Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption
Corresponding Author: Pengfei Yin
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 23
Abstract
Currently, the demand for electromagnetic wave (EMW) absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent. Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption. However, interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption. In this study, multi-component tin compound fiber composites based on carbon fiber (CF) substrate were prepared by electrospinning, hydrothermal synthesis, and high-temperature thermal reduction. By utilizing the different properties of different substances, rich heterogeneous interfaces are constructed. This effectively promotes charge transfer and enhances interfacial polarization and conduction loss. The prepared SnS/SnS2/SnO2/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt% in epoxy resin. The minimum reflection loss (RL) is − 46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz. Moreover, SnS/SnS2/SnO2/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces. Therefore, this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
Highlights:
1 Excellent impedance matching through component modulation engineering.
2 Rich heterogeneous interfaces are constructed to realize excellent electromagnetic wave (EMW) absorption performance.
3 Long-term corrosion protection and excellent EMW absorption properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.G. Su, J. Wang, T. Liu, Y.N. Liu, B. Zhang et al., Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. 34, 2403397 (2024). https://doi.org/10.1002/adfm.202403397
- X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- T.B. Ma, Y.L. Zhang, K.P. Ruan, H. Guo, M.K. He et al., Advances in 3D printing for polymer composites: a review. InfoMat 6, e12568 (2024). https://doi.org/10.1002/inf2.12568
- A.L. Feng, X. Zhu, Y.N. Chen, P.T. Liu, F.B. Han et al., Functional biomass-derived materials for the development of sustainable batteries. ChemElectroChem 11(13), e202400086 (2024). https://doi.org/10.1002/celc.202400086
- K.J. Gong, Y.M. Peng, A. Liu, S.H. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for high performance electromagenetic interference shielding and thermal stability. Compos. Part A 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
- J.L. Liu, L.M. Zhang, H.J. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
- X.G. Su, Y. Zhang, J. Wang, Y.Q. Liu, Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/PVDF foams via ice dissolution and normal pressure drying. J. Mater. Chem. C 12, 7775–7783 (2024). https://doi.org/10.1039/d4tc00929k
- N. Qu, G.X. Xu, Y.K. Liu, M.K. He, R.Z. Xing et al., Multi-scale design of metal-organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 34, 2402923 (2024). https://doi.org/10.1002/adfm.202402923
- Z.Z. He, H.X. Xu, L.Z. Shi, X.R. Ren, J. Kong et al., Hierarchical Co2P/CoS2@C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small 20(6), 2306253 (2024). https://doi.org/10.1002/smll.202306253
- X.D. Li, X. Zhu, A.L. Feng, M.M. An, P.T. Liu et al., Electrochemical and surface analysis investigation of corrosion inhibition performance: 6-Thioguanine, benzotriazole, and phosphate salt on simulated patinas of bronze relics. J. Mater. Res. Technol. 29, 5667–5680 (2024). https://doi.org/10.1016/j.jmrt.2024.03.001
- X. Yang, L.X. Xuan, W.W. Men, X. Wu, D. Lan et al., Carbonyl iron/glass fiber cloth composites: achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 491, 151862 (2024). https://doi.org/10.1016/j.cej.2024.151862
- C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2023). https://doi.org/10.1007/s40820-022-00986-3
- Y.L. Zhang, K.P. Ruan, K. Zhou, J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- F. Wu, M.Y. Ling, L.Y. Wan, P. Liu, Y.B. Wang et al., Three-dimensional FeMZn (M = Co or Ni) MOFs: ions coordinated self-assembling processes and boosting microwave absorption. Chem. Eng. J. 435, 134905 (2022). https://doi.org/10.1016/j.cej.2022.134905
- Y.F. He, Q. Su, D.D. Liu, L. Xia, X.X. Huang et al., Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 491, 152041 (2024). https://doi.org/10.1016/j.cej.2024.152041
- H.L. Lv, Z.H. Yang, H.G. Pan, R.B. Wu, Electromagnetic absorption materials: current progress and new frontiers. Prog. Mater. Sci. 127, 100946 (2022). https://doi.org/10.1016/j.pmatsci.2022.100946
- H. Zhao, T. Gao, J. Yun, L.X. Chen, Robust liquid metal reinforced cellulose nanofiber/MXene composite film with Janus structure for electromagnetic interference shielding and electro-/photothermal conversion applications. J. Mater. Sci. Technol. 191, 23–32 (2024). https://doi.org/10.1016/j.jmst.2023.12.035
- J.M. Yang, H. Wang, Y.L. Zhang, H.X. Zhang, J.W. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2024). https://doi.org/10.1007/s40820-023-01246-8
- L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu, B. Wang, G. Wu, Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
- C.H. Wei, L.Z. Shi, M.Q. Li, M.K. He, M.J. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
- J.C. Shu, M.S. Cao, Y.L. Zhang, Y.Z. Wang, Q.L. Zhao et al., Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 33(15), 2212379 (2023). https://doi.org/10.1002/adfm.202212379
- L.H. Yao, Y.C. Wang, J.G. Zhao, Y.Q. Zhu, M.S. Cao, Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 19(25), 2208101 (2023). https://doi.org/10.1002/smll.202208101
- D.L. Tan, Q. Wang, M.R. Li, L.M. Song, F. Zhang et al., Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 492, 152245 (2024). https://doi.org/10.1016/j.cej.2024.152245
- A.L. Feng, L. Liu, P.T. Liu, Y.Q. Zu, F.B. Han et al., Interfacial nanops of Co2P/Co3Fe7 encapsulated in N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Energy 44, 101626 (2024). https://doi.org/10.1016/j.mtener.2024.101626
- F.H. Yu, P.F. Jia, L. Song, Y. Hu, B.B. Wang et al., Multifunctional fabrics based on copper sulfide with excellent electromagnetic interference shielding performance for medical electronics and physical therapy. Chem. Eng. J. 472, 145091 (2023). https://doi.org/10.1016/j.cej.2023.145091
- Y.Q. Zhou, L.F. Zhang, H.L. Suo, W.B. Hua, S. Indris et al., Atomic cobalt vacancy-cluster enabling optimized electronic structure for efficient water splitting. Adv. Funct. Mater. 31(26), 2101797 (2021). https://doi.org/10.1002/adfm.202101797
- Y. Han, M.J. Han, T.B. Zhao, Z.H. Xia, J.X. Zou et al., Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption. Mater. Res. Bull. 172, 112670 (2024). https://doi.org/10.1016/j.materresbull.2023.112670
- J.Q. Zeng, P.F. Qi, Y. Wang, Y.H. Liu, K.Y. Sui, Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. J. Hazard. Mater. 410, 124633 (2021). https://doi.org/10.1016/j.jhazmat.2020.124633
- M.Y. Yuan, B. Zhao, C.D. Yang, K. Pei, L.Y. Wang et al., Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32(33), 1103161 (2022). https://doi.org/10.1002/adfm.202203161
- X.M. Huang, X.H. Liu, Y. Zhang, J.X. Zhou, G.L. Wu et al., Construction of NiCeOx nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 147, 16–25 (2023). https://doi.org/10.1016/j.jmst.2022.12.001
- H.P. Lv, C. Wu, J. Tang, H.F. Du, F.X. Qin et al., Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 411, 128445 (2021). https://doi.org/10.1016/j.cej.2021.128445
- T.T. Zheng, Y. Zhang, Z.R. Jia, J.H. Zhu, G.L. Wu et al., Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in CuxS/CoFe2O4 composites. Chem. Eng. J. 457, 140876 (2023). https://doi.org/10.1016/j.cej.2022.140876
- D. Lan, Y. Hu, M. Wang, Y. Wang, Z.G. Gao et al., Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands. Compos. Commun. 50, 101993 (2024). https://doi.org/10.1016/j.coco.2024.101993
- X.L. Cao, X.H. Liu, J.H. Zhu, Z.R. Jia, J.K. Liu et al., Optimal p distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J Colloid Interf. Sci. 634, 268–278 (2023). https://doi.org/10.1016/j.jcis.2022.12.048
- T. Zhao, Z. Jia, J. Liu, Y. Zhang, G. Wu, P. Yin, Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Lett. 16, 6 (2024). https://doi.org/10.1007/s40820-023-01212-4
- Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
- Z.H. Zhou, Q.Q. Zhu, Y. Liu, Y. Zhang, Z.R. Jia et al., Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 15, 137 (2023). https://doi.org/10.1007/s40820-023-01108-3
- J.L. Liu, H.S. Liang, B. Wei, J.J. Yun, L.M. Zhang et al., “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4(7), 2200379 (2023). https://doi.org/10.1002/sstr.202200379
- X.L. Chen, F. Zhang, D. Lan, S.J. Zhang, S.X. Du et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: from the perspective of nitrogen source. Adv. Compos. Hybrid Mater. 6(6), 220 (2023). https://doi.org/10.1007/s42114-023-00792-4
- S. Zhang, X.H. Liu, C.Y. Jia, Z.S. Sun, H.W. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
- J.J. Li, D. Lan, Y.H. Cheng, Z.R. Jia, P.B. Liu et al., Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: an effective strategy to achieve boosted microwave absorption and self-anticorrosion. J. Mater. Sci. Technol. 196, 60–70 (2024). https://doi.org/10.1016/j.jmst.2024.02.016
- M.J. Han, D. Lan, Z.M. Zhang, Y.Z. Zhao, J.X. Zou et al., Micro-sized hexapod-like CuS/Cu9S5 hybrid with broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 214, 302–312 (2025). https://doi.org/10.1016/j.jmst.2024.07.014
- G.J. Ma, D. Lan, Y. Zhang, X.Y. Sun, Z.R. Jia et al., Microporous cobalt ferrite with bio-carbon loosely decorated to construct multi-functional composite for dye adsorption, anti-bacteria and electromagnetic protection. Small 20, 2404449 (2024). https://doi.org/10.1002/smll.202404449
- Z. Li, J. Ding, H.L. Wang, K. Cui, T. Stephenson et al., High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 15, 369–378 (2015). https://doi.org/10.1016/j.nanoen.2015.04.018
- L. Wu, H.Y. Lu, L.F. Xiao, J.F. Qian, X.P. Ai et al., A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2(39), 16424–16428 (2014). https://doi.org/10.1039/c4ta03365e
- Y. Zheng, T.F. Zhou, C.F. Zhang, J.F. Mao, H.K. Liu et al., Boosted charge transfer in sns/sno2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55(10), 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
- Y. Han, D. Lan, M.J. Han, Z.H. Xia, J.X. Zou et al., Construction of flower-like MoS2 decorated on Cu doped CoZn–ZIF derived N-doped carbon as superior microwave absorber. Nano Res. 17(9), 8250–8260 (2024). https://doi.org/10.1007/s12274-024-6859-z
- Z.H. Ma, K. Yang, D. Li, H. Liu, S.C. Hui et al., The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms modulated yolk@shell FexN@NGC. Adv. Mater. 36(23), 2314233 (2024). https://doi.org/10.1002/adma.202314233
- Z.H. Zhou, X.F. Zhou, D. Lan, Y. Zhang, Z.R. Jia et al., Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection. Small 20, 2305849 (2024). https://doi.org/10.1002/smll.202305849
- Y. Gao, J.J. Lin, X. Chen, Z.D. Tang, G. Qin et al., Engineering 2D MXene and LDH into 3D hollow framework for boosting photothermal energy storage and microwave absorption. Small 19(49), 2303113 (2023). https://doi.org/10.1002/smll.202303113
- P.K. Wu, X.K. Kong, Y.R. Feng, W. Ding, Z.G. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34(10), 2311983 (2024). https://doi.org/10.1002/adfm.202311983
- R. Barik, V. Tanwar, R. Kumar, P.P. Ingole, A high energy density and high rate capability flexible supercapacitor based on electro-spun highly porous SnO2@carbon nanofibers. J. Mater. Chem. A 8(30), 15110–15121 (2020). https://doi.org/10.1039/d0ta04355a
- F.S. Yuan, Y. Huang, J.S. Qian, M.M. Rahman, P.M. Ajayan et al., Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries. Carbohyd. Polym. 255, 117400 (2021). https://doi.org/10.1016/j.carbpol.2020.117400
- J.K. Liu, Z.R. Jia, Y.H. Dong, J.J. Li, X.L. Cao et al., Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 27, 100801 (2022). https://doi.org/10.1016/j.mtphys.2022.100801
- K.Y. Hu, C. Ming, Y.T. Liu, C. Zheng, S.N. Zhang et al., Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity. Chin. Chem. Lett. 31(10), 2809–2813 (2020). https://doi.org/10.1016/j.cclet.2020.07.052
- K.Y. Hu, C. Ming, Y.T. Liu, C. Zheng, S.N. Zhang et al., Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity. Chin. Chem. Lett. 31, 2809–2813 (2020). https://doi.org/10.1016/j.cclet.2020.07.052
- L.G. Li, Z.C. Chai, W. Jin, H. Sun, J.H. He et al., Sulfur vacancy in SnS2 nanoflake adjusted by precursor and improved photocatalytic performance. J. Alloy. Compd. 932, 167658 (2023). https://doi.org/10.1016/j.jallcom.2022.167658
- Y.X. Qin, Z.J. Wei, Y.N. Bai, Effect of vacancy defects of SnS on gas adsorption and its potential for selective gas detection. Vacuum 183, 109792 (2021). https://doi.org/10.1016/j.vacuum.2020.109792
- J.B. Wang, J.J. Huang, S.P. Huang, H. Notohara, K. Urita et al., Rational design of hierarchical SnS2 microspheres with S vacancy for enhanced sodium storage performance. ACS Sustain. Chem. Eng. 8(25), 9519–9525 (2020). https://doi.org/10.1021/acssuschemeng.0c02535
- Y.X. Qin, S.H. Chen, Y.N. Bai, Adsorption and sensing performance toward methanol vapor on SnS/SnS2 in-plane heterostructures. ACS Appl. Electron. Mater. 4(1), 158–167 (2022). https://doi.org/10.1021/acsaelm.1c00911
- J.L. Liu, L.M. Zhang, H.J. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F-regulation engineering. Adv. Funct. Mater. 32(13), 2110469 (2021). https://doi.org/10.1002/adfm.202110496
- X.X. Chu, Y.Y. Liao, L. Wang, J.R. Li, H. Xu, Engineering sulfur vacancies for boosting electrocatalytic reactions. Chin. Chem. Lett. 34, 108285 (2023). https://doi.org/10.1016/j.cclet.2023.108285
- X.L. Cao, D. Lan, Y. Zhang, Z.R. Jia, G.L. Wu et al., Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption. Adv. Compos. Hybrid Mater. 6, 187 (2023). https://doi.org/10.1007/s42114-023-00763-9
- Y. Liu, D.L. Pan, M.W. Xiong, Y. Tao, X.F. Chen et al., In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants. Chin. J. Catal. 41(10), 1554–1563 (2020). https://doi.org/10.1016/S1872-2067(19)63498-4
- Z.M. Tang, L. Xu, C. Xie, L.R. Guo, L.B. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14(1), 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
- S.J. Zhang, D. Lan, J.J. Zheng, X.L. Chen, A.L. Feng et al., Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption. Int. J. Miner. Metall. Mater. (2024). https://doi.org/10.1007/s12613-024-2875-y
- Y.Y. Lian, D. Lan, X.D. Jiang, L. Wang, S. Yan et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interf. Sci. 676, 217–226 (2024). https://doi.org/10.1016/j.jcis.2024.07.102
- J.X. Xiao, B.B. Zhan, M.K. He, X.S. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 34, 2316722 (2024). https://doi.org/10.1002/adfm.202316722
- J.H. Wen, D. Lan, Y.Q. Wang, L.G. Ren, A.L. Feng et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave absorbing porous carbon by swelling treatment. Int. J. Miner. Metall. Mater. 31, 1701–1712 (2024). https://doi.org/10.1007/s12613-024-2881-0
- M.Y. Yuan, H.L. Lv, H.W. Cheng, B. Zhao, G.Y. Chen et al., Atomic and electronic reconstruction in defective 0D molybdenum carbide heterostructure for regulating lower-frequency microwaves. Adv. Funct. Mater. 33(33), 2302003 (2023). https://doi.org/10.1002/adfm.202302003
- P.F. Yin, D. Lan, C.F. Lu, Z.R. Jia, A.L. Feng et al., Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection. J. Mater. Sci. Technol. 204, 204–223 (2025). https://doi.org/10.1016/j.jmst.2024.04.007
- Z.W. Hao, J. Zhou, S.N. Lin, D. Lan, H.Y. Li et al., Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion electromagnetic absorbers. Carbon 228, 119323 (2024). https://doi.org/10.1016/j.carbon.2024.119323
- R.Y. Tan, Y.J. Liu, W.J. Li, J.T. Zhou, P. Chen et al., Multi-scale dispersion engineering on biomass-derived materials for ultra-wideband and wide-angle microwave absorption. Adv. Funct. Mater. 34, 2301772 (2024). https://doi.org/10.1002/smtd.202301772
- J.X. Zhou, D. Lan, F. Zhang, Y.H. Cheng, Z.R. Jia et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small 19(52), 2304932 (2023). https://doi.org/10.1002/smll.202304932
- N.N. Wu, B.B. Zhao, Y.Y. Lian, S.S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
- J.H. Wang, L. Zhang, J.F. Yan, J.N. Yun, W. Zhao et al., MXene-based ultrathin electromagnetic wave absorber with hydrophobicity, anticorrosion, and quantitively classified electrical losses by intercalation growth nucleation engineering. Adv. Funct. Mater. 34, 2402419 (2024). https://doi.org/10.1002/adfm.202402419
- X.L. Chen, D. Lan, L.T. Zhou, Z. Zeng, Y.K. Liu et al., Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption. Ceram. Int. 50, 24549–24557 (2024). https://doi.org/10.1016/j.ceramint.2024.04.190
- Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, G.L. Wu, Oxygen vacancy induced dielectric polarization prevails in electromagnetic wave absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022). https://doi.org/10.1002/adfm.202204499
- Z.R. Jia, J.K. Liu, Z.G. Gao, C.H. Zhang, G.L. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H–MS2 (M=Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater. 34, 2405523 (2024). https://doi.org/10.1002/adfm.202405523
- T. Liu, Y.N. Zhang, C. Wang, Y.F. Kang, M. Wang et al., Multifunctional MoCx hybrid polyimide aerogel with modified porous defect engineering for highly efficient electromagnetic wave absorption. Small 20, 2308378 (2024). https://doi.org/10.1002/smll.202308378
- H.B. Zhang, J.Y. Cheng, H.H. Wang, Z.H. Huang, Q.B. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
- Z.G. Gao, D. Lan, X.Y. Ren, Z.R. Jia, G.L. Wu, Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites. Compos. Commun. 48, 101922 (2024). https://doi.org/10.1016/j.coco.2024.101922
- Z.Y. Shen, D. Lan, Y. Cong, Y.Y. Lian, N.N. Wu et al., Tailored heterogeneous interface based on porous hollow In–Co–C nanorods to construct adjustable multi-band microwave absorber. J. Mater. Sci. Technol. 181, 128–137 (2024). https://doi.org/10.1016/j.jmst.2023.10.007
- H.S. Liang, L.M. Zhang, H.J. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 18(38), 2203620 (2022). https://doi.org/10.1002/smll.202203620
- Q.L. Zhang, D. Lan, S.L. Deng, J.W. Gu, Y.Q. Wang et al., Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption. Carbon 226, 119233 (2024). https://doi.org/10.1016/j.carbon.2024.119233
- Z.G. Gao, A. Iqbal, T. Hassan, S.C. Hui, H.J. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. 36(19), 2311411 (2024). https://doi.org/10.1002/adma.202311411
- L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
- F. Pan, K. Pei, G. Chen, H.T. Guo, H.J. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33(49), 2306599 (2023). https://doi.org/10.1002/adfm.202306599
- J. Yan, Z.D. Ye, D. Lan, W.X. Chen, Z.R. Jia et al., Transition metal carbides towards electromagnetic wave absorption application: state of the art and perspectives. Compos. Commun. 48, 101954 (2024). https://doi.org/10.1016/j.coco.2024.101954
- L.Y. Yuan, W.X. Zhao, Y.K. Miao, C. Wang, A.G. Cui et al., Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption. Adv. Compos. Hybrid Mater. 7(2), 70 (2024). https://doi.org/10.1007/s42114-024-00864-z
- S. Zhang, Z.R. Jia, Y. Zhang, G.L. Wu, Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 16, 3395–3407 (2023). https://doi.org/10.1007/s12274-022-5368-1
- W.J. Li, W.C. Li, Z.B. Ma, Y. Kang, T. Zou et al., N atoms regulate heterogeneous crystal phase engineering of mesoporous magnetic FexN nanofibers to promote electromagnetic wave dissipation of magnetic composite aerogel absorbers. Chem. Eng. J. 481, 148584 (2024). https://doi.org/10.1016/j.cej.2024.148584
- W.B. Deng, T.H. Li, H. Li, J. Abdul, L.T. Liu et al., MOF derivatives with gradient structure anchored on carbon foam for high-performance electromagnetic wave absorption. Small 20, 2329806 (2024). https://doi.org/10.1002/smll.202309806
- C.J. Wang, H.T. Jiang, X.Z. Cao, X. He, X.B. Chen et al., Graphite wrapped FeNi3/Co with carbon nanotubes anchored on MgO@carbon fiber reinforcements via continuous fabrication for high-efficiency microwave attenuation. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00446-0
- J.L. Gao, L. Chang, B. Ni, X.C. Zhang, L. Li et al., Dielectric modulation engineering in hierarchically ordered porous Ti3C2Tx MXene/rhenium disulfide aerogel toward potential electromagnetic wave absorption and infrared stealth. Adv. Compos. Hybrid Mater. 7(3), 103 (2024). https://doi.org/10.1007/s42114-024-00917-3
- B.J. Wang, W. Wei, F.Z. Huang, F.H. Liu, S.K. Li et al., Orbital hybridization induced dipole polarization and room temperature magnetism of atomic Co–N4–C toward electromagnetic energy attenuation. Adv. Funct. Mater. 34, 2404484 (2024). https://doi.org/10.1002/adfm.202404484
- X.J. Zeng, X. Jiang, Y. Ning, Y.F. Gao, R.C. Che, Constructing built-in electric fields with semiconductor junctions and Schottky junctions based on mo–mxene/mo-metal sulfides for electromagnetic response. Nano-Micro Lett. 16, 213 (2024). https://doi.org/10.1007/s40820-024-01449-7
- B. Shan, Y. Wang, X.Y. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16, 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
- Y.T. Qian, Z.C. Wu, X.W. Lv, M.Q. Huang, L.J. Rao, Fixed-point atomic regulation engineered low-thickness wideband microwave absorption. Small 20, 2401878 (2024). https://doi.org/10.1002/smll.202401878
- C.Y. Xu, K.C. Luo, Y.Q. Du, H.B. Zhang, X.W. Lv et al., Anisotropic interfaces support the confined growth of magnetic nanometer-sized heterostructures for electromagnetic wave absorption. Adv. Funct. Mater. 33(47), 2307529 (2023). https://doi.org/10.1002/adfm.202307529
- M.Q. Huang, L. Wang, K. Pei, B.X. Li, W.B. You et al., Heterogeneous interface engineering of Bi-Metal MOFs-derived ZnFe2O4–ZnO–Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 33(3), 2308898 (2023). https://doi.org/10.1002/adfm.202308898
- Y.H. Ge, H.G. Wang, T.Q. Wu, B. Hu, Y.Z. Shao et al., Accordion-like reduced graphene oxide embedded with Fe nanops between layers for tunable and broadband electromagnetic wave absorption. J. Colloid Interf. Sci. 628, 1019–1030 (2022). https://doi.org/10.1016/j.jcis.2022.08.020
- Y.J. Liu, X.F. Wei, X.X. He, J.R. Yao, R.Y. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33(5), 2211352 (2023). https://doi.org/10.1002/adfm.202211352
- Y. Zhang, D. Lan, T. Hou, M. Jia, Z. Jia, J. Gu, G. Wu, Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with ultra-wide absorption band. Carbon 230, 119594 (2024). https://doi.org/10.1016/j.carbon.2024.119594
- X.F. Xu, S.H. Shi, Y.L. Tang, G.Z. Wang, M.F. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8, 2002658 (2021). https://doi.org/10.1002/advs.202002658
- J.H. Zhu, D. Lan, X.H. Liu, S.H. Zhang, Z.R. Jia et al., Porous structure fibers based on multi-element heterogeneous components for optimized electromagnetic wave absorption and self-anticorrosion performance. Small (2024). https://doi.org/10.1002/smll.202403689
- D. Lan, H.F. Li, M. Wang, Y.J. Ren, J. Zhang et al., Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. 171, 112630 (2024). https://doi.org/10.1016/j.materresbull.2023.112630
- Y. Cheng, D. Lan, Z. Jia, Z. Gao, X. Liu et al., MOF derivatives anchored to multichannel hollow carbon fibers with gradient structures for corrosion resistance and efficient electromagnetic wave absorption. J. Mater. Sci. Technol. (2024). https://doi.org/10.1016/j.jmst.2024.08.004
- H.L. Lv, Y.X. Yao, S.C. Li, G.L. Wu, B. Zhao et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 14, 1982 (2023). https://doi.org/10.1016/10.1038/s41467-023-37436-6
- M.J. Cui, X.Y. Chen, S.X. Mei, S.M. Ren, Bioinspired polydopamine nanosheets for the enhancement in anti-corrosion performance of water-borne epoxy coatings. Chem. Eng. J. 471, 144760 (2023). https://doi.org/10.1016/j.cej.2023.144760
- X.B. Xie, H.H. Wang, H. Kimura, C. Ni, W. Du et al., NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater. 31(10), 2274–2286 (2024). https://doi.org/10.1007/s12613-024-2880-1
- J. Zhou, X. Huang, D. Lan, Y. Cheng, F. Xue, C. Jia et al., Polymorphic cerium-based prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization. Nano Res. 17(3), 2050–2060 (2024). https://doi.org/10.1002/smll.202304932
- X.B. Zhu, Q.Q. Yan, L. Cheng, H. Wu, H.C. Zha et al., Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings. Chem. Eng. J. 389, 124435 (2020). https://doi.org/10.1016/j.cej.2021140.124435
- J. Jiang, D. Lan, Y. Li, J. Yang, S. Deng, Q. He, Y. Wang, Construction of spherical heterogeneous interface on ZnFe2O4@C composite nanofibers for highly efficient microwave absorption. Ceram. Int. (2024). https://doi.org/10.1016/j.ceramint.2024.07.197
- H.L. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou et al., A flexible electromagnetic wave-electricitiy harvester. Nat. Commun. 12(1), 834 (2021). https://doi.org/10.1038/s41467-021-21103-9
- Y. Dong, D. Lan, S. Xu, J. Gu, Z. Jia, G. Wu, Controllable fiberization engineering of cobalt anchored mesoporous hollow carbon spheres for positive feedback to electromagnetic wave absorption. Carbon 228, 119339 (2024). https://doi.org/10.1016/j.carbon.2024.119339
- Z. Jia, L. Sun, Z. Gao, D. Lan, Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6939-0
- J.Q. Tao, L.L. Xu, C.B. Pei, Y.S. Gu, Y.R. He et al., Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 33(8), 2211996 (2023). https://doi.org/10.1002/adfm.202211996
- T. Zhao, D. Lan, Z. Jia, Z. Gao, G. Wu, Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6938-1
- C.L. Zhou, Z. Li, J. Li, T.C. Yuan, B. Chen et al., Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers. Chem. Eng. J. 385, 123835 (2020). https://doi.org/10.1016/j.cej.2019.123835
References
X.G. Su, J. Wang, T. Liu, Y.N. Liu, B. Zhang et al., Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. 34, 2403397 (2024). https://doi.org/10.1002/adfm.202403397
X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
T.B. Ma, Y.L. Zhang, K.P. Ruan, H. Guo, M.K. He et al., Advances in 3D printing for polymer composites: a review. InfoMat 6, e12568 (2024). https://doi.org/10.1002/inf2.12568
A.L. Feng, X. Zhu, Y.N. Chen, P.T. Liu, F.B. Han et al., Functional biomass-derived materials for the development of sustainable batteries. ChemElectroChem 11(13), e202400086 (2024). https://doi.org/10.1002/celc.202400086
K.J. Gong, Y.M. Peng, A. Liu, S.H. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for high performance electromagenetic interference shielding and thermal stability. Compos. Part A 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
J.L. Liu, L.M. Zhang, H.J. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
X.G. Su, Y. Zhang, J. Wang, Y.Q. Liu, Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/PVDF foams via ice dissolution and normal pressure drying. J. Mater. Chem. C 12, 7775–7783 (2024). https://doi.org/10.1039/d4tc00929k
N. Qu, G.X. Xu, Y.K. Liu, M.K. He, R.Z. Xing et al., Multi-scale design of metal-organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 34, 2402923 (2024). https://doi.org/10.1002/adfm.202402923
Z.Z. He, H.X. Xu, L.Z. Shi, X.R. Ren, J. Kong et al., Hierarchical Co2P/CoS2@C@MoS2 composites with hollow cavity and multiple phases toward wideband electromagnetic wave absorption. Small 20(6), 2306253 (2024). https://doi.org/10.1002/smll.202306253
X.D. Li, X. Zhu, A.L. Feng, M.M. An, P.T. Liu et al., Electrochemical and surface analysis investigation of corrosion inhibition performance: 6-Thioguanine, benzotriazole, and phosphate salt on simulated patinas of bronze relics. J. Mater. Res. Technol. 29, 5667–5680 (2024). https://doi.org/10.1016/j.jmrt.2024.03.001
X. Yang, L.X. Xuan, W.W. Men, X. Wu, D. Lan et al., Carbonyl iron/glass fiber cloth composites: achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 491, 151862 (2024). https://doi.org/10.1016/j.cej.2024.151862
C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2023). https://doi.org/10.1007/s40820-022-00986-3
Y.L. Zhang, K.P. Ruan, K. Zhou, J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
F. Wu, M.Y. Ling, L.Y. Wan, P. Liu, Y.B. Wang et al., Three-dimensional FeMZn (M = Co or Ni) MOFs: ions coordinated self-assembling processes and boosting microwave absorption. Chem. Eng. J. 435, 134905 (2022). https://doi.org/10.1016/j.cej.2022.134905
Y.F. He, Q. Su, D.D. Liu, L. Xia, X.X. Huang et al., Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 491, 152041 (2024). https://doi.org/10.1016/j.cej.2024.152041
H.L. Lv, Z.H. Yang, H.G. Pan, R.B. Wu, Electromagnetic absorption materials: current progress and new frontiers. Prog. Mater. Sci. 127, 100946 (2022). https://doi.org/10.1016/j.pmatsci.2022.100946
H. Zhao, T. Gao, J. Yun, L.X. Chen, Robust liquid metal reinforced cellulose nanofiber/MXene composite film with Janus structure for electromagnetic interference shielding and electro-/photothermal conversion applications. J. Mater. Sci. Technol. 191, 23–32 (2024). https://doi.org/10.1016/j.jmst.2023.12.035
J.M. Yang, H. Wang, Y.L. Zhang, H.X. Zhang, J.W. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2024). https://doi.org/10.1007/s40820-023-01246-8
L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu, B. Wang, G. Wu, Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
C.H. Wei, L.Z. Shi, M.Q. Li, M.K. He, M.J. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
J.C. Shu, M.S. Cao, Y.L. Zhang, Y.Z. Wang, Q.L. Zhao et al., Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 33(15), 2212379 (2023). https://doi.org/10.1002/adfm.202212379
L.H. Yao, Y.C. Wang, J.G. Zhao, Y.Q. Zhu, M.S. Cao, Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 19(25), 2208101 (2023). https://doi.org/10.1002/smll.202208101
D.L. Tan, Q. Wang, M.R. Li, L.M. Song, F. Zhang et al., Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 492, 152245 (2024). https://doi.org/10.1016/j.cej.2024.152245
A.L. Feng, L. Liu, P.T. Liu, Y.Q. Zu, F.B. Han et al., Interfacial nanops of Co2P/Co3Fe7 encapsulated in N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Energy 44, 101626 (2024). https://doi.org/10.1016/j.mtener.2024.101626
F.H. Yu, P.F. Jia, L. Song, Y. Hu, B.B. Wang et al., Multifunctional fabrics based on copper sulfide with excellent electromagnetic interference shielding performance for medical electronics and physical therapy. Chem. Eng. J. 472, 145091 (2023). https://doi.org/10.1016/j.cej.2023.145091
Y.Q. Zhou, L.F. Zhang, H.L. Suo, W.B. Hua, S. Indris et al., Atomic cobalt vacancy-cluster enabling optimized electronic structure for efficient water splitting. Adv. Funct. Mater. 31(26), 2101797 (2021). https://doi.org/10.1002/adfm.202101797
Y. Han, M.J. Han, T.B. Zhao, Z.H. Xia, J.X. Zou et al., Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption. Mater. Res. Bull. 172, 112670 (2024). https://doi.org/10.1016/j.materresbull.2023.112670
J.Q. Zeng, P.F. Qi, Y. Wang, Y.H. Liu, K.Y. Sui, Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. J. Hazard. Mater. 410, 124633 (2021). https://doi.org/10.1016/j.jhazmat.2020.124633
M.Y. Yuan, B. Zhao, C.D. Yang, K. Pei, L.Y. Wang et al., Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32(33), 1103161 (2022). https://doi.org/10.1002/adfm.202203161
X.M. Huang, X.H. Liu, Y. Zhang, J.X. Zhou, G.L. Wu et al., Construction of NiCeOx nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 147, 16–25 (2023). https://doi.org/10.1016/j.jmst.2022.12.001
H.P. Lv, C. Wu, J. Tang, H.F. Du, F.X. Qin et al., Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 411, 128445 (2021). https://doi.org/10.1016/j.cej.2021.128445
T.T. Zheng, Y. Zhang, Z.R. Jia, J.H. Zhu, G.L. Wu et al., Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in CuxS/CoFe2O4 composites. Chem. Eng. J. 457, 140876 (2023). https://doi.org/10.1016/j.cej.2022.140876
D. Lan, Y. Hu, M. Wang, Y. Wang, Z.G. Gao et al., Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands. Compos. Commun. 50, 101993 (2024). https://doi.org/10.1016/j.coco.2024.101993
X.L. Cao, X.H. Liu, J.H. Zhu, Z.R. Jia, J.K. Liu et al., Optimal p distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J Colloid Interf. Sci. 634, 268–278 (2023). https://doi.org/10.1016/j.jcis.2022.12.048
T. Zhao, Z. Jia, J. Liu, Y. Zhang, G. Wu, P. Yin, Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Lett. 16, 6 (2024). https://doi.org/10.1007/s40820-023-01212-4
Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
Z.H. Zhou, Q.Q. Zhu, Y. Liu, Y. Zhang, Z.R. Jia et al., Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 15, 137 (2023). https://doi.org/10.1007/s40820-023-01108-3
J.L. Liu, H.S. Liang, B. Wei, J.J. Yun, L.M. Zhang et al., “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4(7), 2200379 (2023). https://doi.org/10.1002/sstr.202200379
X.L. Chen, F. Zhang, D. Lan, S.J. Zhang, S.X. Du et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: from the perspective of nitrogen source. Adv. Compos. Hybrid Mater. 6(6), 220 (2023). https://doi.org/10.1007/s42114-023-00792-4
S. Zhang, X.H. Liu, C.Y. Jia, Z.S. Sun, H.W. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
J.J. Li, D. Lan, Y.H. Cheng, Z.R. Jia, P.B. Liu et al., Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: an effective strategy to achieve boosted microwave absorption and self-anticorrosion. J. Mater. Sci. Technol. 196, 60–70 (2024). https://doi.org/10.1016/j.jmst.2024.02.016
M.J. Han, D. Lan, Z.M. Zhang, Y.Z. Zhao, J.X. Zou et al., Micro-sized hexapod-like CuS/Cu9S5 hybrid with broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 214, 302–312 (2025). https://doi.org/10.1016/j.jmst.2024.07.014
G.J. Ma, D. Lan, Y. Zhang, X.Y. Sun, Z.R. Jia et al., Microporous cobalt ferrite with bio-carbon loosely decorated to construct multi-functional composite for dye adsorption, anti-bacteria and electromagnetic protection. Small 20, 2404449 (2024). https://doi.org/10.1002/smll.202404449
Z. Li, J. Ding, H.L. Wang, K. Cui, T. Stephenson et al., High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 15, 369–378 (2015). https://doi.org/10.1016/j.nanoen.2015.04.018
L. Wu, H.Y. Lu, L.F. Xiao, J.F. Qian, X.P. Ai et al., A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2(39), 16424–16428 (2014). https://doi.org/10.1039/c4ta03365e
Y. Zheng, T.F. Zhou, C.F. Zhang, J.F. Mao, H.K. Liu et al., Boosted charge transfer in sns/sno2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55(10), 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
Y. Han, D. Lan, M.J. Han, Z.H. Xia, J.X. Zou et al., Construction of flower-like MoS2 decorated on Cu doped CoZn–ZIF derived N-doped carbon as superior microwave absorber. Nano Res. 17(9), 8250–8260 (2024). https://doi.org/10.1007/s12274-024-6859-z
Z.H. Ma, K. Yang, D. Li, H. Liu, S.C. Hui et al., The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms modulated yolk@shell FexN@NGC. Adv. Mater. 36(23), 2314233 (2024). https://doi.org/10.1002/adma.202314233
Z.H. Zhou, X.F. Zhou, D. Lan, Y. Zhang, Z.R. Jia et al., Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection. Small 20, 2305849 (2024). https://doi.org/10.1002/smll.202305849
Y. Gao, J.J. Lin, X. Chen, Z.D. Tang, G. Qin et al., Engineering 2D MXene and LDH into 3D hollow framework for boosting photothermal energy storage and microwave absorption. Small 19(49), 2303113 (2023). https://doi.org/10.1002/smll.202303113
P.K. Wu, X.K. Kong, Y.R. Feng, W. Ding, Z.G. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34(10), 2311983 (2024). https://doi.org/10.1002/adfm.202311983
R. Barik, V. Tanwar, R. Kumar, P.P. Ingole, A high energy density and high rate capability flexible supercapacitor based on electro-spun highly porous SnO2@carbon nanofibers. J. Mater. Chem. A 8(30), 15110–15121 (2020). https://doi.org/10.1039/d0ta04355a
F.S. Yuan, Y. Huang, J.S. Qian, M.M. Rahman, P.M. Ajayan et al., Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries. Carbohyd. Polym. 255, 117400 (2021). https://doi.org/10.1016/j.carbpol.2020.117400
J.K. Liu, Z.R. Jia, Y.H. Dong, J.J. Li, X.L. Cao et al., Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 27, 100801 (2022). https://doi.org/10.1016/j.mtphys.2022.100801
K.Y. Hu, C. Ming, Y.T. Liu, C. Zheng, S.N. Zhang et al., Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity. Chin. Chem. Lett. 31(10), 2809–2813 (2020). https://doi.org/10.1016/j.cclet.2020.07.052
K.Y. Hu, C. Ming, Y.T. Liu, C. Zheng, S.N. Zhang et al., Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity. Chin. Chem. Lett. 31, 2809–2813 (2020). https://doi.org/10.1016/j.cclet.2020.07.052
L.G. Li, Z.C. Chai, W. Jin, H. Sun, J.H. He et al., Sulfur vacancy in SnS2 nanoflake adjusted by precursor and improved photocatalytic performance. J. Alloy. Compd. 932, 167658 (2023). https://doi.org/10.1016/j.jallcom.2022.167658
Y.X. Qin, Z.J. Wei, Y.N. Bai, Effect of vacancy defects of SnS on gas adsorption and its potential for selective gas detection. Vacuum 183, 109792 (2021). https://doi.org/10.1016/j.vacuum.2020.109792
J.B. Wang, J.J. Huang, S.P. Huang, H. Notohara, K. Urita et al., Rational design of hierarchical SnS2 microspheres with S vacancy for enhanced sodium storage performance. ACS Sustain. Chem. Eng. 8(25), 9519–9525 (2020). https://doi.org/10.1021/acssuschemeng.0c02535
Y.X. Qin, S.H. Chen, Y.N. Bai, Adsorption and sensing performance toward methanol vapor on SnS/SnS2 in-plane heterostructures. ACS Appl. Electron. Mater. 4(1), 158–167 (2022). https://doi.org/10.1021/acsaelm.1c00911
J.L. Liu, L.M. Zhang, H.J. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F-regulation engineering. Adv. Funct. Mater. 32(13), 2110469 (2021). https://doi.org/10.1002/adfm.202110496
X.X. Chu, Y.Y. Liao, L. Wang, J.R. Li, H. Xu, Engineering sulfur vacancies for boosting electrocatalytic reactions. Chin. Chem. Lett. 34, 108285 (2023). https://doi.org/10.1016/j.cclet.2023.108285
X.L. Cao, D. Lan, Y. Zhang, Z.R. Jia, G.L. Wu et al., Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption. Adv. Compos. Hybrid Mater. 6, 187 (2023). https://doi.org/10.1007/s42114-023-00763-9
Y. Liu, D.L. Pan, M.W. Xiong, Y. Tao, X.F. Chen et al., In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants. Chin. J. Catal. 41(10), 1554–1563 (2020). https://doi.org/10.1016/S1872-2067(19)63498-4
Z.M. Tang, L. Xu, C. Xie, L.R. Guo, L.B. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14(1), 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
S.J. Zhang, D. Lan, J.J. Zheng, X.L. Chen, A.L. Feng et al., Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption. Int. J. Miner. Metall. Mater. (2024). https://doi.org/10.1007/s12613-024-2875-y
Y.Y. Lian, D. Lan, X.D. Jiang, L. Wang, S. Yan et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interf. Sci. 676, 217–226 (2024). https://doi.org/10.1016/j.jcis.2024.07.102
J.X. Xiao, B.B. Zhan, M.K. He, X.S. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 34, 2316722 (2024). https://doi.org/10.1002/adfm.202316722
J.H. Wen, D. Lan, Y.Q. Wang, L.G. Ren, A.L. Feng et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave absorbing porous carbon by swelling treatment. Int. J. Miner. Metall. Mater. 31, 1701–1712 (2024). https://doi.org/10.1007/s12613-024-2881-0
M.Y. Yuan, H.L. Lv, H.W. Cheng, B. Zhao, G.Y. Chen et al., Atomic and electronic reconstruction in defective 0D molybdenum carbide heterostructure for regulating lower-frequency microwaves. Adv. Funct. Mater. 33(33), 2302003 (2023). https://doi.org/10.1002/adfm.202302003
P.F. Yin, D. Lan, C.F. Lu, Z.R. Jia, A.L. Feng et al., Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection. J. Mater. Sci. Technol. 204, 204–223 (2025). https://doi.org/10.1016/j.jmst.2024.04.007
Z.W. Hao, J. Zhou, S.N. Lin, D. Lan, H.Y. Li et al., Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion electromagnetic absorbers. Carbon 228, 119323 (2024). https://doi.org/10.1016/j.carbon.2024.119323
R.Y. Tan, Y.J. Liu, W.J. Li, J.T. Zhou, P. Chen et al., Multi-scale dispersion engineering on biomass-derived materials for ultra-wideband and wide-angle microwave absorption. Adv. Funct. Mater. 34, 2301772 (2024). https://doi.org/10.1002/smtd.202301772
J.X. Zhou, D. Lan, F. Zhang, Y.H. Cheng, Z.R. Jia et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small 19(52), 2304932 (2023). https://doi.org/10.1002/smll.202304932
N.N. Wu, B.B. Zhao, Y.Y. Lian, S.S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
J.H. Wang, L. Zhang, J.F. Yan, J.N. Yun, W. Zhao et al., MXene-based ultrathin electromagnetic wave absorber with hydrophobicity, anticorrosion, and quantitively classified electrical losses by intercalation growth nucleation engineering. Adv. Funct. Mater. 34, 2402419 (2024). https://doi.org/10.1002/adfm.202402419
X.L. Chen, D. Lan, L.T. Zhou, Z. Zeng, Y.K. Liu et al., Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption. Ceram. Int. 50, 24549–24557 (2024). https://doi.org/10.1016/j.ceramint.2024.04.190
Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, G.L. Wu, Oxygen vacancy induced dielectric polarization prevails in electromagnetic wave absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022). https://doi.org/10.1002/adfm.202204499
Z.R. Jia, J.K. Liu, Z.G. Gao, C.H. Zhang, G.L. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H–MS2 (M=Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater. 34, 2405523 (2024). https://doi.org/10.1002/adfm.202405523
T. Liu, Y.N. Zhang, C. Wang, Y.F. Kang, M. Wang et al., Multifunctional MoCx hybrid polyimide aerogel with modified porous defect engineering for highly efficient electromagnetic wave absorption. Small 20, 2308378 (2024). https://doi.org/10.1002/smll.202308378
H.B. Zhang, J.Y. Cheng, H.H. Wang, Z.H. Huang, Q.B. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
Z.G. Gao, D. Lan, X.Y. Ren, Z.R. Jia, G.L. Wu, Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites. Compos. Commun. 48, 101922 (2024). https://doi.org/10.1016/j.coco.2024.101922
Z.Y. Shen, D. Lan, Y. Cong, Y.Y. Lian, N.N. Wu et al., Tailored heterogeneous interface based on porous hollow In–Co–C nanorods to construct adjustable multi-band microwave absorber. J. Mater. Sci. Technol. 181, 128–137 (2024). https://doi.org/10.1016/j.jmst.2023.10.007
H.S. Liang, L.M. Zhang, H.J. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 18(38), 2203620 (2022). https://doi.org/10.1002/smll.202203620
Q.L. Zhang, D. Lan, S.L. Deng, J.W. Gu, Y.Q. Wang et al., Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption. Carbon 226, 119233 (2024). https://doi.org/10.1016/j.carbon.2024.119233
Z.G. Gao, A. Iqbal, T. Hassan, S.C. Hui, H.J. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. 36(19), 2311411 (2024). https://doi.org/10.1002/adma.202311411
L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
F. Pan, K. Pei, G. Chen, H.T. Guo, H.J. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33(49), 2306599 (2023). https://doi.org/10.1002/adfm.202306599
J. Yan, Z.D. Ye, D. Lan, W.X. Chen, Z.R. Jia et al., Transition metal carbides towards electromagnetic wave absorption application: state of the art and perspectives. Compos. Commun. 48, 101954 (2024). https://doi.org/10.1016/j.coco.2024.101954
L.Y. Yuan, W.X. Zhao, Y.K. Miao, C. Wang, A.G. Cui et al., Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption. Adv. Compos. Hybrid Mater. 7(2), 70 (2024). https://doi.org/10.1007/s42114-024-00864-z
S. Zhang, Z.R. Jia, Y. Zhang, G.L. Wu, Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 16, 3395–3407 (2023). https://doi.org/10.1007/s12274-022-5368-1
W.J. Li, W.C. Li, Z.B. Ma, Y. Kang, T. Zou et al., N atoms regulate heterogeneous crystal phase engineering of mesoporous magnetic FexN nanofibers to promote electromagnetic wave dissipation of magnetic composite aerogel absorbers. Chem. Eng. J. 481, 148584 (2024). https://doi.org/10.1016/j.cej.2024.148584
W.B. Deng, T.H. Li, H. Li, J. Abdul, L.T. Liu et al., MOF derivatives with gradient structure anchored on carbon foam for high-performance electromagnetic wave absorption. Small 20, 2329806 (2024). https://doi.org/10.1002/smll.202309806
C.J. Wang, H.T. Jiang, X.Z. Cao, X. He, X.B. Chen et al., Graphite wrapped FeNi3/Co with carbon nanotubes anchored on MgO@carbon fiber reinforcements via continuous fabrication for high-efficiency microwave attenuation. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00446-0
J.L. Gao, L. Chang, B. Ni, X.C. Zhang, L. Li et al., Dielectric modulation engineering in hierarchically ordered porous Ti3C2Tx MXene/rhenium disulfide aerogel toward potential electromagnetic wave absorption and infrared stealth. Adv. Compos. Hybrid Mater. 7(3), 103 (2024). https://doi.org/10.1007/s42114-024-00917-3
B.J. Wang, W. Wei, F.Z. Huang, F.H. Liu, S.K. Li et al., Orbital hybridization induced dipole polarization and room temperature magnetism of atomic Co–N4–C toward electromagnetic energy attenuation. Adv. Funct. Mater. 34, 2404484 (2024). https://doi.org/10.1002/adfm.202404484
X.J. Zeng, X. Jiang, Y. Ning, Y.F. Gao, R.C. Che, Constructing built-in electric fields with semiconductor junctions and Schottky junctions based on mo–mxene/mo-metal sulfides for electromagnetic response. Nano-Micro Lett. 16, 213 (2024). https://doi.org/10.1007/s40820-024-01449-7
B. Shan, Y. Wang, X.Y. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16, 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
Y.T. Qian, Z.C. Wu, X.W. Lv, M.Q. Huang, L.J. Rao, Fixed-point atomic regulation engineered low-thickness wideband microwave absorption. Small 20, 2401878 (2024). https://doi.org/10.1002/smll.202401878
C.Y. Xu, K.C. Luo, Y.Q. Du, H.B. Zhang, X.W. Lv et al., Anisotropic interfaces support the confined growth of magnetic nanometer-sized heterostructures for electromagnetic wave absorption. Adv. Funct. Mater. 33(47), 2307529 (2023). https://doi.org/10.1002/adfm.202307529
M.Q. Huang, L. Wang, K. Pei, B.X. Li, W.B. You et al., Heterogeneous interface engineering of Bi-Metal MOFs-derived ZnFe2O4–ZnO–Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 33(3), 2308898 (2023). https://doi.org/10.1002/adfm.202308898
Y.H. Ge, H.G. Wang, T.Q. Wu, B. Hu, Y.Z. Shao et al., Accordion-like reduced graphene oxide embedded with Fe nanops between layers for tunable and broadband electromagnetic wave absorption. J. Colloid Interf. Sci. 628, 1019–1030 (2022). https://doi.org/10.1016/j.jcis.2022.08.020
Y.J. Liu, X.F. Wei, X.X. He, J.R. Yao, R.Y. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33(5), 2211352 (2023). https://doi.org/10.1002/adfm.202211352
Y. Zhang, D. Lan, T. Hou, M. Jia, Z. Jia, J. Gu, G. Wu, Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with ultra-wide absorption band. Carbon 230, 119594 (2024). https://doi.org/10.1016/j.carbon.2024.119594
X.F. Xu, S.H. Shi, Y.L. Tang, G.Z. Wang, M.F. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8, 2002658 (2021). https://doi.org/10.1002/advs.202002658
J.H. Zhu, D. Lan, X.H. Liu, S.H. Zhang, Z.R. Jia et al., Porous structure fibers based on multi-element heterogeneous components for optimized electromagnetic wave absorption and self-anticorrosion performance. Small (2024). https://doi.org/10.1002/smll.202403689
D. Lan, H.F. Li, M. Wang, Y.J. Ren, J. Zhang et al., Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. 171, 112630 (2024). https://doi.org/10.1016/j.materresbull.2023.112630
Y. Cheng, D. Lan, Z. Jia, Z. Gao, X. Liu et al., MOF derivatives anchored to multichannel hollow carbon fibers with gradient structures for corrosion resistance and efficient electromagnetic wave absorption. J. Mater. Sci. Technol. (2024). https://doi.org/10.1016/j.jmst.2024.08.004
H.L. Lv, Y.X. Yao, S.C. Li, G.L. Wu, B. Zhao et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 14, 1982 (2023). https://doi.org/10.1016/10.1038/s41467-023-37436-6
M.J. Cui, X.Y. Chen, S.X. Mei, S.M. Ren, Bioinspired polydopamine nanosheets for the enhancement in anti-corrosion performance of water-borne epoxy coatings. Chem. Eng. J. 471, 144760 (2023). https://doi.org/10.1016/j.cej.2023.144760
X.B. Xie, H.H. Wang, H. Kimura, C. Ni, W. Du et al., NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater. 31(10), 2274–2286 (2024). https://doi.org/10.1007/s12613-024-2880-1
J. Zhou, X. Huang, D. Lan, Y. Cheng, F. Xue, C. Jia et al., Polymorphic cerium-based prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization. Nano Res. 17(3), 2050–2060 (2024). https://doi.org/10.1002/smll.202304932
X.B. Zhu, Q.Q. Yan, L. Cheng, H. Wu, H.C. Zha et al., Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings. Chem. Eng. J. 389, 124435 (2020). https://doi.org/10.1016/j.cej.2021140.124435
J. Jiang, D. Lan, Y. Li, J. Yang, S. Deng, Q. He, Y. Wang, Construction of spherical heterogeneous interface on ZnFe2O4@C composite nanofibers for highly efficient microwave absorption. Ceram. Int. (2024). https://doi.org/10.1016/j.ceramint.2024.07.197
H.L. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou et al., A flexible electromagnetic wave-electricitiy harvester. Nat. Commun. 12(1), 834 (2021). https://doi.org/10.1038/s41467-021-21103-9
Y. Dong, D. Lan, S. Xu, J. Gu, Z. Jia, G. Wu, Controllable fiberization engineering of cobalt anchored mesoporous hollow carbon spheres for positive feedback to electromagnetic wave absorption. Carbon 228, 119339 (2024). https://doi.org/10.1016/j.carbon.2024.119339
Z. Jia, L. Sun, Z. Gao, D. Lan, Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6939-0
J.Q. Tao, L.L. Xu, C.B. Pei, Y.S. Gu, Y.R. He et al., Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 33(8), 2211996 (2023). https://doi.org/10.1002/adfm.202211996
T. Zhao, D. Lan, Z. Jia, Z. Gao, G. Wu, Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6938-1
C.L. Zhou, Z. Li, J. Li, T.C. Yuan, B. Chen et al., Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers. Chem. Eng. J. 385, 123835 (2020). https://doi.org/10.1016/j.cej.2019.123835