Interface Engineered Microcellular Magnetic Conductive Polyurethane Nanocomposite Foams for Electromagnetic Interference Shielding
Corresponding Author: Zhanhu Guo
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 153
Abstract
Lightweight microcellular polyurethane (TPU)/carbon nanotubes (CNTs)/ nickel-coated CNTs (Ni@CNTs)/polymerizable ionic liquid copolymer (PIL) composite foams are prepared by non-solvent induced phase separation (NIPS). CNTs and Ni@CNTs modified by PIL provide more heterogeneous nucleation sites and inhibit the aggregation and combination of microcellular structure. Compared with TPU/CNTs, the TPU/CNTs/PIL and TPU/CNTs/Ni@CNTs/PIL composite foams with smaller microcellular structures have a high electromagnetic interference shielding effectiveness (EMI SE). The evaporate time regulates the microcellular structure, improves the conductive network of composite foams and reduces the microcellular size, which strengthens the multiple reflections of electromagnetic wave. The TPU/10CNTs/10Ni@CNTs/PIL foam exhibits slightly higher SE values (69.9 dB) compared with TPU/20CNTs/PIL foam (53.3 dB). The highest specific EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@CNTs/PIL reaches up to 187.2 and 211.5 dB/(g cm−3), respectively. The polarization losses caused by interfacial polarization between TPU substrates and conductive fillers, conduction loss caused by conductive network of fillers and magnetic loss caused by Ni@CNT synergistically attenuate the microwave energy.
Highlights:
1 Carbon nanotubes/polymerizable ionic liquid copolymer (CNTs/PIL) provides nucleation sites and inhibits the combination of microcellular structures.
2 The increase in evaporate time improves the conductive network of composite foams.
3 Electromagnetic interference shielding effectiveness (EMI SE) and specific EMI SE of the composite foam displays 69.9 dB and 211.5 dB/(g cm−3).
4 Polarization, conduction and magnetic loss attenuate microwave energy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.T. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4, 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z
- N. Wu, W. Du, Q. Hu, S. Vupputuri, Q. Jiang, Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 13, 11–23 (2021). https://doi.org/10.30919/es8d1149
- L. Lyu, J. Liu, H. Liu, C. Liu, Y. Lu et al., An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng. Sci. 2, 26–42 (2018). https://doi.org/10.30919/es8d615
- H.H. Hu, H.P. Liu, D.J. Zhang, J.J. Wang, G.W. Qin et al., pH and electromagnetic dual-remoted drug delivery based on bimodal superparamagnetic Fe3O4@porous silica nanoparticles. Eng. Sci. 2, 43–48 (2018). https://doi.org/10.30919/es8d136
- J. Guo, Z. Qu, B. Wang, A reverse thermal cloak design method based on inverse problem theory. ES Energy Environ. 7, 71–83 (2020). https://doi.org/10.30919/esee8c375
- P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2015). https://doi.org/10.1002/adma.201305293
- Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, Y.Y. Meng et al., Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
- W.X. Yang, B.W. Shao, T.Y. Liu, Y.Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(9), 8245–8257 (2018). https://doi.org/10.1021/acsami.7b18700
- L.C. Jia, D.X. Yan, X.F. Liu, R.J. Ma, H.Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
- B. Zhao, J. Deng, R. Zhang, L. Liang, B. Fan et al., Recent advances on the electromagnetic wave absorption properties of Ni based materials. Eng. Sci. 3, 5–40 (2018). https://doi.org/10.30919/es8d735
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016). https://doi.org/10.1016/j.carbon.2015.10.004
- R. Asmatulu, P.K. Bollavaram, V.R. Patlolla, I.M. Alarifi, W.S. Khan, Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Adv. Compos. Hybrid Mater. 3, 66–83 (2020). https://doi.org/10.1007/s42114-020-00135-7
- X. Lv, Y. Tang, Q. Tian, Y. Wang, T. Ding, Ultra-stretchable membrane with high electrical and thermal conductivity via electrospinning and in-situ nanosilver deposition. Compos. Sci. Technol. 200, 108414 (2020). https://doi.org/10.1016/j.compscitech.2020.108414
- X. Yan, J. Liu, M.A. Khan, S. Sheriff, S. Vupputuri et al., Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater. Manuf. 9, 21–33 (2020). https://doi.org/10.30919/esmm5f716
- J. Chen, Y. Zhu, Z. Guo, A.G. Nasibulin, Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng. Sci. 12, 13–22 (2020). https://doi.org/10.30919/es8d1129
- Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan et al., Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175, 271–280 (2021). https://doi.org/10.1016/j.carbon.2020.12.084
- L. Wang, P. Song, C.T. Lin, J. Kong, J.W. Gu, 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 4093732 (2020). https://doi.org/10.34133/2020/4093732
- A. Ameli, P.U. Jung, B.C. Park, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60, 379–391 (2013). https://doi.org/10.1016/j.carbon.2013.04.050
- Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26, 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
- A. Bianco, S. Burg, A.J. Parnell, C. Fernyhough, A. Washington et al., Control of the porous structure of polystyrene particles obtained by nonsolvent induced phase separation. Langmuir 33(46), 13303–13314 (2017). https://doi.org/10.1021/acs.langmuir.7b02802
- Y. Gu, R.M. Dorin, U. Wiesner, Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle Co-assembly. Nano Lett. 13(11), 5323–5328 (2013). https://doi.org/10.1021/nl402829p
- G.R. Guillen, Y. Pan, M. Li, E. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50(7), 3798–3817 (2011). https://doi.org/10.1021/ie101928r
- Z. Maghsoud, M. Pakbaz, M.H.N. Famili, S.S. Madaeni, New polyvinyl chloride/thermoplastic polyurethane membranes with potential application in nanofiltration. J. Memb. Sci. 541, 271–280 (2017). https://doi.org/10.1016/j.memsci.2017.07.001
- H.L. Yang, Z. Yu, P. Wu, H. Zou, P. Liu, Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surf. Sci. 434, 318–325 (2018). https://doi.org/10.1016/j.apsusc.2017.10.191
- Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang et al., Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5, 24342–24351 (2015). https://doi.org/10.1039/C4RA16421K
- J. Zhao, G. Luo, J. Wu, H. Xia, Preparation of microporous silicone rubber membrane with tunable pore size via solvent evaporation-induced phase separation. ACS Appl. Mater. Interfaces 5(6), 2040–2046 (2013). https://doi.org/10.1021/am302929c
- B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
- D.R. Tree, T. Iwama, K.T. Delaney, J. Lee, G.H. Fredrickson, Marangoni flows during nonsolvent induced phase separation. ACS Macro Lett. 7(5), 582–586 (2018). https://doi.org/10.1021/acsmacrolett.8b00012
- J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang et al., Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013). https://doi.org/10.1021/am303289m
- J. Li, G. Zhang, Z. Ma, X. Fan, X. Fan et al., Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams. Compos. Sci. Technol. 129, 70–78 (2016). https://doi.org/10.1016/j.compscitech.2016.04.003
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13, 1701388 (2017). https://doi.org/10.1002/smll.201701388
- Y. Li, B. Shen, X. Pei, Y. Zhang, D. Yi et al., Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100, 375–385 (2016). https://doi.org/10.1016/j.carbon.2016.01.030
- F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Electromagnetic shielding performance of carbon foams. Carbon 50, 1972–1980 (2012). https://doi.org/10.1016/j.carbon.2011.12.053
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- X. Ma, B. Shen, L. Zhang, Y. Liu, W. Zhai et al., Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Compos. Sci. Technol. 158, 86–93 (2018). https://doi.org/10.1016/j.compscitech.2018.02.006
- C.H. Cui, D.X. Yan, H. Pang, L.C. Jia, X. Xu et al., A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem. Eng. J. 323, 29–36 (2017). https://doi.org/10.1016/j.cej.2017.04.050
- V.D. Punetha, S. Rana, H.J. Yoo, A. Chaurasia, J.T. McLeskey et al., Functionalization of carbon nanomaterials for advanced polymernanocomposites: a comparison study between CNT and graphene. Prog. Polym. Sci. 67, 1–47 (2017). https://doi.org/10.1016/j.progpolymsci.2016.12.010
- S.T. Hsiao, C.C.M. Ma, H.W. Tien, W.H. Liao, Y.S. Wang et al., Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60, 57–66 (2013). https://doi.org/10.1016/j.carbon.2013.03.056
- S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). https://doi.org/10.1039/B917103G
- L. Liu, Z. Zheng, C. Gu, X. Wang, The poly(urethane-ionic liquid)/multi-walled carbon nanotubes composites. Compos. Sci. Technol. 70, 1697–1703 (2010)
- S.M. Shang, W. Zeng, X.M. Tao, High stretchable MWNTs/polyurethane conductive nanocomposites. J. Mater. Chem. 21, 7274–7280 (2011). https://doi.org/10.1039/C1JM10255A
- A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh et al., Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 8(16), 10600–10608 (2016). https://doi.org/10.1021/acsami.5b12334
- J. Abraham, M.P. Arif, P. Xavier, S. Bose, S.C. George et al., Investigation into dielectric behaviour and electromagnetic interference shielding effectiveness of conducting styrene butadiene rubber composites containing ionic liquid modified MWCNT. Polymer 112, 102–115 (2017). https://doi.org/10.1016/j.polymer.2017.01.078
- T. Welton, Room-temperature ionic liquids solvents for synthesis and satalysis. ChemInform 111, 2071–2084 (2010). https://doi.org/10.1002/chin.199946295
- S. Biswas, G.P. Kar, S. Bose, Tailor–made distribution of nanoparticles in blend structure toward outstanding electromagnetic interference shielding. ACS Appl. Mater. Interfaces 7(45), 25448–25463 (2015). https://doi.org/10.1021/acsami.5b08333
- J.M. Thomassin, C. Jérômea, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mat. Sci. Eng. R 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
- Y. Xu, Y. Yang, D.X. Yan, H. Duan, G. Zhao et al., Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chem. Eng. J. 360, 1427–1436 (2019). https://doi.org/10.1016/j.cej.2018.10.235
- A.V. Menon, G. Madras, S. Bose, Shape memory polyurethane nanocomposites with porous architectures for enhanced microwave shielding. Chem. Eng. J. 352, 590–600 (2018). https://doi.org/10.1016/j.cej.2018.07.048
- W. Zou, J. Huang, W. Zeng, X. Lu, Effect of ethylene-butylacrylate-glycidyl methacrylate on compatibility properties of poly(butylene terephthalate)/thermoplastic polyurethane blends. ES Energy Environ. 9, 67–73 (2020). https://doi.org/10.30919/esee8c180
- C. Liu, Q. Yin, X. Li, L. Hao, W. Zhang et al., A waterborne polyurethane–based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv. Compos. Hybrid Mater. 4, 138–149 (2021). https://doi.org/10.1007/s42114-021-00206-3
- Z. Zeng, M. Chen, Y. Pei, S.S. Shahabadi, B. Che et al., Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl. Mater. Interfaces 9(37), 32211–32219 (2017). https://doi.org/10.1021/acsami.7b07643
- A.V. Menon, G. Madras, S. Bose, Ultrafast self-healable interfaces in polyurethane nanocomposites designed using diels–alder “Click” as an efficient microwave absorber. ACS Omega 3, 1137–1146 (2018). https://doi.org/10.1021/acsomega.7b01845
- Q. Jiang, X. Liao, J. Li, J. Chen, G. Wang et al., Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. Part A Appl. S 123, 310–319 (2019). https://doi.org/10.1016/j.compositesa.2019.05.017
- T. Wu, B. Chen, Facile fabrication of porous conductive thermoplastic polyurethane nanocomposite films via solution casting. Sci. Rep. 7, 17470 (2017). https://doi.org/10.1038/s41598-017-17647-w
- X. Ji, D. Chen, J. Shen, S. Guo, Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chem. Eng. J. 370, 1341–1349 (2019). https://doi.org/10.1016/j.cej.2019.03.293
- J.M. Kim, Y. Lee, M.G. Jang, C. Han, W.N. Kim, Electrical conductivity and EMI shielding effectiveness of polyurethane foam–conductive filler composites. J. Appl. Polym. Sci. 133, 44373 (2016). https://doi.org/10.1002/app.44373
- H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
- H. Zhang, G. Zhang, J. Li, X. Fan, Z. Jing et al., Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos. Part A Appl. S 100, 128–138 (2017). https://doi.org/10.1016/j.compositesa.2017.05.009
- I. Okada, S. Shiratori, High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation. ACS Appl. Mater. Interfaces 6(3), 1502–1508 (2014). https://doi.org/10.1021/am404077h
- R. Rarima, G. Unnikrishnan, Poly(lactic acid)/gelatin foams by non-solvent induced phase separation for biomedical applications. Polym. Degrad. Stabil. 177, 109187 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109187
- Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai et al., The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017). https://doi.org/10.1016/j.compscitech.2016.12.002
- S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Nanoconfined ionic liquids. Chem. Rev. 117(10), 6755–6833 (2017). https://doi.org/10.1021/acs.chemrev.6b00509
- Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, 1800534 (2018). https://doi.org/10.1002/smll.201800534
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- X. Zhi, J. Liu, H.B. Zhang, S. Hong, Z.Z. Yu, Simultaneous enhancements in electrical conductivity and toughness of selectively foamed polycarbonate/polystyrene/carbon nanotube microcellular foams. Compos. Part B 143, 161–167 (2018). https://doi.org/10.1021/acs.iecr.7b00446
- G. Sang, P. Xu, C. Liu, P. Wang, X. Hu et al., Synergetic effect of Ni@ MWCNTs and hybrid MWCNTs on electromagnetic interference shielding performances of polyurethane–matrix composite foams. Ind. Eng. Chem. Res. 59(34), 15233–15241 (2020). https://doi.org/10.1021/acs.iecr.0c01766
- T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
- X.H. Li, X. Li, K.N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
- B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
- S. Ganguly, P. Das, P.P. Maity, S. Mondal, S. Ghosh et al., Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J. Phys. Chem. B 122, 7201–7218 (2018). https://doi.org/10.1021/acs.jpcb.8b02919
- J.Q. Luo, S. Zhao, H.B. Zhang, Z.M. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
- S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana et al., Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J. Mater. Sci. Mater. El. 29, 10177–10189 (2018). https://doi.org/10.1007/s10854-018-9068-2
- C. Wang, J. Li, S. Guo, High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure. Compos. Part A Appl. S 125, 105522 (2019). https://doi.org/10.1016/j.compositesa.2019.105522
References
P.T. Xie, Y. Liu, M. Feng, M. Niu, C. Liu et al., Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4, 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z
N. Wu, W. Du, Q. Hu, S. Vupputuri, Q. Jiang, Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 13, 11–23 (2021). https://doi.org/10.30919/es8d1149
L. Lyu, J. Liu, H. Liu, C. Liu, Y. Lu et al., An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng. Sci. 2, 26–42 (2018). https://doi.org/10.30919/es8d615
H.H. Hu, H.P. Liu, D.J. Zhang, J.J. Wang, G.W. Qin et al., pH and electromagnetic dual-remoted drug delivery based on bimodal superparamagnetic Fe3O4@porous silica nanoparticles. Eng. Sci. 2, 43–48 (2018). https://doi.org/10.30919/es8d136
J. Guo, Z. Qu, B. Wang, A reverse thermal cloak design method based on inverse problem theory. ES Energy Environ. 7, 71–83 (2020). https://doi.org/10.30919/esee8c375
P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2015). https://doi.org/10.1002/adma.201305293
Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, Y.Y. Meng et al., Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
W.X. Yang, B.W. Shao, T.Y. Liu, Y.Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(9), 8245–8257 (2018). https://doi.org/10.1021/acsami.7b18700
L.C. Jia, D.X. Yan, X.F. Liu, R.J. Ma, H.Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
B. Zhao, J. Deng, R. Zhang, L. Liang, B. Fan et al., Recent advances on the electromagnetic wave absorption properties of Ni based materials. Eng. Sci. 3, 5–40 (2018). https://doi.org/10.30919/es8d735
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016). https://doi.org/10.1016/j.carbon.2015.10.004
R. Asmatulu, P.K. Bollavaram, V.R. Patlolla, I.M. Alarifi, W.S. Khan, Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Adv. Compos. Hybrid Mater. 3, 66–83 (2020). https://doi.org/10.1007/s42114-020-00135-7
X. Lv, Y. Tang, Q. Tian, Y. Wang, T. Ding, Ultra-stretchable membrane with high electrical and thermal conductivity via electrospinning and in-situ nanosilver deposition. Compos. Sci. Technol. 200, 108414 (2020). https://doi.org/10.1016/j.compscitech.2020.108414
X. Yan, J. Liu, M.A. Khan, S. Sheriff, S. Vupputuri et al., Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater. Manuf. 9, 21–33 (2020). https://doi.org/10.30919/esmm5f716
J. Chen, Y. Zhu, Z. Guo, A.G. Nasibulin, Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng. Sci. 12, 13–22 (2020). https://doi.org/10.30919/es8d1129
Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan et al., Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175, 271–280 (2021). https://doi.org/10.1016/j.carbon.2020.12.084
L. Wang, P. Song, C.T. Lin, J. Kong, J.W. Gu, 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 4093732 (2020). https://doi.org/10.34133/2020/4093732
A. Ameli, P.U. Jung, B.C. Park, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60, 379–391 (2013). https://doi.org/10.1016/j.carbon.2013.04.050
Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26, 303–310 (2016). https://doi.org/10.1002/adfm.201503579
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
A. Bianco, S. Burg, A.J. Parnell, C. Fernyhough, A. Washington et al., Control of the porous structure of polystyrene particles obtained by nonsolvent induced phase separation. Langmuir 33(46), 13303–13314 (2017). https://doi.org/10.1021/acs.langmuir.7b02802
Y. Gu, R.M. Dorin, U. Wiesner, Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle Co-assembly. Nano Lett. 13(11), 5323–5328 (2013). https://doi.org/10.1021/nl402829p
G.R. Guillen, Y. Pan, M. Li, E. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50(7), 3798–3817 (2011). https://doi.org/10.1021/ie101928r
Z. Maghsoud, M. Pakbaz, M.H.N. Famili, S.S. Madaeni, New polyvinyl chloride/thermoplastic polyurethane membranes with potential application in nanofiltration. J. Memb. Sci. 541, 271–280 (2017). https://doi.org/10.1016/j.memsci.2017.07.001
H.L. Yang, Z. Yu, P. Wu, H. Zou, P. Liu, Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surf. Sci. 434, 318–325 (2018). https://doi.org/10.1016/j.apsusc.2017.10.191
Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang et al., Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5, 24342–24351 (2015). https://doi.org/10.1039/C4RA16421K
J. Zhao, G. Luo, J. Wu, H. Xia, Preparation of microporous silicone rubber membrane with tunable pore size via solvent evaporation-induced phase separation. ACS Appl. Mater. Interfaces 5(6), 2040–2046 (2013). https://doi.org/10.1021/am302929c
B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
D.R. Tree, T. Iwama, K.T. Delaney, J. Lee, G.H. Fredrickson, Marangoni flows during nonsolvent induced phase separation. ACS Macro Lett. 7(5), 582–586 (2018). https://doi.org/10.1021/acsmacrolett.8b00012
J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang et al., Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013). https://doi.org/10.1021/am303289m
J. Li, G. Zhang, Z. Ma, X. Fan, X. Fan et al., Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams. Compos. Sci. Technol. 129, 70–78 (2016). https://doi.org/10.1016/j.compscitech.2016.04.003
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13, 1701388 (2017). https://doi.org/10.1002/smll.201701388
Y. Li, B. Shen, X. Pei, Y. Zhang, D. Yi et al., Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100, 375–385 (2016). https://doi.org/10.1016/j.carbon.2016.01.030
F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Electromagnetic shielding performance of carbon foams. Carbon 50, 1972–1980 (2012). https://doi.org/10.1016/j.carbon.2011.12.053
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
X. Ma, B. Shen, L. Zhang, Y. Liu, W. Zhai et al., Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Compos. Sci. Technol. 158, 86–93 (2018). https://doi.org/10.1016/j.compscitech.2018.02.006
C.H. Cui, D.X. Yan, H. Pang, L.C. Jia, X. Xu et al., A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem. Eng. J. 323, 29–36 (2017). https://doi.org/10.1016/j.cej.2017.04.050
V.D. Punetha, S. Rana, H.J. Yoo, A. Chaurasia, J.T. McLeskey et al., Functionalization of carbon nanomaterials for advanced polymernanocomposites: a comparison study between CNT and graphene. Prog. Polym. Sci. 67, 1–47 (2017). https://doi.org/10.1016/j.progpolymsci.2016.12.010
S.T. Hsiao, C.C.M. Ma, H.W. Tien, W.H. Liao, Y.S. Wang et al., Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60, 57–66 (2013). https://doi.org/10.1016/j.carbon.2013.03.056
S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). https://doi.org/10.1039/B917103G
L. Liu, Z. Zheng, C. Gu, X. Wang, The poly(urethane-ionic liquid)/multi-walled carbon nanotubes composites. Compos. Sci. Technol. 70, 1697–1703 (2010)
S.M. Shang, W. Zeng, X.M. Tao, High stretchable MWNTs/polyurethane conductive nanocomposites. J. Mater. Chem. 21, 7274–7280 (2011). https://doi.org/10.1039/C1JM10255A
A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh et al., Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 8(16), 10600–10608 (2016). https://doi.org/10.1021/acsami.5b12334
J. Abraham, M.P. Arif, P. Xavier, S. Bose, S.C. George et al., Investigation into dielectric behaviour and electromagnetic interference shielding effectiveness of conducting styrene butadiene rubber composites containing ionic liquid modified MWCNT. Polymer 112, 102–115 (2017). https://doi.org/10.1016/j.polymer.2017.01.078
T. Welton, Room-temperature ionic liquids solvents for synthesis and satalysis. ChemInform 111, 2071–2084 (2010). https://doi.org/10.1002/chin.199946295
S. Biswas, G.P. Kar, S. Bose, Tailor–made distribution of nanoparticles in blend structure toward outstanding electromagnetic interference shielding. ACS Appl. Mater. Interfaces 7(45), 25448–25463 (2015). https://doi.org/10.1021/acsami.5b08333
J.M. Thomassin, C. Jérômea, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mat. Sci. Eng. R 74(7), 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
Y. Xu, Y. Yang, D.X. Yan, H. Duan, G. Zhao et al., Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chem. Eng. J. 360, 1427–1436 (2019). https://doi.org/10.1016/j.cej.2018.10.235
A.V. Menon, G. Madras, S. Bose, Shape memory polyurethane nanocomposites with porous architectures for enhanced microwave shielding. Chem. Eng. J. 352, 590–600 (2018). https://doi.org/10.1016/j.cej.2018.07.048
W. Zou, J. Huang, W. Zeng, X. Lu, Effect of ethylene-butylacrylate-glycidyl methacrylate on compatibility properties of poly(butylene terephthalate)/thermoplastic polyurethane blends. ES Energy Environ. 9, 67–73 (2020). https://doi.org/10.30919/esee8c180
C. Liu, Q. Yin, X. Li, L. Hao, W. Zhang et al., A waterborne polyurethane–based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv. Compos. Hybrid Mater. 4, 138–149 (2021). https://doi.org/10.1007/s42114-021-00206-3
Z. Zeng, M. Chen, Y. Pei, S.S. Shahabadi, B. Che et al., Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl. Mater. Interfaces 9(37), 32211–32219 (2017). https://doi.org/10.1021/acsami.7b07643
A.V. Menon, G. Madras, S. Bose, Ultrafast self-healable interfaces in polyurethane nanocomposites designed using diels–alder “Click” as an efficient microwave absorber. ACS Omega 3, 1137–1146 (2018). https://doi.org/10.1021/acsomega.7b01845
Q. Jiang, X. Liao, J. Li, J. Chen, G. Wang et al., Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. Part A Appl. S 123, 310–319 (2019). https://doi.org/10.1016/j.compositesa.2019.05.017
T. Wu, B. Chen, Facile fabrication of porous conductive thermoplastic polyurethane nanocomposite films via solution casting. Sci. Rep. 7, 17470 (2017). https://doi.org/10.1038/s41598-017-17647-w
X. Ji, D. Chen, J. Shen, S. Guo, Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chem. Eng. J. 370, 1341–1349 (2019). https://doi.org/10.1016/j.cej.2019.03.293
J.M. Kim, Y. Lee, M.G. Jang, C. Han, W.N. Kim, Electrical conductivity and EMI shielding effectiveness of polyurethane foam–conductive filler composites. J. Appl. Polym. Sci. 133, 44373 (2016). https://doi.org/10.1002/app.44373
H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
H. Zhang, G. Zhang, J. Li, X. Fan, Z. Jing et al., Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos. Part A Appl. S 100, 128–138 (2017). https://doi.org/10.1016/j.compositesa.2017.05.009
I. Okada, S. Shiratori, High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation. ACS Appl. Mater. Interfaces 6(3), 1502–1508 (2014). https://doi.org/10.1021/am404077h
R. Rarima, G. Unnikrishnan, Poly(lactic acid)/gelatin foams by non-solvent induced phase separation for biomedical applications. Polym. Degrad. Stabil. 177, 109187 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109187
Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai et al., The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017). https://doi.org/10.1016/j.compscitech.2016.12.002
S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Nanoconfined ionic liquids. Chem. Rev. 117(10), 6755–6833 (2017). https://doi.org/10.1021/acs.chemrev.6b00509
Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14, 1800534 (2018). https://doi.org/10.1002/smll.201800534
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
X. Zhi, J. Liu, H.B. Zhang, S. Hong, Z.Z. Yu, Simultaneous enhancements in electrical conductivity and toughness of selectively foamed polycarbonate/polystyrene/carbon nanotube microcellular foams. Compos. Part B 143, 161–167 (2018). https://doi.org/10.1021/acs.iecr.7b00446
G. Sang, P. Xu, C. Liu, P. Wang, X. Hu et al., Synergetic effect of Ni@ MWCNTs and hybrid MWCNTs on electromagnetic interference shielding performances of polyurethane–matrix composite foams. Ind. Eng. Chem. Res. 59(34), 15233–15241 (2020). https://doi.org/10.1021/acs.iecr.0c01766
T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
X.H. Li, X. Li, K.N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
S. Ganguly, P. Das, P.P. Maity, S. Mondal, S. Ghosh et al., Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J. Phys. Chem. B 122, 7201–7218 (2018). https://doi.org/10.1021/acs.jpcb.8b02919
J.Q. Luo, S. Zhao, H.B. Zhang, Z.M. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
S. Ghosh, S. Ganguly, S. Remanan, S. Mondal, S. Jana et al., Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J. Mater. Sci. Mater. El. 29, 10177–10189 (2018). https://doi.org/10.1007/s10854-018-9068-2
C. Wang, J. Li, S. Guo, High-performance electromagnetic wave absorption by designing the multilayer graphene/thermoplastic polyurethane porous composites with gradient foam ratio structure. Compos. Part A Appl. S 125, 105522 (2019). https://doi.org/10.1016/j.compositesa.2019.105522