 5, 2138–2153 (2022). https://doi.org/10.1007/s42114-022-00517-z
F. Zhang, M. Lian, A. Alhadhrami, M. Huang, B. Li et al., Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water. Adv. Compos. Hybrid Mater. 5, 1852–1864 (2022). https://doi.org/10.1007/s42114-022-00476-5
Y. Li, J. Guo, M. Li, Y. Tang, V. Murugadoss et al., Recent application of cellulose gel in flexible sensing-a review. ES Food Agrofor. 4, 9–27 (2021). https://doi.org/10.30919/esfaf466
O.M. Atta, S. Manan, M. Ul-Islam, A.A.Q. Ahmed, M.W. Ullah et al., Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food Agrofor. 6, 12–26 (2021). https://doi.org/10.30919/esfaf590
Y. Duan, H. Yang, K. Liu, T. Xu, J. Chen et al., Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv. Compos. Hybrid Mater. 6, 123 (2023). https://doi.org/10.1007/s42114-023-00700-w
Z. Li, C. Wang, T. Liu, X. Ye, M. He et al., Interfacial interaction enhancement between biodegradable poly (butylene adipate-co-terephthalate) and microcrystalline cellulose based on covalent bond for improving puncture, tearing, and enzymatic degradation properties. Adv. Compos. Hybrid Mater. 6, 69 (2023). https://doi.org/10.1007/s42114-023-00638-z
S. Khan, M. Ul-Islam, A. Fatima, S. Manan, W. Ahmad Khattak et al., Potential of food and agro-industrial wastes for cost-effective bacterial cellulose production: an updated review of literature. ES Food Agrofor. 13, 905 (2023). https://doi.org/10.30919/esfaf905
H. Gu, X. Huo, J. Chen, S.M. El-Bahy, Z.M. El-Bahy et al., An overview of cellulose aerogel: classification and applications. ES Food Agrofor. 10, 1–9 (2022). https://doi.org/10.30919/esfaf782
N. Al-Harbi, M. Ali Hussein, Y. Al-Hadeethi, A. Umar et al., Cellulose acetate-hydroxyapatite-bioglass-zirconia nanocomposite ps as potential biomaterial: synthesis, characterization, and biological properties for bone application. Eng. Sci. 17, 70–82 (2021). https://doi.org/10.30919/es8d528
J. Xiong, Q. Hu, J. Wu, Z. Jia, S. Ge et al., Structurally stable electrospun nanofibrous cellulose acetate/chitosan biocomposite membranes for the removal of chromium ions from the polluted water. Adv. Compos. Hybrid Mater. 6, 99 (2023). https://doi.org/10.1007/s42114-023-00680-x
J. Zhou, T. Yi, Z. Zhang, D.-G. Yu, P. Liu et al., Electrospun Janus core (ethyl cellulose// polyethylene oxide) @ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv. Compos. Hybrid Mater. 6, 189 (2023). https://doi.org/10.1007/s42114-023-00766-6
M. Ye, S. Wang, X. Ji, Z. Tian, L. Dai et al., Nanofibrillated cellulose-based superhydrophobic coating with antimicrobial performance. Adv. Compos. Hybrid Mater. 6, 30 (2022). https://doi.org/10.1007/s42114-022-00602-3
R. Li, H. Lin, P. Lan, J. Gao, Y. Huang et al., Lightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shielding. Polymers 10, 1319 (2018). https://doi.org/10.3390/polym10121319
T.W. Lee, S.E. Lee, Y.G. Jeong, Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl. Mater. Interfaces 8, 13123–13132 (2016). https://doi.org/10.1021/acsami.6b02218
G. Wang, D. Lai, X. Xu, Y. Wang, Lightweight, stiff and heat-resistant bamboo-derived carbon scaffolds with gradient aligned microchannels for highly efficient EMI shielding. Chem. Eng. J. 446, 136911 (2022). https://doi.org/10.1016/j.cej.2022.136911
X. Zhu, J. Xu, F. Qin, Z. Yan, A. Guo et al., Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 12, 14589–14597 (2020). https://doi.org/10.1039/d0nr03790g
J. Liu, S. Lin, K. Huang, C. Jia, Q. Wang et al., A large-area AgNW-modified textile with high-performance electromagnetic interference shielding. npj Flex. Electron. 4, 10 (2020). https://doi.org/10.1038/s41528-020-0074-0
M. Zhu, X. Yan, Y. Lei, J. Guo, Y. Xu et al., An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 14520–14531 (2022). https://doi.org/10.1021/acsami.1c23515
Y. Xu, K. Qian, D. Deng, L. Luo, J. Ye et al., Electroless deposition of silver nanops on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydr. Polym. 250, 116915 (2020). https://doi.org/10.1016/j.carbpol.2020.116915
Z. Cui, C. Gao, Z. Fan, J. Wang, Z. Cheng et al., Lightweight MXene/cellulose nanofiber composite film for electromagnetic interference shielding. J. Electron. Mater. 50, 2101–2110 (2021). https://doi.org/10.1007/s11664-020-08718-2
Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017). https://doi.org/10.1016/j.carbon.2017.01.054
B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16, 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 (2020). https://doi.org/10.1002/adma.201907176
S. Wang, X. Jin, Y. Yue, C. Mei, X. Xu et al., Biomimetic patternable polyhydroxyl nanocellulose/MXene films sequentially bridged through a synergistic hydrogen and ionic interaction with tunable multi-photoresponsive performances. Chem. Eng. J. 470, 144225 (2023). https://doi.org/10.1016/j.cej.2023.144225
Z. Zhou, Q. Song, B. Huang, S. Feng, C. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/ photothermal performance. ACS Nano 15, 12405–12417 (2021). https://doi.org/10.1021/acsnano.1c04526
X. Zhang, K. Qian, J. Fang, S. Thaiboonrod, M. Miao et al., Synchronous deprotonation–protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding. Nano Res. 17, 2038–2049 (2024). https://doi.org/10.1007/s12274-023-6189-6
Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
M. Culebras, G.A. Collins, A. Beaucamp, H. Geaney, M.N. Collins et al., Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng. Sci. 17, 195–203 (2022). https://doi.org/10.30919/es8d608
Y. Xu, W. Li, T. Xu, G. Wang, W. Huan et al., Straightforward fabrication of lignin-derived carbon-bridged graphitic carbon nitride for improved visible photocatalysis of tetracycline hydrochloride assisted by peroxymonosulfate activation. Adv. Compos. Hybrid Mater. 6, 197 (2023). https://doi.org/10.1007/s42114-023-00779-1
W. Hu, J. Zhang, B. Liu, C. Zhang, Q. Zhao et al., Synergism between lignin, functionalized carbon nanotubes and Fe3O4 nanops for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Compos. Commun. 24, 100616 (2021). https://doi.org/10.1016/j.coco.2020.100616
S.-X. Wang, L. Yang, L.P. Stubbs, X. Li, C. He, Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 12275–12282 (2013). https://doi.org/10.1021/am4043867
D. Wang, Y. Wang, W. Wang, T. Li, J. Jiang et al., Modified alkaline lignin for ductile polylactide composites. Compos. Commun. 22, 100501 (2020). https://doi.org/10.1016/j.coco.2020.100501
D. Wang, H. Yang, J. Yang, B. Wang, P. Wasnik et al., Efficient visible light-induced photodegradation of industrial lignin using silver-CuO catalysts derived from Cu-metal organic framework. Adv. Compos. Hybrid Mater. 6, 138 (2023). https://doi.org/10.1007/s42114-023-00708-2
L. Mu, Y. Dong, L. Li, X. Gu, Y. Shi et al., Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. ES Mater. Manuf. 11, 72–80 (2021). https://doi.org/10.30919/esmm5f1146
J. Xu, R. Liu, L. Wang, A. Pranovich, J. Hemming et al., Towards a deep understanding of the biomass fractionation in respect of lignin nanop formation. Adv. Compos. Hybrid Mater. 6, 214 (2023). https://doi.org/10.1007/s42114-023-00797-z
W. Pei, Y. Yusufu, Y. Zhan, X. Wang, J. Gan et al., Biosynthesizing lignin dehydrogenation polymer to fabricate hybrid hydrogel composite with hyaluronic acid for cartilage repair. Adv. Compos. Hybrid Mater. 6, 180 (2023). https://doi.org/10.1007/s42114-023-00758-6
J. Zhang, Y. Qi, Y. Zhang, J. Duan, B. Liu et al., Lignin based flexible electromagnetic shielding PU synergized with graphite. Fibres. Polym. 22, 1–8 (2021). https://doi.org/10.1007/s12221-021-9227-6
Z. Shi, G. Xu, J. Deng, M. Dong, V. Murugadoss et al., Structural characterization of lignin from D.sinicus by FTIR and NMR techniques. Green Chem. Lett. Rev. 12, 235–243 (2019). https://doi.org/10.1080/17518253.2019.1627428
X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
C. Zhang, J. Zhang, B. Liu, B. Liu, Q. Wang et al., Lignin doped epoxy acrylate sandwich electromagnetic shielding material synergized with Fe3O4 and CNT. J. Dispers. Sci. Technol. 43, 2209–2217 (2022). https://doi.org/10.1080/01932691.2021.1929286
B. Zhan, Y. Qu, X. Qi, J. Ding, J.-J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16, 221 (2024). https://doi.org/10.1007/s40820-024-01447-9
Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16, 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
Y. Liu, X. Zhao, Z. Liu, B. Sun, X. Liu et al., Functionalized lignin nanops assembled with MXene reinforced polypropylene with favorable UV-aging resistance, electromagnetic shielding effects and superior fire-safety. Int. J. Biol. Macromol. 265, 130957 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130957
Z. Han, Y. Niu, X. Shi, D. Pan, H. Liu et al., MXene@c-MWCNT adhesive silica nanofiber membranes enhancing electromagnetic interference shielding and thermal insulation performance in extreme environments. Nano-Micro Lett. 16, 195 (2024). https://doi.org/10.1007/s40820-024-01398-1
B. Fei, H. Yang, J. Yang, D. Wang, H. Guo et al., Sustainable compression-molded bamboo fibers/poly(lactic acid) green composites with excellent UV shielding performance. J. Mater. Sci. Technol. 205, 247–257 (2025). https://doi.org/10.1016/j.jmst.2024.03.074
S. Ge, G. Zheng, Y. Shi, Z. Zhang, A. Jazzar et al., Facile fabrication of high-strength biocomposite through Mg2+-enhanced bonding in bamboo fiber. Giant 18, 100253 (2024). https://doi.org/10.1016/j.giant.2024.100253
B. Fei, D. Wang, N. AlMasoud, H. Yang, J. Yang et al., Bamboo fiber strengthened poly(lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy. Int. J. Biol. Macromol. 249, 126018 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126018
Q. Zhang, L. Ning, Y. Shen, M. Wang, C. Wang et al., Study on shielding effectiveness, electrical conductivity and thermal property of bamboo-plastic shielding composite based on Ni-Fe-P coated bamboo fibers. Mater. Lett. 268, 127578 (2020). https://doi.org/10.1016/j.matlet.2020.127578
Q. Zhang, K. Wang, X. Chen, X. Tang, Q. Zhao et al., Biomass composite based on metallized bamboo fiber for electromagnetic interference shielding, joule heating, and solar heating. Compos. Sci. Technol. 243, 110228 (2023). https://doi.org/10.1016/j.compscitech.2023.110228
Y. Zuo, W. Li, P. Li, W. Liu, X. Li et al., Preparation and characterization of polylactic acid-g-bamboo fiber based on in situ solid phase polymerization. Ind. Crops Prod. 123, 646–653 (2018). https://doi.org/10.1016/j.indcrop.2018.07.024
K. Zhang, Z. Chen, L.M. Smith, G. Hong, W. Song et al., Polypyrrole-modified bamboo fiber/polylactic acid with enhanced mechanical, the antistatic properties and thermal stability. Ind. Crops Prod. 162, 113227 (2021). https://doi.org/10.1016/j.indcrop.2020.113227
K. Zhang, Z. Chen, M. Boukhir, W. Song, S. Zhang, Bioinspired polydopamine deposition and silane grafting modification of bamboo fiber for improved interface compatibility of poly (lactic acid) composites. Int. J. Biol. Macromol. 201, 121–132 (2022). https://doi.org/10.1016/j.ijbiomac.2021.12.119
Q. Zhang, L. Ning, C. Wang, M. Wang, Y. Shen et al., Fabrication and characterization of bio-based shielding material with dissimilar surface resistivity prepared by electroless Ni–Fe–P alloy plating on bamboo (N. affinis). J. Mater. Sci. Mater. Electron. 30, 21064–21078 (2019). https://doi.org/10.1007/s10854-019-02476-6
Q. Zhang, K. Wang, X. Chen, X. Tang, Q. Zhao et al., Improving the thermal stability and functionality of bamboo fibers by electroless plating. ACS Sustainable Chem. Eng. 10, 16935–16947 (2022). https://doi.org/10.1021/acssuschemeng.2c06017
J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15, 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
Q. Niu, X. Yue, Z. Guo, H. Yan, Z. Fang et al., Flame retardant bamboo fiber reinforced polylactic acid composites regulated by interfacial phosphorus-silicon aerogel. Polymer 252, 124961 (2022). https://doi.org/10.1016/j.polymer.2022.124961
Y. Wu, K. Huang, X. Weng, R. Wang, P. Du et al., PVB coating efficiently improves the high stability of EMI shielding fabric with Cu/Ni. Adv. Compos. Hybrid Mater. 5, 71–82 (2022). https://doi.org/10.1007/s42114-021-00401-2
Y. He, M. Zhou, M.H.H. Mahmoud, X. Lu, G. He et al., Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv. Compos. Hybrid Mater. 5, 1939–1950 (2022). https://doi.org/10.1007/s42114-022-00525-z
Z. Ma, Z. Zhang, F. Zhao, Y. Wang, A multifunctional coating for cotton fabrics integrating superior performance of flame-retardant and self-cleaning. Adv. Compos. Hybrid Mater. 5, 2817–2833 (2022). https://doi.org/10.1007/s42114-022-00464-9
C. Stephen, B. Shivamurthy, M. Mohan, A.-H.I. Mourad, R. Selvam et al., Low velocity impact behavior of fabric reinforced polymer composites–A review. Eng. Sci. 18, 75–97 (2022). https://doi.org/10.30919/es8d670
C. Hu, F. Wang, X. Cui, Y. Zhu, Recent progress in textile-based triboelectric force sensors for wearable electronics. Adv. Compos. Hybrid Mater. 6, 70 (2023). https://doi.org/10.1007/s42114-023-00650-3
A.S. Desai, V. Dabir, A. Ashok, Z. Wu, H.M. Pathan et al., Microbicidal study of zinc oxide nanocomposites based coir geotextile with image processing. ES Gen. 3, 1101 (2024). https://doi.org/10.30919/esg1101
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
X. Peng, X. Meng, B. Yu, H. Chen, Z. Liu et al., Graphitized and flexible porous textile updated from waste cotton for wearable electromagnetic interference shielding. Carbon 207, 144–153 (2023). https://doi.org/10.1016/j.carbon.2023.02.044
Y. Peng, J. Dong, J. Long, Y. Zhang, X. Tang et al., Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring. Nano-Micro Lett. 16, 199 (2024). https://doi.org/10.1007/s40820-024-01429-x
F. Huang, Z. Tian, H. Ma, Z. Ding, X. Ji et al., Combined alkali impregnation and poly dimethyl diallyl ammonium chloride-assisted cellulase absorption for high-efficiency pretreatment of wheat straw. Adv. Compos. Hybrid Mater. 6, 230 (2023). https://doi.org/10.1007/s42114-023-00789-z
Y. Wang, X.-X. Ji, S. Liu, Z. Tian, C. Si et al., Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Adv. Compos. Hybrid Mater. 5, 934–947 (2022). https://doi.org/10.1007/s42114-021-00395-x
D. Skoda, J. Vilcakova, R.S. Yadav, B. Hanulikova, T. Capkova et al., Nickel nanop–decorated reduced graphene oxide via one-step microwave-assisted synthesis and its lightweight and flexible composite with Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene polymer for electromagnetic wave shielding application. Adv. Compos. Hybrid Mater. 6, 113 (2023). https://doi.org/10.1007/s42114-023-00692-7
H. Cheng, L. Xing, Y. Zuo, Y. Pan, M. Huang et al., Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 755–765 (2022). https://doi.org/10.1007/s42114-022-00487-2
T. Li, M. Zhu, Z. Yang, J. Song, J. Dai et al., Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6, 1601122 (2016). https://doi.org/10.1002/aenm.201601122
J. Zhou, B. Wang, C. Xu, Y. Xu, H. Tan et al., Performance of composite materials by wood fiber/polydopamine/silver modified PLA and the antibacterial property. J. Mater. Res. Technol. 18, 428–438 (2022). https://doi.org/10.1016/j.jmrt.2022.02.113
S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A Appl. Sci. Manuf. 114, 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
L.-X. Lu, X.-L. Wang, S.-L. Li, Y. Tang, X.-M. Mai, Thermal performance of Lonicera rupicola grass as a building insulation composite material. Adv. Compos. Hybrid Mater. 6, 8 (2022). https://doi.org/10.1007/s42114-022-00578-0
B.S. Maddodi, A. Lathashri, S. Devesh, A.U. Rao, G.B. Shenoy et al., Repurposing plastic wastes in non-conventional engineered wood building bricks for constructional application–a mechanical characterization using experimental and statistical analys. Eng. Sci. 18, 329–336 (2022). https://doi.org/10.30919/es8d696
M. Weng, S. Liu, J. Su, W. Xu, J. Huang et al., Hydrophobic and antimicrobial polyimide based composite phase change materials with thermal energy storage capacity, applied as multifunctional construction material. Eng. Sci. 19, 301–311 (2022). https://doi.org/10.30919/es8e735
S.N. Mahdi, T. Imjai, C. Wattanapanich, R. Garcia, H. Kaur et al., Life cycle cost analysis of flexible pavements reinforced with geo-synthetics: a case study of new construction or repair overlays in Thailand’s Roads. Eng. Sci. 28, 1071 (2024). https://doi.org/10.30919/es1071
H.A. Colorado, E.I. Gutierrez-Velasquez, L.D. Gil, I.L. de Camargo, Exploring the advantages and applications of nanocomposites produced via vat photopolymerization in additive manufacturing: a review. Adv. Compos. Hybrid Mater. 7, 1 (2023). https://doi.org/10.1007/s42114-023-00808-z
H.A. Colorado, J.M. Henkin, Fire-resistant plants: a review of plant morphology, tissues, habits, ecological adaptations, and other factors contributing to bioderived environmental solutions and technologies. Eng. Sci. 27, 1024 (2023). https://doi.org/10.30919/es1024
M.V. Singh, A. Kuma