Nanogenerators for Self-Powered Gas Sensing
Corresponding Author: Xuhui Sun
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 45
Abstract
Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang’s group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). doi:10.1016/j.comnet.2010.05.010
- MATH
- D. Bandyopadhyay, J. Sen, Internet of things: applications and challenges in technology and standardization. Wireless Pers. Commun. 58(1), 49–69 (2011). doi:10.1007/s11277-011-0288-5
- Z.M. Fadlullah, M.M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, Y. Nozaki, Toward intelligent machine-to-machine communications in smart grid. IEEE Commun. Mag. 49(4), 60–65 (2011). doi:10.1109/MCOM.2011.5741147
- D. Niyato, L. Xiao, P. Wang, Machine-to-machine communications for home energy management system in smart grid. IEEE Commun. Mag. 49(4), 53–59 (2011). doi:10.1109/MCOM.2011.5741146
- Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012). doi:10.1002/adma.201102958
- Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics. Mater. Today 15(12), 532–543 (2012). doi:10.1016/S1369-7021(13)70011-7
- P. Glynne-Jones, N.M. White, Self-powered systems: a review of energy sources. Sens. Rev. 21(2), 91–98 (2001). doi:10.1108/02602280110388252
- J. Jun, B. Chou, J. Lin, A. Phipps, X. Shengwen et al., A hydrogen leakage detection system using self-powered wireless hydrogen sensor nodes. Solid State Electron. 51(7), 1018–1022 (2007). doi:10.1016/j.sse.2007.05.019
- R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy, S. Beeby, Self-powered autonomous wireless sensor node using vibration energy harvesting. Meas. Sci. Technol. 19(12), 125202 (2008). doi:10.1088/0957-0233/19/12/125202
- Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). doi:10.1126/science.1124005
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). doi:10.1016/j.nanoen.2012.01.004
- X.S. Zhang, M.D. Han, B. Meng, H.X. Zhang, High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy 11, 304–322 (2015). doi:10.1016/j.nanoen.2014.11.012
- Q. Liang, Q. Zhang, X. Yan, X. Liao, L. Han, F. Yi, M. Ma, Y. Zhang, Recyclable and green triboelectric nanogenerator. Adv. Mater. 29(5), 1604961 (2017). doi:10.1002/adma.201604961
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today (article in press) (2017). doi:10.1016/j.mattod.2016.12.001
- X. Cao, Y. Jie, N. Wang, Z.L. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6(23), 1600665 (2016). doi:10.1002/aenm.201600665
- J. Wang, Z. Wen, Y. Zi, L. Lin, C. Wu, H. Guo, Y. Xi, Y. Xu, Z.L. Wang, Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system. Adv. Funct. Mater. 26(20), 3542–3548 (2016). doi:10.1002/adfm.201600021
- Z. Li, J. Chen, J. Zhou, L. Zheng, K.C. Pradel et al., High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22, 548–557 (2016). doi:10.1016/j.nanoen.2016.03.002
- H. Guo, Z. Wen, Y. Zi, M.H. Yeh, J. Wang, L. Zhu, C. Hu, Z.L. Wang, A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). doi:10.1002/aenm.201501593
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). doi:10.1021/nn404614z
- P.K. Yang, Z.H. Lin, K.C. Pradel, L. Lin, X. Li, X. Wen, J.H. He, Z.L. Wang, Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9(1), 901–907 (2015). doi:10.1021/nn506631t
- K.Y. Lee, H.J. Yoon, T. Jiang, X. Wen, W. Seung, S.W. Kim, Z.L. Wang, Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 6(11), 1502566 (2016). doi:10.1002/aenm.201502566
- Y.S. Zhou, G. Zhu, S. Niu, Y. Liu, P. Bai, Q. Jing, Z.L. Wang, Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 26(11), 1719–1724 (2014). doi:10.1002/adma.201304619
- Q. Jing, Y. Xie, G. Zhu, R.P. Han, Z.L. Wang, Self-powered thin-film motion vector sensor. Nat. Commun. 6, 8031 (2015). doi:10.1038/ncomms9031
- J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su, Z.L. Wang, Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8(3), 2649–2657 (2014). doi:10.1021/nn4063616
- X. Fan, J. Chen, J. Yang, P. Bai, Z. Li, Z.L. Wang, Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9(4), 4236–4243 (2015). doi:10.1021/acsnano.5b00618
- J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z.L. Wang, Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 9(1), 105–116 (2015). doi:10.1021/nn506832w
- G. Zhu, W.Q. Yang, T. Zhang, Q. Jing, J. Chen, Y.S. Zhou, P. Bai, Z.L. Wang, Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14(6), 3208–3213 (2014). doi:10.1021/nl5005652
- J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li, F. Yi, X. Wen, Z. Wang, Z.L. Wang, Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27(8), 1316–1326 (2015). doi:10.1002/adma.201404794
- Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi et al., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016). doi:10.1126/sciadv.1501478
- Y. Ma, Q. Zheng, Y. Liu, B. Shi, X. Xue et al., Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 16(10), 6042–6051 (2016). doi:10.1021/acs.nanolett.6b01968
- Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). doi:10.1021/acsnano.6b02693
- W. Tang, Y. Han, C.B. Han, C.Z. Gao, X. Cao, Z.L. Wang, Self-powered water splitting using flowing kinetic energy. Adv. Mater. 27(2), 272–276 (2015). doi:10.1002/adma.201404071
- Y. Yang, H. Zhang, Z.H. Lin, Y. Liu, J. Chen, Z. Lin, Y.S. Zhou, C.P. Wong, Z.L. Wang, A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(8), 2429–2434 (2013). doi:10.1039/c3ee41485j
- S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han, Q. Jiang, T. Li, X. Cao, Z. Wang, Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14, 217–225 (2015). doi:10.1016/j.nanoen.2014.12.013
- Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang, Z.L. Wang, Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett. 13(2), 803–808 (2013). doi:10.1021/nl3046188
- W. Guo, X. Li, M. Chen, L. Xu, L. Dong et al., Electrochemical cathodic protection powered by triboelectric nanogenerator. Adv. Funct. Mater. 24(42), 6691–6699 (2014). doi:10.1002/adfm.201401168
- X. Li, J. Tao, W. Guo, X. Zhang, J. Luo, M. Chen, J. Zhu, C. Pan, A self-powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention. J. Mater. Chem. A 3(45), 22663–22668 (2015). doi:10.1039/C5TA07053H
- X. Yang, G. Zhu, S. Wang, R. Zhang, L. Lin, W. Wu, Z.L. Wang, A self-powered electrochromic device driven by a nanogenerator. Energy Environ. Sci. 5(11), 9462–9466 (2012). doi:10.1039/c2ee23194h
- M.H. Yeh, L. Lin, P.K. Yang, Z.L. Wang, Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 9(5), 4757–4765 (2015). doi:10.1021/acsnano.5b00706
- Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z.L. Wang, β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8(3), 887–896 (2015). doi:10.1039/C4EE03596H
- M.H. Yeh, H. Guo, L. Lin, Z. Wen, Z. Li, C. Hu, Z.L. Wang, Rolling friction enhanced free-standing triboelectric nanogenerators and their applications in self-powered electrochemical recovery systems. Adv. Funct. Mater. 26(7), 1054–1062 (2016). doi:10.1002/adfm.201504396
- T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42, 4036–4053 (2013). doi:10.1039/C2CS35379B
- Z. Wen, L. Zhu, W. Mei, Y. Li, L. Hu, L. Sun, W. Wan, Z. Ye, A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing. J. Mater. Chem. A 1(25), 7511–7518 (2013). doi:10.1039/c3ta11004d
- Z. Wen, L. Zhu, W. Mei, L. Hu, Y. Li, L. Sun, H. Cai, Z. Ye, Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor. Sens. Actuators B 186, 172–179 (2013). doi:10.1016/j.snb.2013.05.093
- Z. Wen, L. Zhu, Y. Li, Z. Zhang, Z. Ye, Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sens. Actuators B 203, 873–879 (2014). doi:10.1016/j.snb.2014.06.124
- Y. Gao, Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007). doi:10.1021/nl071310j
- Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P.K. Yang, F. Yi, Z.L. Wang, Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015). doi:10.1002/adma.201500121
- S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nano 5(5), 366–373 (2010). doi:10.1038/nnano.2010.46
- S.M. Kim, H. Kim, Y. Nam, S. Kim, Effects of external surface charges on the enhanced piezoelectric potential of ZnO and AlN nanowires and nanotubes. AIP Adv. 2(4), 042174 (2012). doi:10.1063/1.4770314
- T.Y. Wei, P.H. Yeh, S.Y. Lu, Z.L. Wang, Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J. Am. Chem. Soc. 131(48), 17690–17695 (2009). doi:10.1021/ja907585c
- C. Zhang, Z.L. Wang, Tribotronics-A new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016). doi:10.1016/j.nantod.2016.07.004
- M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu et al., Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 10(1), 1572–1579 (2016). doi:10.1021/acsnano.5b07217
- N.R. Alluri, S. Selvarajan, A. Chandrasekhar, S. Balasubramaniam, J.H. Jeong, S.J. Kim, Self powered pH sensor using piezoelectric composite worm structures derived by ionotropic gelation approach. Sens. Actuators B 237, 534–544 (2016). doi:10.1016/j.snb.2016.06.134
- Z. Wen, L. Zhu, L. Li, L. Sun, H. Cai, Z. Ye, A fluorine-mediated hydrothermal method to synthesize mesoporous rhombic ZnO nanorod arrays and their gas sensor application. Dalton Trans. 42(44), 15551–15554 (2013). doi:10.1039/c3dt51994e
- Z. Wen, L. Zhu, Z. Zhang, Z. Ye, Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays. Sens. Actuators B 208, 112–121 (2015). doi:10.1016/j.snb.2014.11.024
- Q.J. Jiang, J.G. Lu, Y.L. Yuan, L.W. Sun, X. Wang, Z. Wen, Z.Z. Ye, D. Xiao, H.Z. Ge, Y. Zhao, Tailoring the morphology, optical and electrical properties of DC-sputtered ZnO: Al films by post thermal and plasma treatments. Mater. Lett. 106, 125–128 (2013). doi:10.1016/j.matlet.2013.05.002
- W. Wan, J. Huang, L. Zhu, L. Hu, Z. Wen, L. Sun, Z. Ye, Defects induced ferromagnetism in ZnO nanowire arrays doped with copper. CrystEngComm 15(39), 7887–7894 (2013). doi:10.1039/c3ce40819a
- W. Dai, X. Pan, S. Chen, C. Chen, Z. Wen, H. Zhang, Z. Ye, Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance. J. Mater. Chem. C 2(23), 4606–4614 (2014). doi:10.1039/c4tc00157e
- X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, Z.L. Wang, Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 24(22), 225501 (2013). doi:10.1088/0957-4484/24/22/225501
- E. Modaresinezhad, S. Darbari, Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sens. Actuators B 237, 358–366 (2016). doi:10.1016/j.snb.2016.06.097
- L. Zhang, Z. Gao, C. Liu, Y. Zhang, Z. Tu et al., Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor. J. Mater. Chem. A 3(6), 2794–2801 (2015). doi:10.1039/C4TA06440B
- Z. Zhang, Z. Wen, Z. Ye, L. Zhu, Gas sensors based on ultrathin porous Co3O4 nanosheets to detect acetone at low temperature. RSC Adv. 5(74), 59976–59982 (2015). doi:10.1039/C5RA08536E
- Z. Zhang, L. Zhu, Z. Wen, Z. Ye, Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sens. Actuators B 238, 1052–1059 (2017). doi:10.1016/j.snb.2016.07.154
- G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139(1), 1–23 (2007). doi:10.1016/j.mseb.2007.01.044
- C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). doi:10.3390/s100302088
- Y. Fu, Y. Zhao, P. Wang, L. Xing, X. Xue, High response and selectivity of a Cu-ZnO nanowire nanogenerator as a self-powered/active H2S sensor. Phys. Chem. Chem. Phys. 17(3), 2121–2126 (2015). doi:10.1039/C4CP04983G
- Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 6(9), 4604–4610 (2014). doi:10.1039/c3nr06809a
- L. Xing, Y. Hu, P. Wang, Y. Zhao, Y. Nie, P. Deng, X. Xue, Realizing room-temperature self-powered ethanol sensing of Au/ZnO nanowire arrays by coupling the piezotronics effect of ZnO and the catalysis of noble metal. Appl. Phys. Lett. 104(1), 013109 (2014). doi:10.1063/1.4861169
- Y.Y. Zhao, X. Lai, P. Deng, Y.X. Nie, Y. Zhang, L.L. Xing, X.Y. Xue, Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature. Nanotechnology 25(11), 115502 (2014). doi:10.1088/0957-4484/25/11/115502
- B. Yu, Y. Fu, P. Wang, Y. Zhao, L. Xing, X. Xue, Enhanced piezo-humidity sensing of a Cd-ZnO nanowire nanogenerator as a self-powered/active gas sensor by coupling the piezoelectric screening effect and dopant displacement mechanism. Phys. Chem. Chem. Phys. 17(16), 10856–10860 (2015). doi:10.1039/C5CP00893J
- N. Yuxin, D. Ping, Z. Yayu, W. Penglei, X. Lili, Z. Yan, X. Xinyu, The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H2S sensor. Nanotechnology 25(26), 265501 (2014). doi:10.1088/0957-4484/25/26/265501
- M.W.G. Hoffmann, L. Mayrhofer, O. Casals, L. Caccamo, F. Hernandez-Ramirez et al., A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-Zno diodes. Adv. Mater. 26(47), 8017–8022 (2014). doi:10.1002/adma.201403073
- W. Penglei, D. Ping, N. Yuxin, Z. Yayu, Z. Yan, X. Lili, X. Xinyu, Synthesis of CdS nanorod arrays and their applications in flexible piezo-driven active H2S sensors. Nanotechnology 25(7), 075501 (2014). doi:10.1088/0957-4484/25/7/075501
- G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012). doi:10.1021/nl302560k
- F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016). doi:10.1002/adma.201504299
- J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9(3), 3324–3331 (2015). doi:10.1021/acsnano.5b00534
- J. Chen, J. Yang, H. Guo, Z. Li, L. Zheng, Y. Su, Z. Wen, X. Fan, Z.L. Wang, Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 9(12), 12334–12343 (2015). doi:10.1021/acsnano.5b05618
- Z. Wen, H. Guo, Y. Zi, M.H. Yeh, X. Wang, J. Deng, J. Wang, S. Li, C. Hu, L. Zhu, Z.L. Wang, Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 10(7), 6526–6534 (2016). doi:10.1021/acsnano.6b03293
- Y. Zi, H. Guo, Z. Wen, M.H. Yeh, C. Hu, Z.L. Wang, Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016). doi:10.1021/acsnano.6b01569
- Q. Liang, X. Yan, Y. Gu, K. Zhang, M. Liang, S. Lu, X. Zheng, Y. Zhang, Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci. Rep. 5, 9080 (2015). doi:10.1038/srep09080
- Q. Liang, Z. Zhanga, X. Yan, Y. Gu, Y. Zhao, G. Zhang, S. Lu, Q. Liao, Y. Zhang, Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy 14, 209–216 (2015). doi:10.1016/j.nanoen.2014.07.010
- J. Wang, Z. Wen, Y. Zi, P. Zhou, J. Lin, H. Guo, Y. Xu, Z.L. Wang, All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 26(7), 1070–1076 (2016). doi:10.1002/adfm.201504675
- X. Wang, Z. Wen, H. Guo, C. Wu, X. He, L. Lin, X. Cao, Z.L. Wang, Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). doi:10.1021/acsnano.6b06622
- Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). doi:10.1126/sciadv.1600097
- H. Guo, M.H. Yeh, Y.C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016). doi:10.1021/acsnano.6b06621
- Q. Liang, X. Yan, X. Liao, S. Cao, S. Lu, X. Zheng, Y. Zhang, Integrated active sensor system for real time vibration monitoring. Sci. Rep. 5, 16063 (2015). doi:10.1038/srep16063
- Q. Zhang, Q. Liang, Q. Liao, F. Yi, X. Zheng, M. Ma, F. Gao, Y. Zhang, Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. (article in press) (2017). doi:10.1002/adma.201606703
- Y. Zi, H. Guo, J. Wang, Z. Wen, S. Li, C. Hu, Z.L. Wang, An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 31, 302–310 (2017). doi:10.1016/j.nanoen.2016.11.025
- Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z.L. Wang, Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015). doi:10.1038/ncomms9376
- Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, Z.L. Wang, Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). doi:10.1038/ncomms10987
- H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu et al., Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2(5), 693–701 (2013). doi:10.1016/j.nanoen.2013.08.004
- Z.H. Lin, G. Cheng, W. Wu, K.C. Pradel, Z.L. Wang, Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 8(6), 6440–6448 (2014). doi:10.1021/nn501983s
- S.H. Shin, Y. Kwon, Y.H. Kim, J.Y. Jung, J. Nah, Triboelectric hydrogen gas sensor with pd functionalized surface. Nanomaterials 6(10), 186 (2016). doi:10.3390/nano6100186
- A.S.M.I. Uddin, G.S. Chung, A self-powered active hydrogen sensor based on a high-performance triboelectric nanogenerator using a wrinkle-micropatterned PDMS film. RSC Adv. 6(67), 63030–63036 (2016). doi:10.1039/C6RA07179A
- Y.H. Ko, G. Nagaraju, S.H. Lee, J.S. Yu, PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS Appl. Mater. Interfaces 6(9), 6631–6637 (2014). doi:10.1021/am5018072
- J.H. Kim, J. Chun, J.W. Kim, W.J. Choi, J.M. Baik, Self-powered, room-temperature electronic nose based on triboelectrification and heterogeneous catalytic reaction. Adv. Funct. Mater. 25(45), 7049–7055 (2015). doi:10.1002/adfm.201503419
- A.S.M.I. Uddin, G.S. Chung, A self-powered active hydrogen gas sensor with fast response at room temperature based on triboelectric effect. Sens. Actuators B 231, 601–608 (2016). doi:10.1016/j.snb.2016.03.063
- X. Xue, Y. Fu, Q. Wang, L. Xing, Y. Zhang, Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible, smelling electronic skin. Adv. Funct. Mater. 26(18), 3128–3138 (2016). doi:10.1002/adfm.201505331
- A.S.M.I. Uddin, U. Yaqoob, G.S. Chung, Improving the working efficiency of a triboelectric nanogenerator by the semimetallic PEDOT:PSS hole transport layer and its application in self-powered active acetylene gas sensing. ACS Appl. Mater. Interfaces 8(44), 30079–30089 (2016). doi:10.1021/acsami.6b08002
- Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). doi:10.1039/C5EE01532D
- Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). doi:10.1039/C4FD00159A
- Z. Wen, J. Chen, M.H. Yeh, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu, Z.L. Wang, Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16, 38–46 (2015). doi:10.1016/j.nanoen.2015.06.006
- P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, X. Xue, Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics. J. Mater. Chem. A 3(7), 3529–3535 (2015). doi:10.1039/C4TA06266C
- Y. Fu, W. Zang, P. Wang, L. Xing, X. Xue, Y. Zhang, Portable room-temperature self-powered/active H2 sensor driven by human motion through piezoelectric screening effect. Nano Energy 8, 34–43 (2014). doi:10.1016/j.nanoen.2014.05.012
- Y. Fu, Y. Nie, Y. Zhao, P. Wang, L. Xing, Y. Zhang, X. Xue, Detecting liquefied petroleum gas (LPG) at room temperature using ZnSnO3/ZnO nanowire piezo-nanogenerator as self-powered gas sensor. ACS Appl. Mater. Interfaces 7(19), 10482–10490 (2015). doi:10.1021/acsami.5b01822
- D. Zhu, Y. Fu, W. Zang, Y. Zhao, L. Xing, X. Xue, Room-temperature self-powered ethanol sensor based on the piezo-surface coupling effect of heterostructured α-Fe2O3/ZnO nanowires. Mater. Lett. 166, 288–291 (2016). doi:10.1016/j.matlet.2015.12.106
- Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, X. Xue, High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor. Sens. Actuators B 222, 78–86 (2016). doi:10.1016/j.snb.2015.08.058
- W. Zang, Y. Nie, D. Zhu, P. Deng, L. Xing, X. Xue, Core–shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high h2s sensitivity and selectivity at room temperature. J. Phys. Chem. C 118(17), 9209–9216 (2014). doi:10.1021/jp500516t
- D. Zhu, Y. Fu, W. Zang, Y. Zhao, L. Xing, X. Xue, Piezo/active humidity sensing of CeO2/ZnO and SnO2/ZnO nanoarray nanogenerators with high response and large detecting range. Sens. Actuators B 205, 12–19 (2014). doi:10.1016/j.snb.2014.08.060
References
L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). doi:10.1016/j.comnet.2010.05.010
MATH
D. Bandyopadhyay, J. Sen, Internet of things: applications and challenges in technology and standardization. Wireless Pers. Commun. 58(1), 49–69 (2011). doi:10.1007/s11277-011-0288-5
Z.M. Fadlullah, M.M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, Y. Nozaki, Toward intelligent machine-to-machine communications in smart grid. IEEE Commun. Mag. 49(4), 60–65 (2011). doi:10.1109/MCOM.2011.5741147
D. Niyato, L. Xiao, P. Wang, Machine-to-machine communications for home energy management system in smart grid. IEEE Commun. Mag. 49(4), 53–59 (2011). doi:10.1109/MCOM.2011.5741146
Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012). doi:10.1002/adma.201102958
Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics. Mater. Today 15(12), 532–543 (2012). doi:10.1016/S1369-7021(13)70011-7
P. Glynne-Jones, N.M. White, Self-powered systems: a review of energy sources. Sens. Rev. 21(2), 91–98 (2001). doi:10.1108/02602280110388252
J. Jun, B. Chou, J. Lin, A. Phipps, X. Shengwen et al., A hydrogen leakage detection system using self-powered wireless hydrogen sensor nodes. Solid State Electron. 51(7), 1018–1022 (2007). doi:10.1016/j.sse.2007.05.019
R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy, S. Beeby, Self-powered autonomous wireless sensor node using vibration energy harvesting. Meas. Sci. Technol. 19(12), 125202 (2008). doi:10.1088/0957-0233/19/12/125202
Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). doi:10.1126/science.1124005
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). doi:10.1016/j.nanoen.2012.01.004
X.S. Zhang, M.D. Han, B. Meng, H.X. Zhang, High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy 11, 304–322 (2015). doi:10.1016/j.nanoen.2014.11.012
Q. Liang, Q. Zhang, X. Yan, X. Liao, L. Han, F. Yi, M. Ma, Y. Zhang, Recyclable and green triboelectric nanogenerator. Adv. Mater. 29(5), 1604961 (2017). doi:10.1002/adma.201604961
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today (article in press) (2017). doi:10.1016/j.mattod.2016.12.001
X. Cao, Y. Jie, N. Wang, Z.L. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6(23), 1600665 (2016). doi:10.1002/aenm.201600665
J. Wang, Z. Wen, Y. Zi, L. Lin, C. Wu, H. Guo, Y. Xi, Y. Xu, Z.L. Wang, Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system. Adv. Funct. Mater. 26(20), 3542–3548 (2016). doi:10.1002/adfm.201600021
Z. Li, J. Chen, J. Zhou, L. Zheng, K.C. Pradel et al., High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22, 548–557 (2016). doi:10.1016/j.nanoen.2016.03.002
H. Guo, Z. Wen, Y. Zi, M.H. Yeh, J. Wang, L. Zhu, C. Hu, Z.L. Wang, A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). doi:10.1002/aenm.201501593
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). doi:10.1021/nn404614z
P.K. Yang, Z.H. Lin, K.C. Pradel, L. Lin, X. Li, X. Wen, J.H. He, Z.L. Wang, Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9(1), 901–907 (2015). doi:10.1021/nn506631t
K.Y. Lee, H.J. Yoon, T. Jiang, X. Wen, W. Seung, S.W. Kim, Z.L. Wang, Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 6(11), 1502566 (2016). doi:10.1002/aenm.201502566
Y.S. Zhou, G. Zhu, S. Niu, Y. Liu, P. Bai, Q. Jing, Z.L. Wang, Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 26(11), 1719–1724 (2014). doi:10.1002/adma.201304619
Q. Jing, Y. Xie, G. Zhu, R.P. Han, Z.L. Wang, Self-powered thin-film motion vector sensor. Nat. Commun. 6, 8031 (2015). doi:10.1038/ncomms9031
J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su, Z.L. Wang, Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8(3), 2649–2657 (2014). doi:10.1021/nn4063616
X. Fan, J. Chen, J. Yang, P. Bai, Z. Li, Z.L. Wang, Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9(4), 4236–4243 (2015). doi:10.1021/acsnano.5b00618
J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z.L. Wang, Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 9(1), 105–116 (2015). doi:10.1021/nn506832w
G. Zhu, W.Q. Yang, T. Zhang, Q. Jing, J. Chen, Y.S. Zhou, P. Bai, Z.L. Wang, Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14(6), 3208–3213 (2014). doi:10.1021/nl5005652
J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li, F. Yi, X. Wen, Z. Wang, Z.L. Wang, Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27(8), 1316–1326 (2015). doi:10.1002/adma.201404794
Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi et al., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016). doi:10.1126/sciadv.1501478
Y. Ma, Q. Zheng, Y. Liu, B. Shi, X. Xue et al., Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 16(10), 6042–6051 (2016). doi:10.1021/acs.nanolett.6b01968
Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). doi:10.1021/acsnano.6b02693
W. Tang, Y. Han, C.B. Han, C.Z. Gao, X. Cao, Z.L. Wang, Self-powered water splitting using flowing kinetic energy. Adv. Mater. 27(2), 272–276 (2015). doi:10.1002/adma.201404071
Y. Yang, H. Zhang, Z.H. Lin, Y. Liu, J. Chen, Z. Lin, Y.S. Zhou, C.P. Wong, Z.L. Wang, A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(8), 2429–2434 (2013). doi:10.1039/c3ee41485j
S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han, Q. Jiang, T. Li, X. Cao, Z. Wang, Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14, 217–225 (2015). doi:10.1016/j.nanoen.2014.12.013
Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang, Z.L. Wang, Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett. 13(2), 803–808 (2013). doi:10.1021/nl3046188
W. Guo, X. Li, M. Chen, L. Xu, L. Dong et al., Electrochemical cathodic protection powered by triboelectric nanogenerator. Adv. Funct. Mater. 24(42), 6691–6699 (2014). doi:10.1002/adfm.201401168
X. Li, J. Tao, W. Guo, X. Zhang, J. Luo, M. Chen, J. Zhu, C. Pan, A self-powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention. J. Mater. Chem. A 3(45), 22663–22668 (2015). doi:10.1039/C5TA07053H
X. Yang, G. Zhu, S. Wang, R. Zhang, L. Lin, W. Wu, Z.L. Wang, A self-powered electrochromic device driven by a nanogenerator. Energy Environ. Sci. 5(11), 9462–9466 (2012). doi:10.1039/c2ee23194h
M.H. Yeh, L. Lin, P.K. Yang, Z.L. Wang, Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 9(5), 4757–4765 (2015). doi:10.1021/acsnano.5b00706
Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z.L. Wang, β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8(3), 887–896 (2015). doi:10.1039/C4EE03596H
M.H. Yeh, H. Guo, L. Lin, Z. Wen, Z. Li, C. Hu, Z.L. Wang, Rolling friction enhanced free-standing triboelectric nanogenerators and their applications in self-powered electrochemical recovery systems. Adv. Funct. Mater. 26(7), 1054–1062 (2016). doi:10.1002/adfm.201504396
T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42, 4036–4053 (2013). doi:10.1039/C2CS35379B
Z. Wen, L. Zhu, W. Mei, Y. Li, L. Hu, L. Sun, W. Wan, Z. Ye, A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing. J. Mater. Chem. A 1(25), 7511–7518 (2013). doi:10.1039/c3ta11004d
Z. Wen, L. Zhu, W. Mei, L. Hu, Y. Li, L. Sun, H. Cai, Z. Ye, Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor. Sens. Actuators B 186, 172–179 (2013). doi:10.1016/j.snb.2013.05.093
Z. Wen, L. Zhu, Y. Li, Z. Zhang, Z. Ye, Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sens. Actuators B 203, 873–879 (2014). doi:10.1016/j.snb.2014.06.124
Y. Gao, Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007). doi:10.1021/nl071310j
Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P.K. Yang, F. Yi, Z.L. Wang, Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015). doi:10.1002/adma.201500121
S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nano 5(5), 366–373 (2010). doi:10.1038/nnano.2010.46
S.M. Kim, H. Kim, Y. Nam, S. Kim, Effects of external surface charges on the enhanced piezoelectric potential of ZnO and AlN nanowires and nanotubes. AIP Adv. 2(4), 042174 (2012). doi:10.1063/1.4770314
T.Y. Wei, P.H. Yeh, S.Y. Lu, Z.L. Wang, Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J. Am. Chem. Soc. 131(48), 17690–17695 (2009). doi:10.1021/ja907585c
C. Zhang, Z.L. Wang, Tribotronics-A new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016). doi:10.1016/j.nantod.2016.07.004
M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu et al., Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 10(1), 1572–1579 (2016). doi:10.1021/acsnano.5b07217
N.R. Alluri, S. Selvarajan, A. Chandrasekhar, S. Balasubramaniam, J.H. Jeong, S.J. Kim, Self powered pH sensor using piezoelectric composite worm structures derived by ionotropic gelation approach. Sens. Actuators B 237, 534–544 (2016). doi:10.1016/j.snb.2016.06.134
Z. Wen, L. Zhu, L. Li, L. Sun, H. Cai, Z. Ye, A fluorine-mediated hydrothermal method to synthesize mesoporous rhombic ZnO nanorod arrays and their gas sensor application. Dalton Trans. 42(44), 15551–15554 (2013). doi:10.1039/c3dt51994e
Z. Wen, L. Zhu, Z. Zhang, Z. Ye, Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays. Sens. Actuators B 208, 112–121 (2015). doi:10.1016/j.snb.2014.11.024
Q.J. Jiang, J.G. Lu, Y.L. Yuan, L.W. Sun, X. Wang, Z. Wen, Z.Z. Ye, D. Xiao, H.Z. Ge, Y. Zhao, Tailoring the morphology, optical and electrical properties of DC-sputtered ZnO: Al films by post thermal and plasma treatments. Mater. Lett. 106, 125–128 (2013). doi:10.1016/j.matlet.2013.05.002
W. Wan, J. Huang, L. Zhu, L. Hu, Z. Wen, L. Sun, Z. Ye, Defects induced ferromagnetism in ZnO nanowire arrays doped with copper. CrystEngComm 15(39), 7887–7894 (2013). doi:10.1039/c3ce40819a
W. Dai, X. Pan, S. Chen, C. Chen, Z. Wen, H. Zhang, Z. Ye, Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance. J. Mater. Chem. C 2(23), 4606–4614 (2014). doi:10.1039/c4tc00157e
X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, Z.L. Wang, Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 24(22), 225501 (2013). doi:10.1088/0957-4484/24/22/225501
E. Modaresinezhad, S. Darbari, Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sens. Actuators B 237, 358–366 (2016). doi:10.1016/j.snb.2016.06.097
L. Zhang, Z. Gao, C. Liu, Y. Zhang, Z. Tu et al., Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor. J. Mater. Chem. A 3(6), 2794–2801 (2015). doi:10.1039/C4TA06440B
Z. Zhang, Z. Wen, Z. Ye, L. Zhu, Gas sensors based on ultrathin porous Co3O4 nanosheets to detect acetone at low temperature. RSC Adv. 5(74), 59976–59982 (2015). doi:10.1039/C5RA08536E
Z. Zhang, L. Zhu, Z. Wen, Z. Ye, Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sens. Actuators B 238, 1052–1059 (2017). doi:10.1016/j.snb.2016.07.154
G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139(1), 1–23 (2007). doi:10.1016/j.mseb.2007.01.044
C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). doi:10.3390/s100302088
Y. Fu, Y. Zhao, P. Wang, L. Xing, X. Xue, High response and selectivity of a Cu-ZnO nanowire nanogenerator as a self-powered/active H2S sensor. Phys. Chem. Chem. Phys. 17(3), 2121–2126 (2015). doi:10.1039/C4CP04983G
Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 6(9), 4604–4610 (2014). doi:10.1039/c3nr06809a
L. Xing, Y. Hu, P. Wang, Y. Zhao, Y. Nie, P. Deng, X. Xue, Realizing room-temperature self-powered ethanol sensing of Au/ZnO nanowire arrays by coupling the piezotronics effect of ZnO and the catalysis of noble metal. Appl. Phys. Lett. 104(1), 013109 (2014). doi:10.1063/1.4861169
Y.Y. Zhao, X. Lai, P. Deng, Y.X. Nie, Y. Zhang, L.L. Xing, X.Y. Xue, Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature. Nanotechnology 25(11), 115502 (2014). doi:10.1088/0957-4484/25/11/115502
B. Yu, Y. Fu, P. Wang, Y. Zhao, L. Xing, X. Xue, Enhanced piezo-humidity sensing of a Cd-ZnO nanowire nanogenerator as a self-powered/active gas sensor by coupling the piezoelectric screening effect and dopant displacement mechanism. Phys. Chem. Chem. Phys. 17(16), 10856–10860 (2015). doi:10.1039/C5CP00893J
N. Yuxin, D. Ping, Z. Yayu, W. Penglei, X. Lili, Z. Yan, X. Xinyu, The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H2S sensor. Nanotechnology 25(26), 265501 (2014). doi:10.1088/0957-4484/25/26/265501
M.W.G. Hoffmann, L. Mayrhofer, O. Casals, L. Caccamo, F. Hernandez-Ramirez et al., A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-Zno diodes. Adv. Mater. 26(47), 8017–8022 (2014). doi:10.1002/adma.201403073
W. Penglei, D. Ping, N. Yuxin, Z. Yayu, Z. Yan, X. Lili, X. Xinyu, Synthesis of CdS nanorod arrays and their applications in flexible piezo-driven active H2S sensors. Nanotechnology 25(7), 075501 (2014). doi:10.1088/0957-4484/25/7/075501
G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012). doi:10.1021/nl302560k
F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016). doi:10.1002/adma.201504299
J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9(3), 3324–3331 (2015). doi:10.1021/acsnano.5b00534
J. Chen, J. Yang, H. Guo, Z. Li, L. Zheng, Y. Su, Z. Wen, X. Fan, Z.L. Wang, Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 9(12), 12334–12343 (2015). doi:10.1021/acsnano.5b05618
Z. Wen, H. Guo, Y. Zi, M.H. Yeh, X. Wang, J. Deng, J. Wang, S. Li, C. Hu, L. Zhu, Z.L. Wang, Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 10(7), 6526–6534 (2016). doi:10.1021/acsnano.6b03293
Y. Zi, H. Guo, Z. Wen, M.H. Yeh, C. Hu, Z.L. Wang, Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016). doi:10.1021/acsnano.6b01569
Q. Liang, X. Yan, Y. Gu, K. Zhang, M. Liang, S. Lu, X. Zheng, Y. Zhang, Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci. Rep. 5, 9080 (2015). doi:10.1038/srep09080
Q. Liang, Z. Zhanga, X. Yan, Y. Gu, Y. Zhao, G. Zhang, S. Lu, Q. Liao, Y. Zhang, Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy 14, 209–216 (2015). doi:10.1016/j.nanoen.2014.07.010
J. Wang, Z. Wen, Y. Zi, P. Zhou, J. Lin, H. Guo, Y. Xu, Z.L. Wang, All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv. Funct. Mater. 26(7), 1070–1076 (2016). doi:10.1002/adfm.201504675
X. Wang, Z. Wen, H. Guo, C. Wu, X. He, L. Lin, X. Cao, Z.L. Wang, Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). doi:10.1021/acsnano.6b06622
Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). doi:10.1126/sciadv.1600097
H. Guo, M.H. Yeh, Y.C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016). doi:10.1021/acsnano.6b06621
Q. Liang, X. Yan, X. Liao, S. Cao, S. Lu, X. Zheng, Y. Zhang, Integrated active sensor system for real time vibration monitoring. Sci. Rep. 5, 16063 (2015). doi:10.1038/srep16063
Q. Zhang, Q. Liang, Q. Liao, F. Yi, X. Zheng, M. Ma, F. Gao, Y. Zhang, Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. (article in press) (2017). doi:10.1002/adma.201606703
Y. Zi, H. Guo, J. Wang, Z. Wen, S. Li, C. Hu, Z.L. Wang, An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy 31, 302–310 (2017). doi:10.1016/j.nanoen.2016.11.025
Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z.L. Wang, Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015). doi:10.1038/ncomms9376
Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, Z.L. Wang, Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). doi:10.1038/ncomms10987
H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu et al., Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2(5), 693–701 (2013). doi:10.1016/j.nanoen.2013.08.004
Z.H. Lin, G. Cheng, W. Wu, K.C. Pradel, Z.L. Wang, Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 8(6), 6440–6448 (2014). doi:10.1021/nn501983s
S.H. Shin, Y. Kwon, Y.H. Kim, J.Y. Jung, J. Nah, Triboelectric hydrogen gas sensor with pd functionalized surface. Nanomaterials 6(10), 186 (2016). doi:10.3390/nano6100186
A.S.M.I. Uddin, G.S. Chung, A self-powered active hydrogen sensor based on a high-performance triboelectric nanogenerator using a wrinkle-micropatterned PDMS film. RSC Adv. 6(67), 63030–63036 (2016). doi:10.1039/C6RA07179A
Y.H. Ko, G. Nagaraju, S.H. Lee, J.S. Yu, PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS Appl. Mater. Interfaces 6(9), 6631–6637 (2014). doi:10.1021/am5018072
J.H. Kim, J. Chun, J.W. Kim, W.J. Choi, J.M. Baik, Self-powered, room-temperature electronic nose based on triboelectrification and heterogeneous catalytic reaction. Adv. Funct. Mater. 25(45), 7049–7055 (2015). doi:10.1002/adfm.201503419
A.S.M.I. Uddin, G.S. Chung, A self-powered active hydrogen gas sensor with fast response at room temperature based on triboelectric effect. Sens. Actuators B 231, 601–608 (2016). doi:10.1016/j.snb.2016.03.063
X. Xue, Y. Fu, Q. Wang, L. Xing, Y. Zhang, Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible, smelling electronic skin. Adv. Funct. Mater. 26(18), 3128–3138 (2016). doi:10.1002/adfm.201505331
A.S.M.I. Uddin, U. Yaqoob, G.S. Chung, Improving the working efficiency of a triboelectric nanogenerator by the semimetallic PEDOT:PSS hole transport layer and its application in self-powered active acetylene gas sensing. ACS Appl. Mater. Interfaces 8(44), 30079–30089 (2016). doi:10.1021/acsami.6b08002
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). doi:10.1039/C5EE01532D
Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). doi:10.1039/C4FD00159A
Z. Wen, J. Chen, M.H. Yeh, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu, Z.L. Wang, Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16, 38–46 (2015). doi:10.1016/j.nanoen.2015.06.006
P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, X. Xue, Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics. J. Mater. Chem. A 3(7), 3529–3535 (2015). doi:10.1039/C4TA06266C
Y. Fu, W. Zang, P. Wang, L. Xing, X. Xue, Y. Zhang, Portable room-temperature self-powered/active H2 sensor driven by human motion through piezoelectric screening effect. Nano Energy 8, 34–43 (2014). doi:10.1016/j.nanoen.2014.05.012
Y. Fu, Y. Nie, Y. Zhao, P. Wang, L. Xing, Y. Zhang, X. Xue, Detecting liquefied petroleum gas (LPG) at room temperature using ZnSnO3/ZnO nanowire piezo-nanogenerator as self-powered gas sensor. ACS Appl. Mater. Interfaces 7(19), 10482–10490 (2015). doi:10.1021/acsami.5b01822
D. Zhu, Y. Fu, W. Zang, Y. Zhao, L. Xing, X. Xue, Room-temperature self-powered ethanol sensor based on the piezo-surface coupling effect of heterostructured α-Fe2O3/ZnO nanowires. Mater. Lett. 166, 288–291 (2016). doi:10.1016/j.matlet.2015.12.106
Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, X. Xue, High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor. Sens. Actuators B 222, 78–86 (2016). doi:10.1016/j.snb.2015.08.058
W. Zang, Y. Nie, D. Zhu, P. Deng, L. Xing, X. Xue, Core–shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high h2s sensitivity and selectivity at room temperature. J. Phys. Chem. C 118(17), 9209–9216 (2014). doi:10.1021/jp500516t
D. Zhu, Y. Fu, W. Zang, Y. Zhao, L. Xing, X. Xue, Piezo/active humidity sensing of CeO2/ZnO and SnO2/ZnO nanoarray nanogenerators with high response and large detecting range. Sens. Actuators B 205, 12–19 (2014). doi:10.1016/j.snb.2014.08.060