Inner Co Synergizing Outer Ru Supported on Carbon Nanotubes for Efficient pH-Universal Hydrogen Evolution Catalysis
Corresponding Author: Hongge Pan
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 186
Abstract
Exploring highly active but inexpensive electrocatalysts for the hydrogen evolution reaction (HER) is of critical importance for hydrogen production from electrochemical water splitting. Herein, we report a multicomponent catalyst with exceptional activity and durability for HER, in which cobalt nanoparticles were in-situ confined inside bamboo-like carbon nanotubes (CNTs) while ultralow ruthenium loading (~ 2.6 µg per electrode area ~ cm−2) is uniformly deposited on their exterior walls (Co@CNTsǀRu). The atomic-scale structural investigations and theoretical calculations indicate that the confined inner Co and loaded outer Ru would induce charge redistribution and a synergistic electron coupling, not only optimizing the adsorption energy of H intermediates (ΔGH*) but also facilitating the electron/mass transfer. The as-developed Co@CNTsǀRu composite catalyst requires overpotentials of only 10, 32, and 63 mV to afford a current density of 10 mA cm−2 in alkaline, acidic and neutral media, respectively, representing top-level catalytic activity among all reported HER catalysts. The current work may open a new insight into the rational design of carbon-supported metal catalysts for practical applications.
Highlights:
1 A multicomponent Co@CNTs|Ru catalyst has been rationally designed, in which Co nanoparticles are in-situ confined inside CNTs while trace Ru loading is uniformly deposited on their exterior walls.
2 Co and Ru nanoparticles spatially confined by the inner and outer surface of CNTs, respectively, would induce charge redistribution and a synergistic electron coupling.
3 Co@CNTs|Ru catalyst exhibits an unprecedented hydrogen evolution reaction (HER) activity in all pH-range, representing a new record among all the previously reported HER catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
- S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
- Z.L. Chen, H.L. Qing, K. Zhou, D.L. Sun, R.B. Wu, Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 108, 100618 (2020). https://doi.org/10.1016/j.pmatsci.2019.100618
- Z.L. Chen, H.L. Qing, R.R. Wang, R.B. Wu, Charge pumping enabling Co-NC to outperform benchmark pt catalyst for pH-universal hydrogen evolution reaction. Energy Environ. Sci. 14(5), 3160–3173 (2021). https://doi.org/10.1039/D1EE00052G
- B. Li, Y. Si, Q. Fang, Y. Shi, W.Q. Huang et al., Hierarchical self-assembly of well-defined louver-like P-doped carbon nitride nanowire arrays with highly efficient hydrogen evolution. Nano-Micro Lett. 12, 52 (2020). https://doi.org/10.1007/s40820-020-0399-1
- H.B. Xu, H.X. Jia, B. Fei, Y. Ha, H.Z. Li et al., Charge transfer engineering via multiple heteroatom doping in dual carbon-coupled cobalt phosphides for highly efficient overall water splitting. Appl. Catal. B Environ. 268, 118404 (2020). https://doi.org/10.1016/j.apcatb.2019.118404
- Y.J. Yang, Y.H. Yu, J. Li, Q.R. Chen, Y.L. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
- B. Fei, Z.L. Chen, J.X. Liu, H.B. Xu, X.X. Yan et al., Ultrathinning nickel sulfide with modulated electron density for efficient water splitting. Adv. Energy Mater. 10(41), 2001963 (2020). https://doi.org/10.1002/aenm.202001963
- H.Y. Yang, Z.L. Chen, W.J. Hao, H.B. Xu, Y.H. Guo et al., Catalyzing oerall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon. Appl. Catal. B Environ. 252, 214–221 (2019). https://doi.org/10.1016/j.apcatb.2019.04.021
- H.Y. Yang, Z.L. Chen, P.F. Guo, B. Fei, R.B. Wu, B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B Environ. 261, 118240 (2020). https://doi.org/10.1016/j.apcatb.2019.118240
- K. Chen, Z.M. Wang, L. Wang, X.Z. Wu, B.J. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13, 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
- Z.L. Chen, H.B. Xu, Y. Ha, X.Y. Li, M. Liu et al., Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting. Appl. Catal. B Environ. 250, 213–223 (2019). https://doi.org/10.1016/j.apcatb.2019.03.032
- J.Y. Zhang, X.W. Bai, T.T. Wang, W. Xiao, P.X. Xi et al., Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-Micro Lett. 11, 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
- X.X. Yan, M.Y. Gu, Y. Wang, L. Xu, Y.W. Tang et al., In-situ growth of Ni nanop-ncapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Res. 13(4), 975–982 (2020). https://doi.org/10.1007/s12274-020-2727-7
- J.Y. Yu, G.X. Li, H. Liu, L.L. Zeng, L. Zhao et al., Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv. Sci. 6(18), 1901458 (2019). https://doi.org/10.1002/advs.201901458
- Z.L. Chen, R.B. Wu, Y. Liu, Y. Ha, Y.H. Guo et al., Ultrafine Co nanops encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30(30), 1802011 (2018). https://doi.org/10.1002/adma.201802011
- B. Cao, M.H. Hu, Y. Cheng, P. Jing, B.C. Liu et al., Tailoring the d-band center of N-doped carbon nanotube arrays with Co4N nanops and single-atom Co for a superior hydrogen evolution reaction. NPG Asia Mater. 13, 1 (2021). https://doi.org/10.1038/s41427-020-00264-x
- D.H. Kweon, M.S. Okyay, S.J. Kim, J.P. Jeon, H.J. Noh et al., Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat. Commun. 11, 1278 (2020). https://doi.org/10.1038/s41467-020-15069-3
- Y. Liu, X. Li, Q.H. Zhang, W.D. Li, Y. Xie et al., A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 59(4), 1718–1726 (2020). https://doi.org/10.1002/anie.201913910
- D.W. Wang, Q. Li, C. Han, Q.Q. Lu, Z.C. Xing et al., Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 10, 3899 (2019). https://doi.org/10.1038/s41467-019-11765-x
- J. Tiwari, A. Harzandi, M.R. Ha, S. Sultan, C.W. Myung et al., High-performance hydrogen evolution of Ru single atoms and nitrided-Ru nanops implanted on N-doped graphitic sheet. Adv. Energy Mater. 9(26), 1900931 (2019). https://doi.org/10.1002/aenm.201900931
- K.J. Tu, D. Tranca, F. Rodriguez-Hernandez, K.Y. Jiang, S.H. Huang et al., A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Mater. 32(46), 2005433 (2020). https://doi.org/10.1002/adma.202005433
- J.W. Xia, M. Volokh, G.M. Peng, Y.S. Fu, X. Wang et al., Low-cost porous ruthenium layer deposited on nickel foam as a highly active universal-pH electrocatalyst for the hydrogen evolution reaction. Chemsuschem 12(12), 2780–2787 (2019). https://doi.org/10.1002/cssc.201900472
- Z.Y. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for fffective electrochemical hydrogen evolution Reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14, 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
- C.C.L. Mccrory, S.H. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters et al., Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137(13), 4347–4357 (2015). https://doi.org/10.1021/ja510442p
- Y. Liu, S.L. Liu, Y. Wang, Q.H. Zhang, L. Gu et al., Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J. Am. Chem. Soc. 140(8), 2731–2734 (2018). https://doi.org/10.1021/jacs.7b12615
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- Q. Tang, D.E. Jiang, mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 6(8), 4953–4961 (2016). https://doi.org/10.1021/acscatal.6b01211
- Y. Zhu, L. Li, C.G. Zhang, G. Casillas, Z.Z. Sun et al., A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 3, 1225 (2012). https://doi.org/10.1038/ncomms2234
- R.B. Wu, D.P. Wang, X.H. Rui, B. Liu, K. Zhou et al., In-Situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 27(19), 3038–3044 (2015). https://doi.org/10.1002/adma.201500783
- Y. Du, F.X. Ma, C.Y. Xu, J. Yu, D. Li et al., Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells. Nano Energy 61, 533–539 (2019). https://doi.org/10.1016/j.nanoen.2019.05.001
- J. Wang, Z.Z. Wei, S.J. Mao, H.R. Li, Y. Wang, Highly uniform Ru nanops over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 11(4), 800–806 (2018). https://doi.org/10.1039/C7EE03345A
- Y. Xu, S.L. Yin, C.J. Li, K. Deng, H.R. Xue et al., Low-ruthenium-content niru nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 6(4), 1376–1381 (2018). https://doi.org/10.1039/C7TA09939H
- X.K. Wu, Z.C. Wang, D. Zhang, Y.N. Qin, M.H. Wang et al., Solvent-free microwave synthesis of ultra-small Ru-MO2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 12, 4081 (2021). https://doi.org/10.1038/s41467-021-24322-2
- W.D. Li, Y.X. Zhao, Y. Liu, M.Z. Sun, G.I.N. Waterhouse et al., Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem. Int. Ed. 60(6), 3290–3298 (2020). https://doi.org/10.1002/anie.202013985
- Z.L. Chen, M. Chen, X.X. Yan, H.X. Jia, B. Fei et al., Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 14(6), 6968–6979 (2020). https://doi.org/10.1021/acsnano.0c01456
- H.M. Jiang, L.T. Yan, S. Zhang, X. Yang, Y.M. Wang et al., Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micor Lett. 13, 215 (2021). https://doi.org/10.1007/s40820-021-00737-w
- J. Yu, Y. Guo, S.X. She, S.S. Miao, M. Ni et al., Bigger is surprisingly better: agglomerates of larger RuP nanops outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 30(39), 1800047 (2018). https://doi.org/10.1002/adma.201800047
- J. Mahmood, F. Li, S.M. Jung, S. Mahmut, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
- A.P. Wu, Y. Gu, B.R. Yang, H. Wu, H.J. Yan et al., Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 8(43), 22938–22946 (2020). https://doi.org/10.1039/D0TA09620B
- H.Y. Yang, P.F. Guo, R.R. Wang, Z.L. Chen, H.B. Xu et al., Sequential phase conversion-induced phosphides heteronanorod arrays for superior hydrogen evolution performance to Pt in wide pH media. Adv. Mater. 34(20), 2107548 (2022). https://doi.org/10.1002/adma.202107548
- R. Zhang, X.X. Wang, S.J. Yu, T. Wen, X.W. Zhu et al., Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 29(9), 1605502 (2017). https://doi.org/10.1002/adma.201605502
- H.Y. Jin, C.X. Guo, X. Liu, J.L. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- Y.D. Liu, P. Vijayakumar, Q.Y. Liu, T. Sakthivel, F.Y. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- B.C. Liu, H. Li, B. Cao, J.N. Jiang, R. Gao et al., Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: an ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range. Adv. Funct. Mater. 28(30), 1801527 (2018). https://doi.org/10.1002/adfm.201801527
- X. Zhang, X.L. Yu, L.J. Zhang, F. Zhou, Y.Y. Liang et al., Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 28(16), 1706523 (2018). https://doi.org/10.1002/adfm.201706523
- C.H. Zhang, Y. Liu, Y.X. Chang, Y.N. Lu, S.L. Zhao et al., Component-controlled synthesis of necklace-like hollow NixRuy nanoalloys as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9(20), 17326–17336 (2017). https://doi.org/10.1021/acsami.7b01114
References
J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
Z.L. Chen, H.L. Qing, K. Zhou, D.L. Sun, R.B. Wu, Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 108, 100618 (2020). https://doi.org/10.1016/j.pmatsci.2019.100618
Z.L. Chen, H.L. Qing, R.R. Wang, R.B. Wu, Charge pumping enabling Co-NC to outperform benchmark pt catalyst for pH-universal hydrogen evolution reaction. Energy Environ. Sci. 14(5), 3160–3173 (2021). https://doi.org/10.1039/D1EE00052G
B. Li, Y. Si, Q. Fang, Y. Shi, W.Q. Huang et al., Hierarchical self-assembly of well-defined louver-like P-doped carbon nitride nanowire arrays with highly efficient hydrogen evolution. Nano-Micro Lett. 12, 52 (2020). https://doi.org/10.1007/s40820-020-0399-1
H.B. Xu, H.X. Jia, B. Fei, Y. Ha, H.Z. Li et al., Charge transfer engineering via multiple heteroatom doping in dual carbon-coupled cobalt phosphides for highly efficient overall water splitting. Appl. Catal. B Environ. 268, 118404 (2020). https://doi.org/10.1016/j.apcatb.2019.118404
Y.J. Yang, Y.H. Yu, J. Li, Q.R. Chen, Y.L. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
B. Fei, Z.L. Chen, J.X. Liu, H.B. Xu, X.X. Yan et al., Ultrathinning nickel sulfide with modulated electron density for efficient water splitting. Adv. Energy Mater. 10(41), 2001963 (2020). https://doi.org/10.1002/aenm.202001963
H.Y. Yang, Z.L. Chen, W.J. Hao, H.B. Xu, Y.H. Guo et al., Catalyzing oerall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon. Appl. Catal. B Environ. 252, 214–221 (2019). https://doi.org/10.1016/j.apcatb.2019.04.021
H.Y. Yang, Z.L. Chen, P.F. Guo, B. Fei, R.B. Wu, B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl. Catal. B Environ. 261, 118240 (2020). https://doi.org/10.1016/j.apcatb.2019.118240
K. Chen, Z.M. Wang, L. Wang, X.Z. Wu, B.J. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13, 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
Z.L. Chen, H.B. Xu, Y. Ha, X.Y. Li, M. Liu et al., Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting. Appl. Catal. B Environ. 250, 213–223 (2019). https://doi.org/10.1016/j.apcatb.2019.03.032
J.Y. Zhang, X.W. Bai, T.T. Wang, W. Xiao, P.X. Xi et al., Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-Micro Lett. 11, 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
X.X. Yan, M.Y. Gu, Y. Wang, L. Xu, Y.W. Tang et al., In-situ growth of Ni nanop-ncapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Res. 13(4), 975–982 (2020). https://doi.org/10.1007/s12274-020-2727-7
J.Y. Yu, G.X. Li, H. Liu, L.L. Zeng, L. Zhao et al., Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv. Sci. 6(18), 1901458 (2019). https://doi.org/10.1002/advs.201901458
Z.L. Chen, R.B. Wu, Y. Liu, Y. Ha, Y.H. Guo et al., Ultrafine Co nanops encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30(30), 1802011 (2018). https://doi.org/10.1002/adma.201802011
B. Cao, M.H. Hu, Y. Cheng, P. Jing, B.C. Liu et al., Tailoring the d-band center of N-doped carbon nanotube arrays with Co4N nanops and single-atom Co for a superior hydrogen evolution reaction. NPG Asia Mater. 13, 1 (2021). https://doi.org/10.1038/s41427-020-00264-x
D.H. Kweon, M.S. Okyay, S.J. Kim, J.P. Jeon, H.J. Noh et al., Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat. Commun. 11, 1278 (2020). https://doi.org/10.1038/s41467-020-15069-3
Y. Liu, X. Li, Q.H. Zhang, W.D. Li, Y. Xie et al., A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 59(4), 1718–1726 (2020). https://doi.org/10.1002/anie.201913910
D.W. Wang, Q. Li, C. Han, Q.Q. Lu, Z.C. Xing et al., Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 10, 3899 (2019). https://doi.org/10.1038/s41467-019-11765-x
J. Tiwari, A. Harzandi, M.R. Ha, S. Sultan, C.W. Myung et al., High-performance hydrogen evolution of Ru single atoms and nitrided-Ru nanops implanted on N-doped graphitic sheet. Adv. Energy Mater. 9(26), 1900931 (2019). https://doi.org/10.1002/aenm.201900931
K.J. Tu, D. Tranca, F. Rodriguez-Hernandez, K.Y. Jiang, S.H. Huang et al., A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Mater. 32(46), 2005433 (2020). https://doi.org/10.1002/adma.202005433
J.W. Xia, M. Volokh, G.M. Peng, Y.S. Fu, X. Wang et al., Low-cost porous ruthenium layer deposited on nickel foam as a highly active universal-pH electrocatalyst for the hydrogen evolution reaction. Chemsuschem 12(12), 2780–2787 (2019). https://doi.org/10.1002/cssc.201900472
Z.Y. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for fffective electrochemical hydrogen evolution Reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14, 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
C.C.L. Mccrory, S.H. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters et al., Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137(13), 4347–4357 (2015). https://doi.org/10.1021/ja510442p
Y. Liu, S.L. Liu, Y. Wang, Q.H. Zhang, L. Gu et al., Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J. Am. Chem. Soc. 140(8), 2731–2734 (2018). https://doi.org/10.1021/jacs.7b12615
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
Q. Tang, D.E. Jiang, mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 6(8), 4953–4961 (2016). https://doi.org/10.1021/acscatal.6b01211
Y. Zhu, L. Li, C.G. Zhang, G. Casillas, Z.Z. Sun et al., A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 3, 1225 (2012). https://doi.org/10.1038/ncomms2234
R.B. Wu, D.P. Wang, X.H. Rui, B. Liu, K. Zhou et al., In-Situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 27(19), 3038–3044 (2015). https://doi.org/10.1002/adma.201500783
Y. Du, F.X. Ma, C.Y. Xu, J. Yu, D. Li et al., Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells. Nano Energy 61, 533–539 (2019). https://doi.org/10.1016/j.nanoen.2019.05.001
J. Wang, Z.Z. Wei, S.J. Mao, H.R. Li, Y. Wang, Highly uniform Ru nanops over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 11(4), 800–806 (2018). https://doi.org/10.1039/C7EE03345A
Y. Xu, S.L. Yin, C.J. Li, K. Deng, H.R. Xue et al., Low-ruthenium-content niru nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 6(4), 1376–1381 (2018). https://doi.org/10.1039/C7TA09939H
X.K. Wu, Z.C. Wang, D. Zhang, Y.N. Qin, M.H. Wang et al., Solvent-free microwave synthesis of ultra-small Ru-MO2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 12, 4081 (2021). https://doi.org/10.1038/s41467-021-24322-2
W.D. Li, Y.X. Zhao, Y. Liu, M.Z. Sun, G.I.N. Waterhouse et al., Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem. Int. Ed. 60(6), 3290–3298 (2020). https://doi.org/10.1002/anie.202013985
Z.L. Chen, M. Chen, X.X. Yan, H.X. Jia, B. Fei et al., Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 14(6), 6968–6979 (2020). https://doi.org/10.1021/acsnano.0c01456
H.M. Jiang, L.T. Yan, S. Zhang, X. Yang, Y.M. Wang et al., Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micor Lett. 13, 215 (2021). https://doi.org/10.1007/s40820-021-00737-w
J. Yu, Y. Guo, S.X. She, S.S. Miao, M. Ni et al., Bigger is surprisingly better: agglomerates of larger RuP nanops outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 30(39), 1800047 (2018). https://doi.org/10.1002/adma.201800047
J. Mahmood, F. Li, S.M. Jung, S. Mahmut, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
A.P. Wu, Y. Gu, B.R. Yang, H. Wu, H.J. Yan et al., Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 8(43), 22938–22946 (2020). https://doi.org/10.1039/D0TA09620B
H.Y. Yang, P.F. Guo, R.R. Wang, Z.L. Chen, H.B. Xu et al., Sequential phase conversion-induced phosphides heteronanorod arrays for superior hydrogen evolution performance to Pt in wide pH media. Adv. Mater. 34(20), 2107548 (2022). https://doi.org/10.1002/adma.202107548
R. Zhang, X.X. Wang, S.J. Yu, T. Wen, X.W. Zhu et al., Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 29(9), 1605502 (2017). https://doi.org/10.1002/adma.201605502
H.Y. Jin, C.X. Guo, X. Liu, J.L. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
Y.D. Liu, P. Vijayakumar, Q.Y. Liu, T. Sakthivel, F.Y. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
B.C. Liu, H. Li, B. Cao, J.N. Jiang, R. Gao et al., Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: an ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range. Adv. Funct. Mater. 28(30), 1801527 (2018). https://doi.org/10.1002/adfm.201801527
X. Zhang, X.L. Yu, L.J. Zhang, F. Zhou, Y.Y. Liang et al., Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 28(16), 1706523 (2018). https://doi.org/10.1002/adfm.201706523
C.H. Zhang, Y. Liu, Y.X. Chang, Y.N. Lu, S.L. Zhao et al., Component-controlled synthesis of necklace-like hollow NixRuy nanoalloys as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9(20), 17326–17336 (2017). https://doi.org/10.1021/acsami.7b01114