Hybridized Mechanical and Solar Energy-Driven Self-Powered Hydrogen Production
Corresponding Author: Xuhui Sun
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 88
Abstract
Photoelectrochemical hydrogen generation is a promising approach to address the environmental pollution and energy crisis. In this work, we present a hybridized mechanical and solar energy-driven self-powered hydrogen production system. A rotatory disc-shaped triboelectric nanogenerator was employed to harvest mechanical energy from water and functions as a sufficient external power source. WO3/BiVO4 heterojunction photoanode was synthesized in a PEC water-splitting cell to produce H2. After transformation and rectification, the peak current reaches 0.1 mA at the rotation speed of 60 rpm. In this case, the H2 evolution process only occurs with sunlight irradiation. When the rotation speed is over 130 rpm, the peak photocurrent and peak dark current have nearly equal value. Direct electrolysis of water is almost simultaneous with photoelectrocatalysis of water. It is worth noting that the hydrogen production rate increases to 5.45 and 7.27 μL min−1 without or with light illumination at 160 rpm. The corresponding energy conversion efficiency is calculated to be 2.43% and 2.59%, respectively. All the results demonstrate such a self-powered system can successfully achieve the PEC hydrogen generation, exhibiting promising possibility of energy conversion.
Highlights:
1 A hybridized mechanical and solar energy-driven hydrogen production system was developed.
2 A rotatory disc-shaped triboelectric nanogenerator (RD-TENG) enables to harvest mechanical energy from water flow and functions as a sufficient external power source.
3 WO3/BiVO4 heterojunction is fabricated as photoanodes in the self-powered photoelectrochemical (PEC) cell, and the hydrogen production rate reaches to 7.27 μL min−1 under sunlight illumination with the energy conversion efficiency of 2.59%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52(29), 7372–7408 (2013). https://doi.org/10.1002/anie.201207199
- N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
- F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). https://doi.org/10.1039/c2cs35266d
- E.L. Miller, Photoelectrochemical water splitting. Energy Environ. Sci. 8(10), 2809–2810 (2015). https://doi.org/10.1039/c5ee90047f
- R. Zhang, M. Shao, S. Xu, F. Ning, L. Zhou, M. Wei, Photo-assisted synthesis of zinc–iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33, 21–28 (2017). https://doi.org/10.1016/j.nanoen.2017.01.020
- R.H. Coridan, M. Shaner, C. Wiggenhorn, B.S. Brunschwig, N.S. Lewis, Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J. Phys. Chem. C 117(14), 6949–6957 (2013). https://doi.org/10.1021/jp311947x
- M.T. McDowell, M.F. Lichterman, J.M. Spurgeon et al., Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. J. Phys. Chem. C 118(34), 19618–19624 (2014). https://doi.org/10.1021/jp506133y
- P.P. Patel, S.D. Ghadge, P.J. Hanumantha, M.K. Datta, B. Gattu, P.M. Shanthi, P.N. Kumta, Active and robust novel bilayer photoanode architectures for hydrogen generation via direct non-electric bias induced photo-electrochemical water splitting. Int. J. Hydrogen Energy 43(29), 13158–13176 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.063
- P.P. Patel, P.J. Hanumantha, O.I. Velikokhatnyi, M.K. Datta, D. Hong et al., Nitrogen and cobalt co-doped zinc oxide nanowires-viable photoanodes for hydrogen generation via photoelectrochemical water splitting. J. Power Sources 299, 11–24 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.027
- P.P. Patel, P.J. Hanumantha, O.I. Velikokhatnyi, M.K. Datta et al., Vertically aligned nitrogen doped (Sn, Nb) O2 nanotubes—robust photoanodes for hydrogen generation by photoelectrochemical water splitting. Mater. Sci. Eng. B 208, 1–14 (2016). https://doi.org/10.1016/j.mseb.2016.02.001
- A. Tacca, L. Meda et al., Photoanodes based on nanostructured WO3 for water splitting. ChemPhysChem 13(12), 3025–3034 (2012). https://doi.org/10.1002/cphc.201200069
- H. Morisaki, T. Watanabe, M. Iwase, K. Yazawa, Photoelectrolysis of water with TiO2-covered solar-cell electrodes. Appl. Phys. Lett. 29(6), 338–340 (1976). https://doi.org/10.1063/1.89088
- J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photon. 6, 824–828 (2012). https://doi.org/10.1038/nphoton.2012.265
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
- H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- Q. Guan, G. Lin, Y. Gong, J. Wang, W. Tan et al., Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 7(23), 13948–13955 (2019). https://doi.org/10.1039/C9TA02711D
- J. Shi, X. Chen, G. Li, N. Sun, H. Jiang et al., A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source. Nanoscale 11(15), 7513–7519 (2019). https://doi.org/10.1039/C9NR01271K
- B. Chen, W. Tang, T. Jiang, L. Zhu, X. Chen et al., Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 45, 380–389 (2018). https://doi.org/10.1016/j.nanoen.2017.12.049
- J. Wen, B. Chen, W. Tang, T. Jiang, L. Zhu et al., Harsh-environmental-resistant triboelectric nanogenerator and its applications in autodrive safety warning. Adv. Energy Mater. 8(29), 1801898 (2018). https://doi.org/10.1002/aenm.201801898
- B. Chen, W. Tang, C. He, C. Deng, L. Yang et al., Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 21(1), 88–97 (2018). https://doi.org/10.1016/j.mattod.2017.10.006
- Q. Shi, T. He, C. Lee, More than energy harvesting-combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851–871 (2019). https://doi.org/10.1016/j.nanoen.2019.01.002
- L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, S. Soh, Controlling surface charge generated by contact electrification: strategies and applications. Adv. Mater. 30(47), 1802405 (2018). https://doi.org/10.1002/adma.201802405
- Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
- S. Lee, Q. Shi, C. Lee, From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 7(3), 031302 (2019). https://doi.org/10.1063/1.5063498
- H. Liu, J. Zhong, C. Lee, S.-W. Lee, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4), 041306 (2018). https://doi.org/10.1063/1.5074184
- W. Tang, Y. Han, C. Han, C. Gao, X. Cao, Z.L. Wang, Self-powered water splitting using flowing kinetic energy. Adv. Mater. 27(2), 272–276 (2015). https://doi.org/10.1002/adma.201404071
- X. Cao, Y. Jie, N. Wang, Z.L. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6(23), 1600665 (2016). https://doi.org/10.1002/aenm.201600665
- H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015). https://doi.org/10.1016/j.rser.2014.10.101
- Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 257(1), 171–186 (2013). https://doi.org/10.1016/j.ccr.2012.04.018
- T. Li, Y. Xu, F. Xing, X. Cao, J. Bian, N. Wang, Z.L. Wang, Boosting photoelectrochemical water splitting by TENG-charged Li-ion battery. Adv. Energy Mater. 7(15), 1700124 (2017). https://doi.org/10.1002/aenm.201700124
- V. Chakrapani, J. Thangala, M.K. Sunkara, WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy 34(22), 9050–9059 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.031
- A. Wei, X. Xie, Z. Wen, H. Zheng, H. Lan, H. Shao, X. Sun, J. Zhong, S.-T. Lee, Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano 12(8), 8625–8632 (2018). https://doi.org/10.1021/acsnano.8b04363
- X. Cao, L. Cao, W. Yao, X. Ye, Structural characterization of Pd-doped SnO2 thin films using XPS. Surf. Interface Anal. 24(9), 662–666 (1996). https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9%3c662:AID-SIA155%3e3.0.CO;2-C
- A.G. Tamirat, J. Rick, A.A. Dubale, W.-N. Su, B.-J. Hwang, Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz. 1(4), 243–267 (2016). https://doi.org/10.1039/c5nh00098j
- Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi et al., Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10(18), 3692–3699 (2014). https://doi.org/10.1002/smll.201400276
- J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). https://doi.org/10.1021/nl2000743
- S.S. Kalanur, I.-H. Yoo, J. Park, H. Seo, Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency. J. Mater. Chem. A 5(4), 1455–1461 (2017). https://doi.org/10.1039/c6ta07592d
- J.N. Yao, P. Chen, A. Fujishima, Electrochromic behavior of electrodeposited tungsten oxide thin films. J. Electroanal. Chem. 406(1–2), 223–226 (1996). https://doi.org/10.1016/0022-0728(96)04552-4
- P. Cheng, C. Deng, X. Dai, B. Li, D. Liu, J. Xu, Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells. J. Photochem. Photobiol. A 195(1), 144–150 (2008). https://doi.org/10.1016/j.jphotochem.2007.09.016
- L. Huang, F. Peng, F.S. Ohuchi, “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf. Sci. 603(17), 2825–2834 (2009). https://doi.org/10.1016/j.susc.2009.07.030
- A. Pu, J. Deng, M. Li, J. Gao, H. Zhang, Y. Hao, J. Zhong, X. Sun, Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. J. Mater. Chem. A 2(8), 2491–2497 (2014). https://doi.org/10.1039/c3ta14575a
- Q. Zeng, J. Li, L. Li, J. Bai, L. Xia, B. Zhou, Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Appl. Catal. B 217, 21–29 (2017). https://doi.org/10.1016/j.apcatb.2017.05.072
- M. Zhang, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase et al., Surface modification of the CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for the improved solar water oxidation. J. Am. Chem. Soc. 137(15), 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256
- A. Annamalai, P.S. Shinde, A. Subramanian, J.Y. Kim, J.H. Kim, S.H. Choi, J.S. Lee, J.S. Jang, Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: enhanced interface and Ti4+ doping. J. Mater. Chem. A 3(9), 5007–5013 (2015). https://doi.org/10.1039/c4ta06315e
- G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014). https://doi.org/10.1038/ncomms4426
- X. Xie, Z. Wen, Q. Shen, C. Chen, M. Peng et al., Impedance matching effect between a triboelectric nanogenerator and a piezoresistive pressure sensor induced self-powered weighing. Adv. Mater. Technol. 3(6), 1800054 (2018). https://doi.org/10.1002/admt.201800054
- C. Chen, Z. Wen, A. Wei, X. Xie, N. Zhai et al., Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy 62, 442–448 (2019). https://doi.org/10.1016/j.nanoen.2019.05.029
- W. Hu, X. Wei, L. Zhu, D. Yin, A. Wei et al., Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy 57, 600–607 (2019). https://doi.org/10.1016/j.nanoen.2018.12.077
- E. Rasten, G. Hagen, R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta 48(25–26), 3945–3952 (2003). https://doi.org/10.1016/j.electacta.2003.04.001
References
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52(29), 7372–7408 (2013). https://doi.org/10.1002/anie.201207199
N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). https://doi.org/10.1039/c2cs35266d
E.L. Miller, Photoelectrochemical water splitting. Energy Environ. Sci. 8(10), 2809–2810 (2015). https://doi.org/10.1039/c5ee90047f
R. Zhang, M. Shao, S. Xu, F. Ning, L. Zhou, M. Wei, Photo-assisted synthesis of zinc–iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33, 21–28 (2017). https://doi.org/10.1016/j.nanoen.2017.01.020
R.H. Coridan, M. Shaner, C. Wiggenhorn, B.S. Brunschwig, N.S. Lewis, Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J. Phys. Chem. C 117(14), 6949–6957 (2013). https://doi.org/10.1021/jp311947x
M.T. McDowell, M.F. Lichterman, J.M. Spurgeon et al., Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. J. Phys. Chem. C 118(34), 19618–19624 (2014). https://doi.org/10.1021/jp506133y
P.P. Patel, S.D. Ghadge, P.J. Hanumantha, M.K. Datta, B. Gattu, P.M. Shanthi, P.N. Kumta, Active and robust novel bilayer photoanode architectures for hydrogen generation via direct non-electric bias induced photo-electrochemical water splitting. Int. J. Hydrogen Energy 43(29), 13158–13176 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.063
P.P. Patel, P.J. Hanumantha, O.I. Velikokhatnyi, M.K. Datta, D. Hong et al., Nitrogen and cobalt co-doped zinc oxide nanowires-viable photoanodes for hydrogen generation via photoelectrochemical water splitting. J. Power Sources 299, 11–24 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.027
P.P. Patel, P.J. Hanumantha, O.I. Velikokhatnyi, M.K. Datta et al., Vertically aligned nitrogen doped (Sn, Nb) O2 nanotubes—robust photoanodes for hydrogen generation by photoelectrochemical water splitting. Mater. Sci. Eng. B 208, 1–14 (2016). https://doi.org/10.1016/j.mseb.2016.02.001
A. Tacca, L. Meda et al., Photoanodes based on nanostructured WO3 for water splitting. ChemPhysChem 13(12), 3025–3034 (2012). https://doi.org/10.1002/cphc.201200069
H. Morisaki, T. Watanabe, M. Iwase, K. Yazawa, Photoelectrolysis of water with TiO2-covered solar-cell electrodes. Appl. Phys. Lett. 29(6), 338–340 (1976). https://doi.org/10.1063/1.89088
J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photon. 6, 824–828 (2012). https://doi.org/10.1038/nphoton.2012.265
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10(3), 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
Q. Guan, G. Lin, Y. Gong, J. Wang, W. Tan et al., Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 7(23), 13948–13955 (2019). https://doi.org/10.1039/C9TA02711D
J. Shi, X. Chen, G. Li, N. Sun, H. Jiang et al., A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source. Nanoscale 11(15), 7513–7519 (2019). https://doi.org/10.1039/C9NR01271K
B. Chen, W. Tang, T. Jiang, L. Zhu, X. Chen et al., Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 45, 380–389 (2018). https://doi.org/10.1016/j.nanoen.2017.12.049
J. Wen, B. Chen, W. Tang, T. Jiang, L. Zhu et al., Harsh-environmental-resistant triboelectric nanogenerator and its applications in autodrive safety warning. Adv. Energy Mater. 8(29), 1801898 (2018). https://doi.org/10.1002/aenm.201801898
B. Chen, W. Tang, C. He, C. Deng, L. Yang et al., Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 21(1), 88–97 (2018). https://doi.org/10.1016/j.mattod.2017.10.006
Q. Shi, T. He, C. Lee, More than energy harvesting-combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851–871 (2019). https://doi.org/10.1016/j.nanoen.2019.01.002
L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, S. Soh, Controlling surface charge generated by contact electrification: strategies and applications. Adv. Mater. 30(47), 1802405 (2018). https://doi.org/10.1002/adma.201802405
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
S. Lee, Q. Shi, C. Lee, From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 7(3), 031302 (2019). https://doi.org/10.1063/1.5063498
H. Liu, J. Zhong, C. Lee, S.-W. Lee, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4), 041306 (2018). https://doi.org/10.1063/1.5074184
W. Tang, Y. Han, C. Han, C. Gao, X. Cao, Z.L. Wang, Self-powered water splitting using flowing kinetic energy. Adv. Mater. 27(2), 272–276 (2015). https://doi.org/10.1002/adma.201404071
X. Cao, Y. Jie, N. Wang, Z.L. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6(23), 1600665 (2016). https://doi.org/10.1002/aenm.201600665
H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015). https://doi.org/10.1016/j.rser.2014.10.101
Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 257(1), 171–186 (2013). https://doi.org/10.1016/j.ccr.2012.04.018
T. Li, Y. Xu, F. Xing, X. Cao, J. Bian, N. Wang, Z.L. Wang, Boosting photoelectrochemical water splitting by TENG-charged Li-ion battery. Adv. Energy Mater. 7(15), 1700124 (2017). https://doi.org/10.1002/aenm.201700124
V. Chakrapani, J. Thangala, M.K. Sunkara, WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy 34(22), 9050–9059 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.031
A. Wei, X. Xie, Z. Wen, H. Zheng, H. Lan, H. Shao, X. Sun, J. Zhong, S.-T. Lee, Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano 12(8), 8625–8632 (2018). https://doi.org/10.1021/acsnano.8b04363
X. Cao, L. Cao, W. Yao, X. Ye, Structural characterization of Pd-doped SnO2 thin films using XPS. Surf. Interface Anal. 24(9), 662–666 (1996). https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9%3c662:AID-SIA155%3e3.0.CO;2-C
A.G. Tamirat, J. Rick, A.A. Dubale, W.-N. Su, B.-J. Hwang, Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz. 1(4), 243–267 (2016). https://doi.org/10.1039/c5nh00098j
Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi et al., Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10(18), 3692–3699 (2014). https://doi.org/10.1002/smll.201400276
J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). https://doi.org/10.1021/nl2000743
S.S. Kalanur, I.-H. Yoo, J. Park, H. Seo, Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency. J. Mater. Chem. A 5(4), 1455–1461 (2017). https://doi.org/10.1039/c6ta07592d
J.N. Yao, P. Chen, A. Fujishima, Electrochromic behavior of electrodeposited tungsten oxide thin films. J. Electroanal. Chem. 406(1–2), 223–226 (1996). https://doi.org/10.1016/0022-0728(96)04552-4
P. Cheng, C. Deng, X. Dai, B. Li, D. Liu, J. Xu, Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells. J. Photochem. Photobiol. A 195(1), 144–150 (2008). https://doi.org/10.1016/j.jphotochem.2007.09.016
L. Huang, F. Peng, F.S. Ohuchi, “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf. Sci. 603(17), 2825–2834 (2009). https://doi.org/10.1016/j.susc.2009.07.030
A. Pu, J. Deng, M. Li, J. Gao, H. Zhang, Y. Hao, J. Zhong, X. Sun, Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. J. Mater. Chem. A 2(8), 2491–2497 (2014). https://doi.org/10.1039/c3ta14575a
Q. Zeng, J. Li, L. Li, J. Bai, L. Xia, B. Zhou, Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Appl. Catal. B 217, 21–29 (2017). https://doi.org/10.1016/j.apcatb.2017.05.072
M. Zhang, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase et al., Surface modification of the CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for the improved solar water oxidation. J. Am. Chem. Soc. 137(15), 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256
A. Annamalai, P.S. Shinde, A. Subramanian, J.Y. Kim, J.H. Kim, S.H. Choi, J.S. Lee, J.S. Jang, Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: enhanced interface and Ti4+ doping. J. Mater. Chem. A 3(9), 5007–5013 (2015). https://doi.org/10.1039/c4ta06315e
G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014). https://doi.org/10.1038/ncomms4426
X. Xie, Z. Wen, Q. Shen, C. Chen, M. Peng et al., Impedance matching effect between a triboelectric nanogenerator and a piezoresistive pressure sensor induced self-powered weighing. Adv. Mater. Technol. 3(6), 1800054 (2018). https://doi.org/10.1002/admt.201800054
C. Chen, Z. Wen, A. Wei, X. Xie, N. Zhai et al., Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy 62, 442–448 (2019). https://doi.org/10.1016/j.nanoen.2019.05.029
W. Hu, X. Wei, L. Zhu, D. Yin, A. Wei et al., Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy 57, 600–607 (2019). https://doi.org/10.1016/j.nanoen.2018.12.077
E. Rasten, G. Hagen, R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta 48(25–26), 3945–3952 (2003). https://doi.org/10.1016/j.electacta.2003.04.001