Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity
Corresponding Author: Wei Feng
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 135
Abstract
Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects. However, in view of the complexity of composite structure and composition, its self-heal is facing challenges. In this article, supramolecular effect is proposed to repair the multistage structure, mechanical and thermal properties of composite materials. A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester (PBA)–polydimethylsiloxane (PDMS) were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization. Then, by introducing the copolymer into a folded graphene film (FGf), a highly thermally conductive composite of PBA–PDMS/FGf with self-healing capacity was fabricated. The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA–PDMS could completely self-heal at room temperature in 10 min. Additionally, PBA–PDMS/FGf exhibits a high tensile strength of 2.23 ± 0.15 MPa at break and high thermal conductivity of 13 ± 0.2 W m−1 K−1; of which the self-healing efficiencies were 100% and 98.65% at room temperature for tensile strength and thermal conductivity, respectively. The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules, as well as polymer molecule and graphene. This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future.
Highlights:
1 PBA–PDMS/folded graphene film (FGf) composite with high strength and thermal conductivity and rapid self-healing capacity at room temperature is prepared.
2 PBAx–PDMS/FGf self-healed its strength, thermal conductivity, and conductivity and the self-healing mechanism of thermal conductivity is also proposed.
3 PBA–PDMS/FGf has significant application potential in interface thermal conductivity and robot skins.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yang, X. Zhong, J. Zhang, J. Gu, Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J. Mater. Sci. Technol. 68, 209–215 (2021). https://doi.org/10.1016/j.jmst.2020.08.027
- Y. Zhang, A.A. Broekhuis, F. Picchioni, Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42(6), 1906–1912 (2009). https://doi.org/10.1021/ma8027672
- Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
- J. He, Z. Zhang, Y. Yang, F. Ren, J. Li et al., Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 13, 80 (2021). https://doi.org/10.1007/s40820-020-00585-0
- S.M. Kim, H. Jeon, S.H. Shin, S.A. Park, J. Jegal et al., Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 30(1), 1705145 (2018). https://doi.org/10.1002/adma.201705145
- M. Wu, L. Yuan, F. Jiang, Y. Zhang, Y. He et al., Strong autonomic self-healing biobased polyamide elastomers. Chem. Mater. 32(19), 8325–8332 (2020). https://doi.org/10.1021/acs.chemmater.0c02169
- H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic polyimide@ vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
- Y. Wang, D.T. Pham, Z. Zhang, J. Li, C. Ji et al., Sustainable self-healing at ultra-low temperatures in structural composites incorporating hollow vessels and heating elements. Soc. Open Sci. 3(9), 160488 (2016). https://doi.org/10.1098/rsos.160488
- W. Mai, Q. Yu, C. Han, F. Kang, B. Li, Self-healing materials for energy-storage devices. Adv. Funct. Mater. 30(24), 1909912 (2020). https://doi.org/10.1002/adfm.201909912
- Y. Zhu, L. Lin, Y. Chen, Y. Song, W. Lu et al., A self-healing, robust adhesion, multiple stimuli-response hydrogel for flexible sensors. Soft Matter 16(9), 2238–2248 (2020). https://doi.org/10.1039/C9SM02303H
- U. Lafont, C. Moreno-Belle, H. Zeijl, S. Zwaag, Self-healing thermally conductive adhesives. J. Intell. Mater. Syst. Struct. 25(1), 67–74 (2014). https://doi.org/10.1177/1045389X13498314
- L. Zhao, X. Shi, Y. Yin, B. Jiang, Y. Huang, A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos. Sci. Technol. 186, 107919 (2020). https://doi.org/10.1016/j.compscitech.2019.107919
- Y. Yang, M.W. Urban, Self-healing polymeric materials. Chem. Soc. Rev. 42(17), 7446–7467 (2013). https://doi.org/10.1039/C3CS60109A
- C.E. Yuan, M.Z. Rong, M.Q. Zhang, Z.P. Zhang, Y.C. Yuan, Self-healing of polymers via synchronous covalent bond fission/radical recombination. Chem. Mater. 23(22), 5076–5081 (2011). https://doi.org/10.1021/cm202635w
- X. Yang, Y. Guo, X. Luo, N. Zheng, T. Ma et al., Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 164, 59–64 (2018). https://doi.org/10.1016/j.compscitech.2018.05.038
- H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53(16), 7161–7170 (2020). https://doi.org/10.1021/acs.macromol.9b02544
- C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microp anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042 (2013). https://doi.org/10.1038/nchem.1802
- Y. Kobayashi, T. Hirase, Y. Takashima, A. Harada, H. Yamaguchi, Self-healing and shape-memory properties of polymeric materials cross-linked by hydrogen bonding and metal–ligand interactions. Polym. Chem. 10(33), 4519–4523 (2019). https://doi.org/10.1039/C9PY00450E
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2021). https://doi.org/10.1007/s40820-020-00548-5
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2022). https://doi.org/10.1007/s40820-021-00767-4
- C.H. Li, C. Wang, C. Keplinger, J.L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8(6), 618–624 (2016). https://doi.org/10.1038/nchem.2492
- X. Wang, S. Zhan, Z. Lu, J. Li, X. Yang et al., Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 32(50), 2005759 (2020). https://doi.org/10.1002/adma.202005759
- S. Burattini, B.W. Greenland, D. Merino, W. Weng, J. Seppala et al., A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132(34), 12051–12058 (2010). https://doi.org/10.1021/ja104446r
- Z. Zhang, N. Ghezawi, B. Li, S. Ge, S. Zhao et al., Autonomous self-healing elastomers with unprecedented adhesion force. Adv. Funct. Mater. 31(4), 2006298 (2020). https://doi.org/10.1002/adfm.202006298
- S. Wang, M.W. Urban, Self-healing polymers. Nat. Rev. Mater. 5(8), 562–583 (2020). https://doi.org/10.1038/s41578-020-0202-4
- C. Zou, C. Chen, Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins. Angew. Chem. Int. Ed. 59(1), 395–402 (2020). https://doi.org/10.1002/anie.201910002
- A.P. Francesch, H. Jung, M.C. Demirel, M. Sitti, Biosynthetic self-healing materials for soft machines. Nat. Mater. 19(11), 1230–1235 (2020). https://doi.org/10.1038/s41563-020-0736-2
- Z. Wang, L. Scheres, H. Xia, H. Zuilhof, Developments and challenges in self-healing antifouling materials. Adv. Funct. Mater. 30(26), 1908098 (2020). https://doi.org/10.1002/adfm.201908098
- Z. Deng, H. Wang, P.X. Ma, B. Guo, Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale 12(3), 1224–1246 (2020). https://doi.org/10.1039/C9NR09283H
- J.L. Self, C.S. Sample, A.E. Levi, K. Li, R. Xie et al., Dynamic bottlebrush polymer networks: self-healing in super-soft materials. J. Am. Chem. Soc. 142(16), 7567–7573 (2020). https://doi.org/10.1021/jacs.0c01467
- K.I. Song, H. Seo, D. Seong, S. Kim, K.J. Yu et al., Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat. Commun. 11, 4195 (2020). https://doi.org/10.1038/s41467-020-18025-3
- I. Gonzalez-Torre, J. Norambuena-Contreras, Recent advances on self-healing of bituminous materials by the action of encapsulated rejuvenators. Construct. Build. Mater. 258, 119568 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119568
- Y. Ye, H. Chen, Y. Zou, Y. Ye, H. Zhao, Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel. Corros. Sci. 174, 108825 (2020). https://doi.org/10.1016/j.corsci.2020.108825
- B. Zhang, J. He, M. Shi, Y. Liang, B. Guo, Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem. Eng. J. 400, 125994 (2020). https://doi.org/10.1016/j.cej.2020.125994
- P. Vinchon, X. Glad, G.R. Bigras, R. Martel, L. Stafford, Preferential self-healing at grain boundaries in plasma-treated graphene. Nat. Mater. 20(1), 49–54 (2021). https://doi.org/10.1038/s41563-020-0738-0
- X. Xun, Z. Zhang, X. Zhao, B. Zhao, F. Gao et al., Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer. ACS Nano 14(7), 9066–9072 (2020). https://doi.org/10.1021/acsnano.0c04158
- H. Bai, Z. Zhang, Y. Huo, Y. Shen, M. Qin et al., Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties. J. Mater. Sci. Technol. 98, 169–176 (2022). https://doi.org/10.1016/j.jmst.2021.05.020
References
X. Yang, X. Zhong, J. Zhang, J. Gu, Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J. Mater. Sci. Technol. 68, 209–215 (2021). https://doi.org/10.1016/j.jmst.2020.08.027
Y. Zhang, A.A. Broekhuis, F. Picchioni, Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42(6), 1906–1912 (2009). https://doi.org/10.1021/ma8027672
Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
J. He, Z. Zhang, Y. Yang, F. Ren, J. Li et al., Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 13, 80 (2021). https://doi.org/10.1007/s40820-020-00585-0
S.M. Kim, H. Jeon, S.H. Shin, S.A. Park, J. Jegal et al., Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 30(1), 1705145 (2018). https://doi.org/10.1002/adma.201705145
M. Wu, L. Yuan, F. Jiang, Y. Zhang, Y. He et al., Strong autonomic self-healing biobased polyamide elastomers. Chem. Mater. 32(19), 8325–8332 (2020). https://doi.org/10.1021/acs.chemmater.0c02169
H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic polyimide@ vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
Y. Wang, D.T. Pham, Z. Zhang, J. Li, C. Ji et al., Sustainable self-healing at ultra-low temperatures in structural composites incorporating hollow vessels and heating elements. Soc. Open Sci. 3(9), 160488 (2016). https://doi.org/10.1098/rsos.160488
W. Mai, Q. Yu, C. Han, F. Kang, B. Li, Self-healing materials for energy-storage devices. Adv. Funct. Mater. 30(24), 1909912 (2020). https://doi.org/10.1002/adfm.201909912
Y. Zhu, L. Lin, Y. Chen, Y. Song, W. Lu et al., A self-healing, robust adhesion, multiple stimuli-response hydrogel for flexible sensors. Soft Matter 16(9), 2238–2248 (2020). https://doi.org/10.1039/C9SM02303H
U. Lafont, C. Moreno-Belle, H. Zeijl, S. Zwaag, Self-healing thermally conductive adhesives. J. Intell. Mater. Syst. Struct. 25(1), 67–74 (2014). https://doi.org/10.1177/1045389X13498314
L. Zhao, X. Shi, Y. Yin, B. Jiang, Y. Huang, A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos. Sci. Technol. 186, 107919 (2020). https://doi.org/10.1016/j.compscitech.2019.107919
Y. Yang, M.W. Urban, Self-healing polymeric materials. Chem. Soc. Rev. 42(17), 7446–7467 (2013). https://doi.org/10.1039/C3CS60109A
C.E. Yuan, M.Z. Rong, M.Q. Zhang, Z.P. Zhang, Y.C. Yuan, Self-healing of polymers via synchronous covalent bond fission/radical recombination. Chem. Mater. 23(22), 5076–5081 (2011). https://doi.org/10.1021/cm202635w
X. Yang, Y. Guo, X. Luo, N. Zheng, T. Ma et al., Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 164, 59–64 (2018). https://doi.org/10.1016/j.compscitech.2018.05.038
H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53(16), 7161–7170 (2020). https://doi.org/10.1021/acs.macromol.9b02544
C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microp anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042 (2013). https://doi.org/10.1038/nchem.1802
Y. Kobayashi, T. Hirase, Y. Takashima, A. Harada, H. Yamaguchi, Self-healing and shape-memory properties of polymeric materials cross-linked by hydrogen bonding and metal–ligand interactions. Polym. Chem. 10(33), 4519–4523 (2019). https://doi.org/10.1039/C9PY00450E
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2021). https://doi.org/10.1007/s40820-020-00548-5
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2022). https://doi.org/10.1007/s40820-021-00767-4
C.H. Li, C. Wang, C. Keplinger, J.L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8(6), 618–624 (2016). https://doi.org/10.1038/nchem.2492
X. Wang, S. Zhan, Z. Lu, J. Li, X. Yang et al., Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 32(50), 2005759 (2020). https://doi.org/10.1002/adma.202005759
S. Burattini, B.W. Greenland, D. Merino, W. Weng, J. Seppala et al., A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132(34), 12051–12058 (2010). https://doi.org/10.1021/ja104446r
Z. Zhang, N. Ghezawi, B. Li, S. Ge, S. Zhao et al., Autonomous self-healing elastomers with unprecedented adhesion force. Adv. Funct. Mater. 31(4), 2006298 (2020). https://doi.org/10.1002/adfm.202006298
S. Wang, M.W. Urban, Self-healing polymers. Nat. Rev. Mater. 5(8), 562–583 (2020). https://doi.org/10.1038/s41578-020-0202-4
C. Zou, C. Chen, Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins. Angew. Chem. Int. Ed. 59(1), 395–402 (2020). https://doi.org/10.1002/anie.201910002
A.P. Francesch, H. Jung, M.C. Demirel, M. Sitti, Biosynthetic self-healing materials for soft machines. Nat. Mater. 19(11), 1230–1235 (2020). https://doi.org/10.1038/s41563-020-0736-2
Z. Wang, L. Scheres, H. Xia, H. Zuilhof, Developments and challenges in self-healing antifouling materials. Adv. Funct. Mater. 30(26), 1908098 (2020). https://doi.org/10.1002/adfm.201908098
Z. Deng, H. Wang, P.X. Ma, B. Guo, Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale 12(3), 1224–1246 (2020). https://doi.org/10.1039/C9NR09283H
J.L. Self, C.S. Sample, A.E. Levi, K. Li, R. Xie et al., Dynamic bottlebrush polymer networks: self-healing in super-soft materials. J. Am. Chem. Soc. 142(16), 7567–7573 (2020). https://doi.org/10.1021/jacs.0c01467
K.I. Song, H. Seo, D. Seong, S. Kim, K.J. Yu et al., Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat. Commun. 11, 4195 (2020). https://doi.org/10.1038/s41467-020-18025-3
I. Gonzalez-Torre, J. Norambuena-Contreras, Recent advances on self-healing of bituminous materials by the action of encapsulated rejuvenators. Construct. Build. Mater. 258, 119568 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119568
Y. Ye, H. Chen, Y. Zou, Y. Ye, H. Zhao, Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel. Corros. Sci. 174, 108825 (2020). https://doi.org/10.1016/j.corsci.2020.108825
B. Zhang, J. He, M. Shi, Y. Liang, B. Guo, Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem. Eng. J. 400, 125994 (2020). https://doi.org/10.1016/j.cej.2020.125994
P. Vinchon, X. Glad, G.R. Bigras, R. Martel, L. Stafford, Preferential self-healing at grain boundaries in plasma-treated graphene. Nat. Mater. 20(1), 49–54 (2021). https://doi.org/10.1038/s41563-020-0738-0
X. Xun, Z. Zhang, X. Zhao, B. Zhao, F. Gao et al., Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer. ACS Nano 14(7), 9066–9072 (2020). https://doi.org/10.1021/acsnano.0c04158
H. Bai, Z. Zhang, Y. Huo, Y. Shen, M. Qin et al., Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties. J. Mater. Sci. Technol. 98, 169–176 (2022). https://doi.org/10.1016/j.jmst.2021.05.020