Azobenzene-Based Solar Thermal Fuels: A Review
Corresponding Author: Wei Feng
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 138
Abstract
The energy storage mechanism of azobenzene is based on the transformation of molecular cis and trans isomerization, while NBD/QC, DHA/VHF, and fulvalene dimetal complexes realize the energy storage function by changing the molecular structure. Acting as “molecular batteries,” they can exhibit excellent charging and discharging behavior by converting between trans and cis isomers or changing molecular structure upon absorption of ultraviolet light. Key properties determining the performance of STFs are stored energy, energy density, half-life, and solar energy conversion efficiency. This review is aiming to provide a comprehensive and authoritative overview on the recent advancements of azobenzene molecular photoswitch system in STFs fields, including derivatives and carbon nano-templates, which is emphasized for its attractive performance. Although the energy storage performance of Azo-STFs has already reached the level of commercial lithium batteries, the cycling capability and controllable release of energy still need to be further explored. For this, some potential solutions to the cycle performance are proposed, and the methods of azobenzene controllable energy release are summarized. Moreover, energy stored by STFs can be released in the form of mechanical energy, which in turn can also promote the release of thermal energy from STFs, implying that there could be a relationship between mechanical and thermal energy in Azo-STFs, providing a potential direction for further research on Azo-STFs.
Highlights:
1 The strategy to achieve alternate mixing exotherm through metal–organic frameworks material that may be proposed to solve the potential drawbacks of azobenzene with nanocarbon template is discussed.
2 Factors that can affect the isomerization of the Azo unit include but are not limited to light, heat, catalysts, solvents, electric field, magnetic field, force were discussed to achieve controllable azobenzene energy release.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Armaroli, V. Balzani, The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 46(1–2), 52–66 (2007). https://doi.org/10.1002/anie.200602373
- M. Perez, R. Perez, A fundamental look at supply-side energy reserves for the planet. (SHC Soler Update, 2015). https://www.iea-shc.org/Data/Sites/1/publications/2015-11-A-Fundamental-Look-at-Supply-Side-Energy-Reserves-for-the-Planet.pdf
- I. Dincer, Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000). https://doi.org/10.1016/S1364-0321(99)00011-8
- N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. PNAS 103(43), 15729 (2006). https://doi.org/10.1073/pnas.0603395103
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
- T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets et al., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110(11), 6474–6502 (2010). https://doi.org/10.1021/cr100246c
- M. Iqbal, Index, in An Introduction to Solar Radiation. (1983), pp. 387–390. https://doi.org/10.1016/B978-0-12-373750-2.50022-7
- T. Hartmann, The Last Hours of Ancient Sunlight. M. Iqbal in Share Guide. (1998).
- T.J. Kucharski, Y. Tian, S. Akbulatov, R. Boulatov, Chemical solutions for the closed-cycle storage of solar energy. Energy Environ. Sci. 4(11), 4449–4472 (2011). https://doi.org/10.1039/c1ee01861b
- Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013). https://doi.org/10.1016/j.apenergy.2012.11.051
- M. Felderhoff, R. Urbanczyk, S. Peil, Thermochemical heat storage for high temperature applications—a review. Green 3(2), 113–123 (2013). https://doi.org/10.1515/green-2013-0011
- K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67–123 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.005
- B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8
- A. Lennartson, A. Roffey, K. Moth-Poulsen, Designing photoswitches for molecular solar thermal energy storage. Tetrah. Lett. 56(12), 1457–1465 (2015). https://doi.org/10.1016/j.tetlet.2015.01.187
- Y. Liu, J.C. Grossman, Accelerating the design of solar thermal fuel materials through high throughput simulations. Nano Lett. 14(12), 7046–7050 (2014). https://doi.org/10.1021/nl5034073
- L. Dong, Y. Feng, L. Wang, W. Feng, Azobenzene-based solar thermal fuels: design, properties, and applications. Chem. Soc. Rev. 47(19), 7339–7368 (2018). https://doi.org/10.1039/C8CS00470F
- G. Jones, S.H. Chiang, P.T. Xuan, Energy storage in organic photoisomers. J. Photochem. 10(1), 1–18 (1979). https://doi.org/10.1016/0047-2670(79)80034-9
- E. Durgun, J.C. Grossman, Photoswitchable molecular rings for solar-thermal energy storage. J. Phys. Chem. Lett. 4(6), 854–860 (2013). https://doi.org/10.1021/jz301877n
- K. Börjesson, A. Lennartson, K. Moth-Poulsen, Efficiency limit of molecular solar thermal energy collecting devices. ACS Sustain. Chem. Eng. 1(6), 585–590 (2013). https://doi.org/10.1021/sc300107z
- J. Orrego-Hernández, A. Dreos, K. Moth-Poulsen, Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications. Acc. Chem. Res. 53(8), 1478–1487 (2020). https://doi.org/10.1021/acs.accounts.0c00235
- X. An, Y. Xie, Enthalpy of isomerization of quadricyclane to norbornadiene. Thermochim. Acta 220, 17–25 (1993). https://doi.org/10.1016/0040-6031(93)80451-F
- M.J. Kuisma, A.M. Lundin, K. Moth-Poulsen, P. Hyldgaard, P. Erhart, Comparative ab-initio study of substituted norbornadiene-quadricyclane compounds for solar thermal storage. J. Phys. Chem. C 120(7), 3635–3645 (2016). https://doi.org/10.1021/acs.jpcc.5b11489
- M. Quant, A. Hamrin, A. Lennartson, P. Erhart, K. Moth-Poulsen, Solvent effects on the absorption profile, kinetic stability, and photoisomerization process of the norbornadiene–quadricyclanes system. J. Phys. Chem. C 123(12), 7081–7087 (2019). https://doi.org/10.1021/acs.jpcc.9b02111
- A.D. Dubonosov, V.A. Bren, V.A. Chernoivanov, Norbornadiene–quadricyclane as an abiotic system for the storage of solar energy. Russ. Chem. Rev. 71(11), 917–927 (2002). https://doi.org/10.1070/RC2002v071n11ABEH000745
- U. Bauer, L. Fromm, C. Weiß, P. Bachmann, F. Späth et al., Controlled catalytic energy release of the norbornadiene/quadricyclane molecular solar thermal energy storage system on Ni(111). J. Phys. Chem. C 123(13), 7654–7664 (2019). https://doi.org/10.1021/acs.jpcc.8b03746
- U. Bauer, S. Mohr, T. Döpper, P. Bachmann, F. Späth et al., Catalytically triggered energy release from strained organic molecules: the surface chemistry of quadricyclane and norbornadiene on Pt (111). Chem. A Eur. J. 23(7), 1613–1622 (2017). https://doi.org/10.1002/chem.201604443
- Z. Wang, A. Roffey, R. Losantos, A. Lennartson, M. Jevric et al., Macroscopic heat release in a molecular solar thermal energy storage system. Energy Environ. Sci. 12(1), 187–193 (2019). https://doi.org/10.1039/C8EE01011K
- V. Kashyap, S. Sakunkaewkasem, P. Jafari, M. Nazari, B. Eslami et al., Full spectrum solar thermal energy harvesting and storage by a molecular and phase-change hybrid material. Joule 3(12), 3100–3111 (2019). https://doi.org/10.1016/j.joule.2019.11.001
- S. Lara-Avila, A.V. Danilov, S.E. Kubatkin, S.L. Broman, C.R. Parker et al., Light-triggered conductance switching in single-molecule dihydroazulene/vinylheptafulvene junctions. J. Phys. Chem. C 115(37), 18372–18377 (2011). https://doi.org/10.1021/jp205638b
- M. Cacciarini, A.B. Skov, M. Jevric, A.S. Hansen, J. Elm et al., Towards solar energy storage in the photochromic dihydroazulene–vinylheptafulvene system. Chem. A Eur. J. 21(20), 7454–7461 (2015). https://doi.org/10.1002/chem.201500100
- A. Kadziola, M.B. Nielsen, Optimized synthesis and detailed NMR spectroscopic characterization of the 1,8a-dihydroazulene-1,1-dicarbonitrile photoswitch. ARKIVOC 2011(9), 51–67 (2011). https://doi.org/10.3998/ark.5550190.0012.904
- S.T. Olsen, J. Elm, F.E. Storm, A.N. Gejl, A.S. Hansen et al., Computational methodology study of the optical and thermochemical properties of a molecular photoswitch. J. Phys. Chem. A 119(5), 896–904 (2015). https://doi.org/10.1021/jp510678u
- A.B. Skov, N. Ree, A.S. Gertsen, P. Chabera, J. Uhlig et al., Excited-state topology modifications of the dihydroazulene photoswitch through aromaticity. ChemPhotoChem 3(8), 619–629 (2019). https://doi.org/10.1002/cptc.201900088
- K. Saritas, J.C. Grossman, Accurate isomerization enthalpy and investigation of the errors in density functional theory for dihydroazulene/vinylheptafulvene photochromism using diffusion monte carlo. J. Phys. Chem. C 121(48), 26677–26685 (2017). https://doi.org/10.1021/acs.jpcc.7b09437
- M. Koerstz, J. Elm, K.V. Mikkelsen, Benchmark study of the structural and thermochemical properties of a dihydroazulene/vinylheptafulvene photoswitch. J. Phys. Chem. A 121(16), 3148–3154 (2017). https://doi.org/10.1021/acs.jpca.7b01207
- A.B. Skov, S.L. Broman, A.S. Gertsen, J. Elm, M. Jevric et al., Aromaticity-controlled energy storage capacity of the dihydroazulene-vinylheptafulvene photochromic system. Chem. A Eur. J. 22(41), 14567–14575 (2016). https://doi.org/10.1002/chem.201601190
- K. Moth-Poulsen, D. Ćoso, K. Börjesson, N. Vinokurov, S.K. Meier et al., Molecular solar thermal (MOST) energy storage and release system. Energy Environ. Sci. 5(9), 8534–8537 (2012). https://doi.org/10.1039/C2EE22426G
- Y. Kanai, V. Srinivasan, S.K. Meier, K.P.C. Vollhardt, J.C. Grossman, Mechanism of thermal reversal of the (fulvalene)tetracarbonyldiruthenium photoisomerization: toward molecular solar–thermal energy storage. Angew. Chem. Int. Ed. 49(47), 8926–8929 (2010). https://doi.org/10.1002/anie.201002994
- R. Boese, J.K. Cammack, A.J. Matzger, K. Pflug, W.B. Tolman et al., Photochemistry of (fulvalene)tetracarbonyldiruthenium and its derivatives: efficient light energy storage devices. J. Am. Chem. Soc. 119(29), 6757–6773 (1997). https://doi.org/10.1021/ja9707062
- Z. Hou, S.C. Nguyen, J.P. Lomont, C.B. Harris, N. Vinokurov et al., Switching from Ru to Fe: picosecond IR spectroscopic investigation of the potential of the (fulvalene)tetracarbonyldiiron frame for molecular solar-thermal storage. Phys. Chem. Chem. Phys. 15(20), 7466–7469 (2013). https://doi.org/10.1039/C3CP51292D
- A. Lennartson, A. Lundin, K. Börjesson, V. Gray, K. Moth-Poulsen, Tuning the photochemical properties of the fulvalene-tetracarbonyl-diruthenium system. Dalton Transact. 45(21), 8740–8744 (2016). https://doi.org/10.1039/C6DT01343K
- M.R. Harpham, S.C. Nguyen, Z. Hou, J.C. Grossman, C.B. Harris et al., X-ray transient absorption and picosecond IR spectroscopy of fulvalene(tetracarbonyl)diruthenium on photoexcitation. Angew. Chem. Int. Ed. 51(31), 7692–7696 (2012). https://doi.org/10.1002/anie.201202952
- N. Duvva, U. Chilakamarthi, L. Giribabu, Recent developments in tetrathiafulvalene and dithiafulvalene based metal-free organic sensitizers for dye-sensitized solar cells: a mini-review. Sustain. Energy Fuels 1(4), 678–688 (2017). https://doi.org/10.1039/C7SE00068E
- K.P.C. Vollhardt, T.W. Weidman, Synthesis, structure, and photochemistry of tetracarbonyl(fulvalene)diruthenium. Thermally reversible photoisomerization involving carbon-carbon bond activation at a dimetal center. J. Am. Chem. Soc. 105(6), 1676–1677 (1983). https://doi.org/10.1021/ja00344a056
- K. Börjesson, D. Ćoso, V. Gray, J.C. Grossman, J. Guan et al., Exploring the potential of fulvalene dimetals as platforms for molecular solar thermal energy storage: computations, syntheses, structures, kinetics, and catalysis. Chem. A Eur. J. 20(47), 15587–15604 (2014). https://doi.org/10.1002/chem.201404170
- K. Börjesson, A. Lennartson, K. Moth-Poulsen, Fluorinated fulvalene ruthenium compound for molecular solar thermal applications. J. Fluor. Chem. 161, 24–28 (2014). https://doi.org/10.1016/j.jfluchem.2014.01.012
- D. Wang, W. Zhao, Q. Wei, C. Zhao, Y. Zheng, Photoswitchable azobenzene/cyclodextrin host-guest complexes: from UV- to visible/near-ir-light-responsive systems. ChemPhotoChem 2(5), 403–415 (2018). https://doi.org/10.1002/cptc.201700233
- J. Calbo, C.E. Weston, A.J. White, H.S. Rzepa, J. Contreras-García et al., Tuning azoheteroarene photoswitch performance through heteroaryl design. J. Am. Chem. Soc. 139(3), 1261–1274 (2017). https://doi.org/10.1021/jacs.6b11626
- A. Goulet-Hanssens, F. Eisenreich, S. Hecht, Enlightening materials with photoswitches. Adv. Mater. 32(20), 1905966 (2020). https://doi.org/10.1002/adma.201905966
- M.A. Gerkman, R.S. Gibson, J. Calbo, Y. Shi, M.J. Fuchter et al., Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0 °C. J. Am. Chem. Soc. 142(19), 8688–8695 (2020). https://doi.org/10.1021/jacs.0c00374
- D. Wang, X. Wang, Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci. 38(2), 271–301 (2013). https://doi.org/10.1016/j.progpolymsci.2012.07.003
- K.M. McElhinny, P. Huang, Y. Joo, C. Kanimozhi, A. Lakkham et al., Optically reconfigurable monolayer of azobenzene donor molecules on oxide surfaces. Langmuir 33(9), 2157–2168 (2017). https://doi.org/10.1021/acs.langmuir.6b04585
- C. Qin, Y. Feng, W. Luo, C. Cao, W. Hu et al., A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A 3(32), 16453–16460 (2015). https://doi.org/10.1039/C5TA01543J
- H.K. Bisoyi, Q. Li, Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 116(24), 15089–15166 (2016). https://doi.org/10.1021/acs.chemrev.6b00415
- C.I. Chuang, S.H. Lin, Y.F. Chao, Dynamic characterization of photo-alignment of azo-dye-doped polymer using phase modulated polarimetry. Opt. Mater. 35(3), 366–371 (2013). https://doi.org/10.1016/j.optmat.2012.09.026
- R. Hagen, T. Bieringer, Photoaddressable polymers for optical data storage. Adv. Mater. 13(23), 1805–1810 (2001). https://doi.org/10.1002/1521-4095(200112)13:23%3c1805::AID-ADMA1805%3e3.0.CO;2-V
- A.S. Matharu, S. Jeeva, P.S. Ramanujam, Cheminform abstract: liquid crystals for holographic optical data storage. ChemInform 39(8), 200808252 (2008). https://doi.org/10.1002/chin.200808252
- G.G.D. Han, H. Li, J.C. Grossman, Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat. Commun. 8, 1446 (2017). https://doi.org/10.1038/s41467-017-01608-y
- E.N. Cho, D. Zhitomirsky, G.G.D. Han, Y. Liu, J.C. Grossman, Molecularly engineered azobenzene derivatives for high energy density solid-state solar thermal fuels. ACS Appl. Mater. Int. 9(10), 8679–8687 (2017). https://doi.org/10.1021/acsami.6b15018
- H.D. Bandara, S.C. Burdette, Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41(5), 1809–1825 (2012). https://doi.org/10.1039/C1CS15179G
- J.P. Ortruba, R.G. Weiss, Liquid crystalline solvents as mechanistic probes. 11. The syn. Fwdarw. anti thermal isomerization mechanism of some low-bipolarity azobenzenes. J. Org. Chem. 48(20), 3448–3453 (1983). https://doi.org/10.1021/jo00168a015
- P.D. Wildes, E.H. White, Dioxetane-sensitized chemiluminescence of lanthanide chelates. Chemical source of “monochromatic” light. J. Am. Chem. Soc. 93(23), 6286–6288 (1971). https://doi.org/10.1021/ja00752a058
- J. Dokić, M. Gothe, J. Wirth, M.V. Peters, J. Schwarz et al., Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data. J. Phys. Chem. A 113(24), 6763–6773 (2009). https://doi.org/10.1021/jp9021344
- T. Asano, T. Okada, S. Shinkai, K. Shigematsu, Y. Kusano et al., Temperature and pressure dependences of thermal cis-to-trans isomerization of azobenzenes which evidence an inversion mechanism. J. Am. Chem. Soc. 103(17), 5161–5165 (1981). https://doi.org/10.1021/ja00407a034
- J. Robertus, S.F. Reker, T.C. Pijper, A. Deuzeman, W.R. Browne et al., Kinetic analysis of the thermal isomerisation pathways in an asymmetric double azobenzene switch. Phys. Chem. Chem. Phys. 14(13), 4374–4382 (2012). https://doi.org/10.1039/C2CP23756C
- T.J. Kucharski, N. Ferralis, A.M. Kolpak, J.O. Zheng, D.G. Nocera et al., Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nat. Chem. 6(5), 441–447 (2014). https://doi.org/10.1038/nchem.1918
- A.K. Saydjari, P. Weis, S. Wu, Spanning the solar spectrum: azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater. 7(3), 1601622 (2017). https://doi.org/10.1002/aenm.201601622
- W. Feng, W. Luo, Y. Feng, Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application. Nanoscale 4(20), 6118–6134 (2012). https://doi.org/10.1039/C2NR31505J
- A.W. Adamson, A. Vogler, H. Kunkely, R. Wachter, ChemInform abstract: photocalorimetry. Enthalpies of photolysis of trans-azobenzene, ferrioxalate and cobaltioxalate ions, chromium hexacarbonyl, and dirhenium decacarbonyl. Chemisch. Informationsd. 9(23), 197823074 (1978). https://doi.org/10.1002/chin.197823074
- J. Olmsted, J. Lawrence, G.G. Yee, Photochemical storage potential of azobenzenes. Sol. Energy 30(3), 271–274 (1983). https://doi.org/10.1016/0038-092X(83)90156-1
- R. Ehid, A.S. Fleischer, Development and characterization of paraffin-based shape stabilized energy storage materials. Energy Convers. Manag. 53(1), 84–91 (2012). https://doi.org/10.1016/j.enconman.2011.08.003
- J. Yang, L.S. Tang, L. Bai, R.Y. Bao, Z.Y. Liu et al., High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater. Horiz. 6(2), 250–273 (2019). https://doi.org/10.1039/C8MH01219A
- N. Wang, X.R. Zhang, D.S. Zhu, J.W. Gao, The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J. Therm. Anal. Calorim. 107(3), 949–954 (2012). https://doi.org/10.1007/s10973-011-1467-z
- A. Solé, H. Neumann, S. Niedermaier, I. Martorell, P. Schossig et al., Stability of sugar alcohols as PCM for thermal energy storage. Solar Energy Mater. Solar Cells 126, 125–134 (2014). https://doi.org/10.1016/j.solmat.2014.03.020
- A. Solé, H. Neumann, S. Niedermaier, L.F. Cabeza, E. Palomo, Thermal stability test of sugar alcohols as phase change materials for medium temperature energy storage application. Energy Proc. 48, 436–439 (2014). https://doi.org/10.1016/j.egypro.2014.02.051
- R. Jia, K. Sun, R. Li, Y. Zhang, W. Wang et al., Heat capacities of some sugar alcohols as phase change materials for thermal energy storage applications. J. Chem. Thermodyn. 115, 233–248 (2017). https://doi.org/10.1016/j.jct.2017.08.004
- A. Khayyami, A. Philip, J. Multia, M. Karppinen, Composition-tuned metal–organic thin-film structures based on photoswitchable azobenzene by ALD/MLD. Dalton Transact. 49(32), 11310–11316 (2020). https://doi.org/10.1039/D0DT02062A
- C. Wang, K. Hashimoto, R. Tamate, H. Kokubo, M. Watanabe, Controlled sol–gel transitions of a thermoresponsive polymer in a photoswitchable azobenzene ionic liquid as a molecular trigger. Angew. Chem. Int. Ed. 57(1), 227–230 (2018). https://doi.org/10.1002/anie.201710288
- Z.Y. Zhang, Y. He, Z. Wang, J. Xu, M. Xie et al., Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J. Am. Chem. Soc. 142(28), 12256–12264 (2020). https://doi.org/10.1021/jacs.0c03748
- H. Liu, J. Tang, L. Dong, H. Wang, T. Xu et al., Optically triggered synchronous heat release of phase-change enthalpy and photo-thermal energy in phase-change materials at low temperatures. Adv. Funct. Mater. 31(6), 2008496 (2021). https://doi.org/10.1002/adfm.202008496
- H. Akiyama, M. Yoshida, Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 24(17), 2353–2356 (2012). https://doi.org/10.1002/adma.201104880
- H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang et al., Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 9(2), 145–151 (2017). https://doi.org/10.1038/nchem.2625
- Z. Wu, C. Ji, X. Zhao, Y. Han, K. Müllen et al., Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives. J. Am. Chem. Soc. 141(18), 7385–7390 (2019). https://doi.org/10.1021/jacs.9b01056
- J. Hu, S. Huang, M. Yu, H. Yu, Flexible solar thermal fuel devices: composites of fabric and a photoliquefiable azobenzene derivative. Adv. Energy Mater. 9(37), 1901363 (2019). https://doi.org/10.1002/aenm.201901363
- W.C. Xu, S. Sun, S. Wu, Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 58(29), 9712–9740 (2019). https://doi.org/10.1002/anie.201814441
- H. Liu, Y. Feng, W. Feng, Alkyl-grafted azobenzene molecules for photo-induced heat storage and release via integration function of phase change and photoisomerization. Compos. Commun. 21, 100402 (2020). https://doi.org/10.1016/j.coco.2020.100402
- M.A. Strauss, H.A. Wegner, Exploring london dispersion and solvent interactions at alkyl–alkyl interfaces using azobenzene switches. Angew. Chem. Int. Ed. 58(51), 18552–18556 (2019). https://doi.org/10.1002/anie.201910734
- J.P. Wagner, P.R. Schreiner, London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 54(42), 12274–12296 (2015). https://doi.org/10.1002/anie.201503476
- A. Kunz, A.H. Heindl, A. Dreos, Z. Wang, K. Moth-Poulsen et al., Intermolecular london dispersion interactions of azobenzene switches for tuning molecular solar thermal energy storage systems. ChemPlusChem 84(8), 1145–1148 (2019). https://doi.org/10.1002/cplu.201900330
- T. Song, H. Lei, F. Cai, Y. Kang, H. Yu et al., Supramolecular cation−π interaction enhances molecular solar thermal fuel. ACS Appl. Mater. Int. 14(1), 1940–1949 (2022). https://doi.org/10.1021/acsami.1c19819
- R. Siewertsen, H. Neumann, B. Buchheim-Stehn, R. Herges, C. Näther et al., Highly efficient reversible Z−E photoisomerization of a bridged azobenzene with visible light through resolved S1(nπ*) absorption bands. J. Am. Chem. Soc. 131(43), 15594–15595 (2009). https://doi.org/10.1021/ja906547d
- W. Gao, L. Yu, X. Zheng, Y. Lei, C. Zhu et al., Chiral conversion and periodical decay in bridged-azobenzene photoisomerization: an ab initio on-the-fly nonadiabatic dynamics simulation. RSC Adv. 6(46), 39542–39552 (2016). https://doi.org/10.1039/C6RA03788G
- S. Poyer, C.M. Choi, C. Deo, N. Bogliotti, J. Xie et al., Kinetic study of azobenzene E/Z isomerization using ion mobility-mass spectrometry and liquid chromatography-uv detection. Analyst 145(11), 4012–4020 (2020). https://doi.org/10.1039/D0AN00048E
- Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497(7447), 95–99 (2013). https://doi.org/10.1038/nature12083
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- D.L. Nika, E.P. Pokatilov, A.A. Balandin, Theoretical description of thermal transport in graphene: the issues of phonon cut-off frequencies and polarization branches. Phys. Status Solidi B 248(11), 2609–2614 (2011). https://doi.org/10.1002/pssb.201100186
- H. Song, J. Liu, B. Liu, J. Wu, H.M. Cheng et al., Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
- A.Y. Matveeva, S.V. Lomov, L. Gorbatikh, Debonding at the fiber/matrix interface in carbon nanotube reinforced composites: modelling investigation. Comput. Mater. Sci. 159, 412–419 (2019). https://doi.org/10.1016/j.commatsci.2018.10.031
- Y. Zhao, S. Ippolito, P. Samorì, Functionalization of 2D materials with photosensitive molecules: from light-responsive hybrid systems to multifunctional devices. Adv. Opt. Mater. 7(16), 1900286 (2019). https://doi.org/10.1002/adom.201900286
- W. Luo, Y. Feng, C. Qin, M. Li, S. Li et al., High-energy, stable and recycled molecular solar thermal storage materials using azo/graphene hybrids by optimizing hydrogen bonds. Nanoscale 7(39), 16214–16221 (2015). https://doi.org/10.1039/C5NR03558A
- Y. Feng, H. Liu, W. Luo, E. Liu, N. Zhao et al., Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci. Rep. 3(1), 3260 (2013). https://doi.org/10.1038/srep03260
- Y. Liang, D. Wu, X. Feng, K. Müllen, Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21(17), 1679–1683 (2009). https://doi.org/10.1002/adma.200803160
- S.P.S. Koo, T. Junkers, C. Barner-Kowollik, Quantitative product spectrum analysis of poly(butyl acrylate) via electrospray ionization mass spectrometry. Macromolecules 42(1), 62–69 (2009). https://doi.org/10.1021/ma801196w
- S. Wu, Q. Zhang, C. Bubeck, Solvent effects on structure, morphology, and photophysical properties of an azo chromophore-functionalized polydiacetylene. Macromolecules 43(14), 6142–6151 (2010). https://doi.org/10.1021/ma100628y
- J. Stumpe, T. Fischer, H. Menzel, Langmuir−blodgett films of photochromic polyglutamates. 9. Relation between photochemical modification and thermotropic properties. Macromolecules 29(8), 2831–2842 (1996). https://doi.org/10.1021/ma951462d
- J.M. Kuiper, J.B.F.N. Engberts, H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes. Langmuir 20(4), 1152–1160 (2004). https://doi.org/10.1021/la0358724
- X. Zhao, Y. Feng, C. Qin, W. Yang, Q. Si et al., Controlling heat release from a close-packed bisazobenzene–reduced-graphene-oxide assembly film for high-energy solid-state photothermal fuels. Chemsuschem 10(7), 1302–1302 (2017). https://doi.org/10.1002/cssc.201700482
- A.M. Kolpak, J.C. Grossman, Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett. 11(8), 3156–3162 (2011). https://doi.org/10.1021/nl201357n
- Z. Wang, Z. Li, Z. Liu, Photostimulated reversible attachment of gold nanops on multiwalled carbon nanotubes. J. Phys. Chem. C 113(10), 3899–3902 (2009). https://doi.org/10.1021/jp900055z
- X. Zhang, Y. Feng, D. Huang, Y. Li, W. Feng, Investigation of optical modulated conductance effects based on a graphene oxide–azobenzene hybrid. Carbon 48(11), 3236–3241 (2010). https://doi.org/10.1016/j.carbon.2010.05.009
- X. Zhang, Y. Feng, P. Lv, Y. Shen, W. Feng, Enhanced reversible photoswitching of azobenzene-functionalized graphene oxide hybrids. Langmuir 26(23), 18508–18511 (2010). https://doi.org/10.1021/la1037537
- W. Luo, Y. Feng, C. Cao, M. Li, E. Liu et al., A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage. J. Mater. Chem. A 3(22), 11787–11795 (2015). https://doi.org/10.1039/C5TA01263E
- L.I. Man, Y.Y. Feng, E.Z. Liu, C.Q. Qin, W. Feng, Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure. Sci. China Technol. Sci. 59(9), 1383–1390 (2016). https://doi.org/10.1007/s11431-016-6091-5
- W. Yang, Y. Feng, Q. Si, Q. Yan, P. Long et al., Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output. J. Mater. Chem. A 7(1), 97–106 (2019). https://doi.org/10.1039/C8TA05333B
- L. You, D. Zha, E.V. Anslyn, Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 115(15), 7840–7892 (2015). https://doi.org/10.1021/cr5005524
- C.H. Li, J.L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32(27), 1903762 (2020). https://doi.org/10.1002/adma.201903762
- H. Wang, Y. Feng, H. Yu, L. Dong, F. Zhai et al., Utilisation of photo-thermal energy and bond enthalpy based on optically triggered formation and dissociation of coordination bonds. Nano Energy 89, 106401 (2021). https://doi.org/10.1016/j.nanoen.2021.106401
- X. Xu, B. Wu, P. Zhang, H. Yu, G. Wang, Molecular solar thermal storage enhanced by hyperbranched structures. Solar RRL 4(1), 1900422 (2020). https://doi.org/10.1002/solr.201900422
- Y. Li, Z. Chen, Xh/π (x = C, Si) interactions in graphene and silicene: weak in strength, strong in tuning band structures. J. Phys. Chem. Lett. 4(2), 269–275 (2013). https://doi.org/10.1021/jz301821n
- W. Pang, J. Xue, H. Pang, A high energy density azobenzene/graphene oxide hybrid with weak nonbonding interactions for solar thermal storage. Sci. Rep. 9(1), 5224 (2019). https://doi.org/10.1038/s41598-019-41563-w
- A.M. Kolpak, J.C. Grossman, Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion. J. Chem. Phys. 138(3), 034303 (2013). https://doi.org/10.1063/1.4773306
- J.M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp et al., Covalent bulk functionalization of graphene. Nat. Chem. 3(4), 279–286 (2011). https://doi.org/10.1038/nchem.1010
- W. Feng, S. Li, M. Li, C. Qin, Y. Feng, An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel. J. Mater. Chem. A 4(21), 8020–8028 (2016). https://doi.org/10.1039/C6TA00221H
- X. Yang, S. Li, L. Li, X. Wang, Y. Wang et al., A high power density photoactive thermal energy storage material for rapid heat release at low temperatures. Mater. Chem. Phys. 263, 124336 (2021). https://doi.org/10.1016/j.matchemphys.2021.124336
- Y. Jiang, J. Huang, W. Feng, X. Zhao, T. Wang et al., Molecular regulation of nano-structured solid-state AZO-SWCNTs assembly film for the high-energy and short-term solar thermal storage. Solar Energy Mater. Solar Cells 193, 198–205 (2019). https://doi.org/10.1016/j.solmat.2019.01.017
- A.E. Telgerafchi, M. Mehranpour, H. Nazockdast, Templated assembly of photoswitch azobenzene (4-(4-nitrophenylazoyl)-phenol) by functionalization of multi-walled carbon nanotube for solar energy storage applications. Chem. Phys. Lett. 707, 113–116 (2018). https://doi.org/10.1016/j.cplett.2018.07.043
- S. Kitagawa, R. Kitaura, S. Noro, Functional porous coordination polymers. ChemInform (2004). https://doi.org/10.1002/chin.200429230
- C. Wang, W. Lin, Diffusion-controlled luminescence quenching in metal−organic frameworks. J. Am. Chem. Soc. 133(12), 4232–4235 (2011). https://doi.org/10.1021/ja111197d
- S. Pramanik, C. Zheng, X. Zhang, T.J. Emge, J. Li, New microporous metal−organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J. Am. Chem. Soc. 133(12), 4153–4155 (2011). https://doi.org/10.1021/ja106851d
- N. Liu, Z. Chen, D.R. Dunphy, Y.B. Jiang, R.A. Assink et al., Photoresponsive nanocomposite formed by self-assembly of an azobenzene-modified silane. Angew. Chem. Int. Ed. 42(15), 1731–1734 (2003). https://doi.org/10.1002/anie.200250189
- T. Muraoka, K. Kinbara, T. Aida, Mechanical twisting of a guest by a photoresponsive host. Nature 440(7083), 512–515 (2006). https://doi.org/10.1038/nature04635
- H. Koshima, N. Ojima, H. Uchimoto, Mechanical motion of azobenzene crystals upon photoirradiation. J. Am. Chem. Soc. 131(20), 6890–6891 (2009). https://doi.org/10.1021/ja8098596
- J. Park, D. Yuan, K.T. Pham, J.R. Li, A. Yakovenko et al., Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework. J. Am. Chem. Soc. 134(1), 99–102 (2012). https://doi.org/10.1021/ja209197f
- A.R. Kshirsagar, C. Attaccalite, X. Blase, J. Li, R. Poloni, Bethe–salpeter study of the optical absorption of trans and cis azobenzene-functionalized metal–organic frameworks using molecular and periodic models. J. Phys. Chem. C 125(13), 7401–7412 (2021). https://doi.org/10.1021/acs.jpcc.1c00367
- J.W. Brown, B.L. Henderson, M.D. Kiesz, A.C. Whalley, W. Morris et al., Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4(7), 2858–2864 (2013). https://doi.org/10.1039/c3sc21659d
- Z. Wang, S. Grosjean, S. Bräse, L. Heinke, Photoswitchable adsorption in metal-organic frameworks based on polar guest-host interactions. ChemPhysChem 16(18), 3779–3783 (2015). https://doi.org/10.1002/cphc.201500829
- K. Müller, A. Knebel, F. Zhao, D. Bléger, J. Caro et al., Switching thin films of azobenzene-containing metal–organic frameworks with visible light. Chem. A Eur. J. 23(23), 5434–5438 (2017). https://doi.org/10.1002/chem.201700989
- Z. Wang, K. Müller, M. Valášek, S. Grosjean, S. Bräse et al., Series of photoswitchable azobenzene-containing metal–organic frameworks with variable adsorption switching effect. J. Phys. Chem. C 122(33), 19044–19050 (2018). https://doi.org/10.1021/acs.jpcc.8b05843
- A.M. Rice, C.R. Martin, V.A. Galitskiy, A.A. Berseneva, G.A. Leith et al., Photophysics modulation in photoswitchable metal–organic frameworks. Chem. Rev. 120(16), 8790–8813 (2019). https://doi.org/10.1021/acs.chemrev.9b00350
- L. Dong, Y. Chen, F. Zhai, L. Tang, W. Gao et al., Azobenzene-based solar thermal energy storage enhanced by gold nanops for rapid, optically-triggered heat release at room temperature. J. Mater. Chem. A 8(36), 18668–18676 (2020). https://doi.org/10.1039/D0TA06913B
- J.H. Yoon, S. Yoon, Photoisomerization of azobenzene derivatives confined in gold nanop aggregates. Phys. Chem. Chem. Phys. 13(28), 12900–12905 (2011). https://doi.org/10.1039/C0CP02588G
- O. Nachtigall, C. Kördel, L.H. Urner, R. Haag, Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene–oligoglycerol conjugates. Angew. Chem. Int. Ed. 53(36), 9669–9673 (2014). https://doi.org/10.1002/anie.201403331
- G.L. Hallett-Tapley, C. D’Alfonso, N.L. Pacioni, C.D. McTiernan, M. González-Béjar et al., Gold nanop catalysis of the cis–trans isomerization of azobenzene. Chem. Commun. 49(86), 10073–10075 (2013). https://doi.org/10.1039/C3CC41669K
- S. Simoncelli, P.F. Aramendía, Mechanistic insight into the Z-E isomerization catalysis of azobenzenes mediated by bare and core–shell gold nanops. Catal. Sci. Technol. 5(4), 2110–2116 (2015). https://doi.org/10.1039/C4CY01442A
- S. Hagen, P. Kate, M.V. Peters, S. Hecht, M. Wolf et al., Kinetic analysis of the photochemically and thermally induced isomerization of an azobenzene derivative on Au(111) probed by two-photon photoemission. Appl. Phys. A 93(2), 253–260 (2008). https://doi.org/10.1007/s00339-008-4831-5
- U. Jung, C. Schütt, O. Filinova, J. Kubitschke, R. Herges et al., Photoswitching of azobenzene-functionalized molecular platforms on au surfaces. J. Phys. Chem. C 116(49), 25943–25948 (2012). https://doi.org/10.1021/jp310451c
- M. Alemani, M.V. Peters, S. Hecht, K.H. Rieder, F. Moresco et al., Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128(45), 14446–14447 (2006). https://doi.org/10.1021/ja065449s
- C. Raimondo, B. Kenens, F. Reinders, M. Mayor, H. Uji-i et al., Au nanop scaffolds modulating intermolecular interactions among the conjugated azobenzenes chemisorbed on curved surfaces: tuning the kinetics of cis–trans isomerisation. Nanoscale 7(33), 13836–13839 (2015). https://doi.org/10.1039/C5NR03688G
- E. Titov, L. Lysyakova, N. Lomadze, A.V. Kabashin, P. Saalfrank et al., Thermal cis-to-trans isomerization of azobenzene-containing molecules enhanced by gold nanops: an experimental and theoretical study. J. Phys. Chem. C 119(30), 17369–17377 (2015). https://doi.org/10.1021/acs.jpcc.5b02473
- Z. Xie, S. Duan, C.K. Wang, Y. Luo, Finding the true pathway for reversible isomerization of a single azobenzene molecule tumbling on Au (111) surface. Nanoscale 12(19), 10474–10479 (2020). https://doi.org/10.1039/D0NR01629B
- J.L. Kanyak, C.A. Pointer, D.C. Achey, Control of intramolecular isomerization reactivity of an azobenzene derivative anchored to ZrO2 nanop thin films. J. Phys. Chem. C 122(3), 1589–1594 (2018). https://doi.org/10.1021/acs.jpcc.7b09806
- G. Angelini, L. Scotti, A. Aceto, C. Gasbarri, Silver nanops as interactive media for the azobenzenes isomerization in aqueous solution: from linear to stretched kinetics. J. Mol. Liquids 284, 592–598 (2019). https://doi.org/10.1016/j.molliq.2019.04.048
- A. Yano, Y. Sato, K. Dachimba, R. Yano, Catalysis of thermal isomerization of methyl yellow by salts. ACS Omega 5(14), 7956–7961 (2020). https://doi.org/10.1021/acsomega.9b04342
- M.S. Hossain, S. Bandyopadhyay, Metal ion mediated instant Z → E isomerization of azobenzene macrocycles in the absence of light. J. Org. Chem. 86(9), 6314–6321 (2021). https://doi.org/10.1021/acs.joc.1c00105
- K. Gille, H. Knoll, K. Quitzsch, Rate constants of the thermal cis-trans isomerization of azobenzene dyes in solvents, acetone/water mixtures, and in microheterogeneous surfactant solutions. Int. J. Chem. Kinet. 31(5), 337–350 (1999). https://doi.org/10.1002/(SICI)1097-4601(1999)31:5%3c337::AID-KIN3%3e3.0.CO;2-E
- R. Ochi, N. Perur, K. Yoshida, N. Tamaoki, Fast thermal cis–trans isomerization depending on pH and metal ions of water-soluble azobenzene derivatives containing a phosphate group. Tetrahedron 71(21), 3500–2506 (2015). https://doi.org/10.1016/j.tet.2015.03.054
- H. Wang, Y. Feng, J. Gao, W. Fang, J. Ge et al., Metallic-ion controlled dynamic bonds to co-harvest isomerization energy and bond enthalpy for high energy output of flexible self-heated textile. Adv. Sci. 2201657. https://doi.org/10.1002/advs.202201657
- J.C. Corchado, M.L. Sanchez, I.F. Galván, M.E. Martin, A. Muñoz-Losa et al., Theoretical study of solvent effects on the ground and low-lying excited free energy surfaces of a push–pull substituted azobenzene. J. Phys. Chem. B 118(43), 12518–12530 (2014)
- K. Dąbrowa, P. Niedbała, J. Jurczak, Anion-tunable control of thermal Z→E isomerisation in basic azobenzene receptors. Chem. Commun. 50(99), 15748–15751 (2014). https://doi.org/10.1039/C4CC07798A
- T.T. Yin, Z.X. Zhao, H.X. Zhang, Theoretical study of substituent and charge effects on the thermal cis → trans isomerization of ortho-fluoroazobenzenes photoswitches. Org. Electron. 52, 61–70 (2018). https://doi.org/10.1016/j.orgel.2017.10.002
- M. Dong, A. Babalhavaeji, S. Samanta, A.A. Beharry, G.A. Woolley, Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48(10), 2662–2670 (2015). https://doi.org/10.1021/acs.accounts.5b00270
- A.A. Beharry, O. Sadovski, G.A. Woolley, Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133(49), 19684–19687 (2011). https://doi.org/10.1021/ja209239m
- S. Samanta, A.A. Beharry, O. Sadovski, T.M. McCormick, A. Babalhavaeji et al., Photoswitching azo compounds in vivo with red light. J. Am. Chem. Soc. 135(26), 9777–9784 (2013). https://doi.org/10.1021/ja402220t
- C. Weber, T. Liebig, M. Gensler, A. Zykov, L. Pithan et al., Cooperative switching in nanofibers of azobenzene oligomers. Sci. Rep. 6(1), 25605 (2016). https://doi.org/10.1038/srep25605
- H.A. Wegner, Azobenzenes in a new light—switching in vivo. Angew. Chem. Int. Ed. 51(20), 4787–4788 (2012). https://doi.org/10.1002/anie.201201336
- Z. Wu, R. Xue, M. Xie, X. Wang, Z. Liu et al., Self-assembly-triggered cis-to-trans conversion of azobenzene compounds. J. Phys. Chem. Lett. 9(1), 163–169 (2018). https://doi.org/10.1021/acs.jpclett.7b03060
- M.J. Comstock, J. Cho, A. Kirakosian, M.F. Crommie, Manipulation of azobenzene molecules on Au (111) using scanning tunneling microscopy. Phys. Rev. B 72(15), 153414 (2005). https://doi.org/10.1103/PhysRevB.72.153414
- S. Yogitha, B. Kumar, S.K. Gupta, Effect of local electric field on trans to cis photo-isomerization of azobenzene containing polymer. Mater. Sci. Eng. B 267, 115094 (2021). https://doi.org/10.1016/j.mseb.2021.115094
- N. Al-Aqtash, R. Sabirianov, Photo-switching of magnetization in iron nanops. J. Mater. Chem. C 2(33), 6873–6878 (2014). https://doi.org/10.1039/C4TC01238K
- G. Ji, F. Yang, Y. Yang, J. Wei, Z. Yang, Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanops under light and magnetic field. J. Colloid Interfaces Sci. 583, 586–593 (2021). https://doi.org/10.1016/j.jcis.2020.09.058
- T.A. Singleton, K.S. Ramsay, M.M. Barsan, I.S. Butler, C.J. Barrett, Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle. J. Phys. Chem. B 116(32), 9860–9865 (2012). https://doi.org/10.1021/jp3060872
- Z. Dong, N.M. Seemann, N. Lu, Y. Song, Effects of high pressure on azobenzene and hydrazobenzene probed by raman spectroscopy. J. Phys. Chem. B 115(50), 14912–14918 (2011). https://doi.org/10.1021/jp207170w
- A. Li, C. Bi, S. Xu, H. Cui, W. Xu, Structural change of trans-azobenzene crystal and powder under high pressure. J. Mol. Struct. 1206, 127745 (2020). https://doi.org/10.1016/j.molstruc.2020.127745
- M.H. Li, P. Keller, B. Li, X. Wang, M. Brunet, Light-driven side-on nematic elastomer actuators. Adv. Mater. 15(7–8), 569–572 (2003). https://doi.org/10.1002/adma.200304552
- T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, A. Kanazawa, Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 15(3), 201–205 (2003). https://doi.org/10.1002/adma.200390045
- Y. Yu, M. Nakano, A. Shishido, T. Shiono, T. Ikeda, Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene. Chem. Mater. 16(9), 1637–1643 (2004). https://doi.org/10.1021/cm035092g
- S. Tanaka, H.K. Kim, A. Sudo, H. Nishida, T. Endo, Anisotropic photomechanical response of stretched blend film made of polycaprolactone-polyvinyl ether with azobenzene group as side chain. Macromol. Chem. Phys. 209(20), 2071–2077 (2008). https://doi.org/10.1002/macp.200800215
- L. Fu, J. Yang, L. Dong, H. Yu, Q. Yan et al., Solar thermal storage and room-temperature fast release using a uniform flexible azobenzene-grafted polynorborene film enhanced by stretching. Macromolecules 52(11), 4222–4231 (2019). https://doi.org/10.1021/acs.macromol.9b00384
References
N. Armaroli, V. Balzani, The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 46(1–2), 52–66 (2007). https://doi.org/10.1002/anie.200602373
M. Perez, R. Perez, A fundamental look at supply-side energy reserves for the planet. (SHC Soler Update, 2015). https://www.iea-shc.org/Data/Sites/1/publications/2015-11-A-Fundamental-Look-at-Supply-Side-Energy-Reserves-for-the-Planet.pdf
I. Dincer, Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000). https://doi.org/10.1016/S1364-0321(99)00011-8
N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. PNAS 103(43), 15729 (2006). https://doi.org/10.1073/pnas.0603395103
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets et al., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110(11), 6474–6502 (2010). https://doi.org/10.1021/cr100246c
M. Iqbal, Index, in An Introduction to Solar Radiation. (1983), pp. 387–390. https://doi.org/10.1016/B978-0-12-373750-2.50022-7
T. Hartmann, The Last Hours of Ancient Sunlight. M. Iqbal in Share Guide. (1998).
T.J. Kucharski, Y. Tian, S. Akbulatov, R. Boulatov, Chemical solutions for the closed-cycle storage of solar energy. Energy Environ. Sci. 4(11), 4449–4472 (2011). https://doi.org/10.1039/c1ee01861b
Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013). https://doi.org/10.1016/j.apenergy.2012.11.051
M. Felderhoff, R. Urbanczyk, S. Peil, Thermochemical heat storage for high temperature applications—a review. Green 3(2), 113–123 (2013). https://doi.org/10.1515/green-2013-0011
K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67–123 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.005
B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8
A. Lennartson, A. Roffey, K. Moth-Poulsen, Designing photoswitches for molecular solar thermal energy storage. Tetrah. Lett. 56(12), 1457–1465 (2015). https://doi.org/10.1016/j.tetlet.2015.01.187
Y. Liu, J.C. Grossman, Accelerating the design of solar thermal fuel materials through high throughput simulations. Nano Lett. 14(12), 7046–7050 (2014). https://doi.org/10.1021/nl5034073
L. Dong, Y. Feng, L. Wang, W. Feng, Azobenzene-based solar thermal fuels: design, properties, and applications. Chem. Soc. Rev. 47(19), 7339–7368 (2018). https://doi.org/10.1039/C8CS00470F
G. Jones, S.H. Chiang, P.T. Xuan, Energy storage in organic photoisomers. J. Photochem. 10(1), 1–18 (1979). https://doi.org/10.1016/0047-2670(79)80034-9
E. Durgun, J.C. Grossman, Photoswitchable molecular rings for solar-thermal energy storage. J. Phys. Chem. Lett. 4(6), 854–860 (2013). https://doi.org/10.1021/jz301877n
K. Börjesson, A. Lennartson, K. Moth-Poulsen, Efficiency limit of molecular solar thermal energy collecting devices. ACS Sustain. Chem. Eng. 1(6), 585–590 (2013). https://doi.org/10.1021/sc300107z
J. Orrego-Hernández, A. Dreos, K. Moth-Poulsen, Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications. Acc. Chem. Res. 53(8), 1478–1487 (2020). https://doi.org/10.1021/acs.accounts.0c00235
X. An, Y. Xie, Enthalpy of isomerization of quadricyclane to norbornadiene. Thermochim. Acta 220, 17–25 (1993). https://doi.org/10.1016/0040-6031(93)80451-F
M.J. Kuisma, A.M. Lundin, K. Moth-Poulsen, P. Hyldgaard, P. Erhart, Comparative ab-initio study of substituted norbornadiene-quadricyclane compounds for solar thermal storage. J. Phys. Chem. C 120(7), 3635–3645 (2016). https://doi.org/10.1021/acs.jpcc.5b11489
M. Quant, A. Hamrin, A. Lennartson, P. Erhart, K. Moth-Poulsen, Solvent effects on the absorption profile, kinetic stability, and photoisomerization process of the norbornadiene–quadricyclanes system. J. Phys. Chem. C 123(12), 7081–7087 (2019). https://doi.org/10.1021/acs.jpcc.9b02111
A.D. Dubonosov, V.A. Bren, V.A. Chernoivanov, Norbornadiene–quadricyclane as an abiotic system for the storage of solar energy. Russ. Chem. Rev. 71(11), 917–927 (2002). https://doi.org/10.1070/RC2002v071n11ABEH000745
U. Bauer, L. Fromm, C. Weiß, P. Bachmann, F. Späth et al., Controlled catalytic energy release of the norbornadiene/quadricyclane molecular solar thermal energy storage system on Ni(111). J. Phys. Chem. C 123(13), 7654–7664 (2019). https://doi.org/10.1021/acs.jpcc.8b03746
U. Bauer, S. Mohr, T. Döpper, P. Bachmann, F. Späth et al., Catalytically triggered energy release from strained organic molecules: the surface chemistry of quadricyclane and norbornadiene on Pt (111). Chem. A Eur. J. 23(7), 1613–1622 (2017). https://doi.org/10.1002/chem.201604443
Z. Wang, A. Roffey, R. Losantos, A. Lennartson, M. Jevric et al., Macroscopic heat release in a molecular solar thermal energy storage system. Energy Environ. Sci. 12(1), 187–193 (2019). https://doi.org/10.1039/C8EE01011K
V. Kashyap, S. Sakunkaewkasem, P. Jafari, M. Nazari, B. Eslami et al., Full spectrum solar thermal energy harvesting and storage by a molecular and phase-change hybrid material. Joule 3(12), 3100–3111 (2019). https://doi.org/10.1016/j.joule.2019.11.001
S. Lara-Avila, A.V. Danilov, S.E. Kubatkin, S.L. Broman, C.R. Parker et al., Light-triggered conductance switching in single-molecule dihydroazulene/vinylheptafulvene junctions. J. Phys. Chem. C 115(37), 18372–18377 (2011). https://doi.org/10.1021/jp205638b
M. Cacciarini, A.B. Skov, M. Jevric, A.S. Hansen, J. Elm et al., Towards solar energy storage in the photochromic dihydroazulene–vinylheptafulvene system. Chem. A Eur. J. 21(20), 7454–7461 (2015). https://doi.org/10.1002/chem.201500100
A. Kadziola, M.B. Nielsen, Optimized synthesis and detailed NMR spectroscopic characterization of the 1,8a-dihydroazulene-1,1-dicarbonitrile photoswitch. ARKIVOC 2011(9), 51–67 (2011). https://doi.org/10.3998/ark.5550190.0012.904
S.T. Olsen, J. Elm, F.E. Storm, A.N. Gejl, A.S. Hansen et al., Computational methodology study of the optical and thermochemical properties of a molecular photoswitch. J. Phys. Chem. A 119(5), 896–904 (2015). https://doi.org/10.1021/jp510678u
A.B. Skov, N. Ree, A.S. Gertsen, P. Chabera, J. Uhlig et al., Excited-state topology modifications of the dihydroazulene photoswitch through aromaticity. ChemPhotoChem 3(8), 619–629 (2019). https://doi.org/10.1002/cptc.201900088
K. Saritas, J.C. Grossman, Accurate isomerization enthalpy and investigation of the errors in density functional theory for dihydroazulene/vinylheptafulvene photochromism using diffusion monte carlo. J. Phys. Chem. C 121(48), 26677–26685 (2017). https://doi.org/10.1021/acs.jpcc.7b09437
M. Koerstz, J. Elm, K.V. Mikkelsen, Benchmark study of the structural and thermochemical properties of a dihydroazulene/vinylheptafulvene photoswitch. J. Phys. Chem. A 121(16), 3148–3154 (2017). https://doi.org/10.1021/acs.jpca.7b01207
A.B. Skov, S.L. Broman, A.S. Gertsen, J. Elm, M. Jevric et al., Aromaticity-controlled energy storage capacity of the dihydroazulene-vinylheptafulvene photochromic system. Chem. A Eur. J. 22(41), 14567–14575 (2016). https://doi.org/10.1002/chem.201601190
K. Moth-Poulsen, D. Ćoso, K. Börjesson, N. Vinokurov, S.K. Meier et al., Molecular solar thermal (MOST) energy storage and release system. Energy Environ. Sci. 5(9), 8534–8537 (2012). https://doi.org/10.1039/C2EE22426G
Y. Kanai, V. Srinivasan, S.K. Meier, K.P.C. Vollhardt, J.C. Grossman, Mechanism of thermal reversal of the (fulvalene)tetracarbonyldiruthenium photoisomerization: toward molecular solar–thermal energy storage. Angew. Chem. Int. Ed. 49(47), 8926–8929 (2010). https://doi.org/10.1002/anie.201002994
R. Boese, J.K. Cammack, A.J. Matzger, K. Pflug, W.B. Tolman et al., Photochemistry of (fulvalene)tetracarbonyldiruthenium and its derivatives: efficient light energy storage devices. J. Am. Chem. Soc. 119(29), 6757–6773 (1997). https://doi.org/10.1021/ja9707062
Z. Hou, S.C. Nguyen, J.P. Lomont, C.B. Harris, N. Vinokurov et al., Switching from Ru to Fe: picosecond IR spectroscopic investigation of the potential of the (fulvalene)tetracarbonyldiiron frame for molecular solar-thermal storage. Phys. Chem. Chem. Phys. 15(20), 7466–7469 (2013). https://doi.org/10.1039/C3CP51292D
A. Lennartson, A. Lundin, K. Börjesson, V. Gray, K. Moth-Poulsen, Tuning the photochemical properties of the fulvalene-tetracarbonyl-diruthenium system. Dalton Transact. 45(21), 8740–8744 (2016). https://doi.org/10.1039/C6DT01343K
M.R. Harpham, S.C. Nguyen, Z. Hou, J.C. Grossman, C.B. Harris et al., X-ray transient absorption and picosecond IR spectroscopy of fulvalene(tetracarbonyl)diruthenium on photoexcitation. Angew. Chem. Int. Ed. 51(31), 7692–7696 (2012). https://doi.org/10.1002/anie.201202952
N. Duvva, U. Chilakamarthi, L. Giribabu, Recent developments in tetrathiafulvalene and dithiafulvalene based metal-free organic sensitizers for dye-sensitized solar cells: a mini-review. Sustain. Energy Fuels 1(4), 678–688 (2017). https://doi.org/10.1039/C7SE00068E
K.P.C. Vollhardt, T.W. Weidman, Synthesis, structure, and photochemistry of tetracarbonyl(fulvalene)diruthenium. Thermally reversible photoisomerization involving carbon-carbon bond activation at a dimetal center. J. Am. Chem. Soc. 105(6), 1676–1677 (1983). https://doi.org/10.1021/ja00344a056
K. Börjesson, D. Ćoso, V. Gray, J.C. Grossman, J. Guan et al., Exploring the potential of fulvalene dimetals as platforms for molecular solar thermal energy storage: computations, syntheses, structures, kinetics, and catalysis. Chem. A Eur. J. 20(47), 15587–15604 (2014). https://doi.org/10.1002/chem.201404170
K. Börjesson, A. Lennartson, K. Moth-Poulsen, Fluorinated fulvalene ruthenium compound for molecular solar thermal applications. J. Fluor. Chem. 161, 24–28 (2014). https://doi.org/10.1016/j.jfluchem.2014.01.012
D. Wang, W. Zhao, Q. Wei, C. Zhao, Y. Zheng, Photoswitchable azobenzene/cyclodextrin host-guest complexes: from UV- to visible/near-ir-light-responsive systems. ChemPhotoChem 2(5), 403–415 (2018). https://doi.org/10.1002/cptc.201700233
J. Calbo, C.E. Weston, A.J. White, H.S. Rzepa, J. Contreras-García et al., Tuning azoheteroarene photoswitch performance through heteroaryl design. J. Am. Chem. Soc. 139(3), 1261–1274 (2017). https://doi.org/10.1021/jacs.6b11626
A. Goulet-Hanssens, F. Eisenreich, S. Hecht, Enlightening materials with photoswitches. Adv. Mater. 32(20), 1905966 (2020). https://doi.org/10.1002/adma.201905966
M.A. Gerkman, R.S. Gibson, J. Calbo, Y. Shi, M.J. Fuchter et al., Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0 °C. J. Am. Chem. Soc. 142(19), 8688–8695 (2020). https://doi.org/10.1021/jacs.0c00374
D. Wang, X. Wang, Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci. 38(2), 271–301 (2013). https://doi.org/10.1016/j.progpolymsci.2012.07.003
K.M. McElhinny, P. Huang, Y. Joo, C. Kanimozhi, A. Lakkham et al., Optically reconfigurable monolayer of azobenzene donor molecules on oxide surfaces. Langmuir 33(9), 2157–2168 (2017). https://doi.org/10.1021/acs.langmuir.6b04585
C. Qin, Y. Feng, W. Luo, C. Cao, W. Hu et al., A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. J. Mater. Chem. A 3(32), 16453–16460 (2015). https://doi.org/10.1039/C5TA01543J
H.K. Bisoyi, Q. Li, Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 116(24), 15089–15166 (2016). https://doi.org/10.1021/acs.chemrev.6b00415
C.I. Chuang, S.H. Lin, Y.F. Chao, Dynamic characterization of photo-alignment of azo-dye-doped polymer using phase modulated polarimetry. Opt. Mater. 35(3), 366–371 (2013). https://doi.org/10.1016/j.optmat.2012.09.026
R. Hagen, T. Bieringer, Photoaddressable polymers for optical data storage. Adv. Mater. 13(23), 1805–1810 (2001). https://doi.org/10.1002/1521-4095(200112)13:23%3c1805::AID-ADMA1805%3e3.0.CO;2-V
A.S. Matharu, S. Jeeva, P.S. Ramanujam, Cheminform abstract: liquid crystals for holographic optical data storage. ChemInform 39(8), 200808252 (2008). https://doi.org/10.1002/chin.200808252
G.G.D. Han, H. Li, J.C. Grossman, Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat. Commun. 8, 1446 (2017). https://doi.org/10.1038/s41467-017-01608-y
E.N. Cho, D. Zhitomirsky, G.G.D. Han, Y. Liu, J.C. Grossman, Molecularly engineered azobenzene derivatives for high energy density solid-state solar thermal fuels. ACS Appl. Mater. Int. 9(10), 8679–8687 (2017). https://doi.org/10.1021/acsami.6b15018
H.D. Bandara, S.C. Burdette, Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41(5), 1809–1825 (2012). https://doi.org/10.1039/C1CS15179G
J.P. Ortruba, R.G. Weiss, Liquid crystalline solvents as mechanistic probes. 11. The syn. Fwdarw. anti thermal isomerization mechanism of some low-bipolarity azobenzenes. J. Org. Chem. 48(20), 3448–3453 (1983). https://doi.org/10.1021/jo00168a015
P.D. Wildes, E.H. White, Dioxetane-sensitized chemiluminescence of lanthanide chelates. Chemical source of “monochromatic” light. J. Am. Chem. Soc. 93(23), 6286–6288 (1971). https://doi.org/10.1021/ja00752a058
J. Dokić, M. Gothe, J. Wirth, M.V. Peters, J. Schwarz et al., Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data. J. Phys. Chem. A 113(24), 6763–6773 (2009). https://doi.org/10.1021/jp9021344
T. Asano, T. Okada, S. Shinkai, K. Shigematsu, Y. Kusano et al., Temperature and pressure dependences of thermal cis-to-trans isomerization of azobenzenes which evidence an inversion mechanism. J. Am. Chem. Soc. 103(17), 5161–5165 (1981). https://doi.org/10.1021/ja00407a034
J. Robertus, S.F. Reker, T.C. Pijper, A. Deuzeman, W.R. Browne et al., Kinetic analysis of the thermal isomerisation pathways in an asymmetric double azobenzene switch. Phys. Chem. Chem. Phys. 14(13), 4374–4382 (2012). https://doi.org/10.1039/C2CP23756C
T.J. Kucharski, N. Ferralis, A.M. Kolpak, J.O. Zheng, D.G. Nocera et al., Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nat. Chem. 6(5), 441–447 (2014). https://doi.org/10.1038/nchem.1918
A.K. Saydjari, P. Weis, S. Wu, Spanning the solar spectrum: azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv. Energy Mater. 7(3), 1601622 (2017). https://doi.org/10.1002/aenm.201601622
W. Feng, W. Luo, Y. Feng, Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application. Nanoscale 4(20), 6118–6134 (2012). https://doi.org/10.1039/C2NR31505J
A.W. Adamson, A. Vogler, H. Kunkely, R. Wachter, ChemInform abstract: photocalorimetry. Enthalpies of photolysis of trans-azobenzene, ferrioxalate and cobaltioxalate ions, chromium hexacarbonyl, and dirhenium decacarbonyl. Chemisch. Informationsd. 9(23), 197823074 (1978). https://doi.org/10.1002/chin.197823074
J. Olmsted, J. Lawrence, G.G. Yee, Photochemical storage potential of azobenzenes. Sol. Energy 30(3), 271–274 (1983). https://doi.org/10.1016/0038-092X(83)90156-1
R. Ehid, A.S. Fleischer, Development and characterization of paraffin-based shape stabilized energy storage materials. Energy Convers. Manag. 53(1), 84–91 (2012). https://doi.org/10.1016/j.enconman.2011.08.003
J. Yang, L.S. Tang, L. Bai, R.Y. Bao, Z.Y. Liu et al., High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater. Horiz. 6(2), 250–273 (2019). https://doi.org/10.1039/C8MH01219A
N. Wang, X.R. Zhang, D.S. Zhu, J.W. Gao, The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J. Therm. Anal. Calorim. 107(3), 949–954 (2012). https://doi.org/10.1007/s10973-011-1467-z
A. Solé, H. Neumann, S. Niedermaier, I. Martorell, P. Schossig et al., Stability of sugar alcohols as PCM for thermal energy storage. Solar Energy Mater. Solar Cells 126, 125–134 (2014). https://doi.org/10.1016/j.solmat.2014.03.020
A. Solé, H. Neumann, S. Niedermaier, L.F. Cabeza, E. Palomo, Thermal stability test of sugar alcohols as phase change materials for medium temperature energy storage application. Energy Proc. 48, 436–439 (2014). https://doi.org/10.1016/j.egypro.2014.02.051
R. Jia, K. Sun, R. Li, Y. Zhang, W. Wang et al., Heat capacities of some sugar alcohols as phase change materials for thermal energy storage applications. J. Chem. Thermodyn. 115, 233–248 (2017). https://doi.org/10.1016/j.jct.2017.08.004
A. Khayyami, A. Philip, J. Multia, M. Karppinen, Composition-tuned metal–organic thin-film structures based on photoswitchable azobenzene by ALD/MLD. Dalton Transact. 49(32), 11310–11316 (2020). https://doi.org/10.1039/D0DT02062A
C. Wang, K. Hashimoto, R. Tamate, H. Kokubo, M. Watanabe, Controlled sol–gel transitions of a thermoresponsive polymer in a photoswitchable azobenzene ionic liquid as a molecular trigger. Angew. Chem. Int. Ed. 57(1), 227–230 (2018). https://doi.org/10.1002/anie.201710288
Z.Y. Zhang, Y. He, Z. Wang, J. Xu, M. Xie et al., Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J. Am. Chem. Soc. 142(28), 12256–12264 (2020). https://doi.org/10.1021/jacs.0c03748
H. Liu, J. Tang, L. Dong, H. Wang, T. Xu et al., Optically triggered synchronous heat release of phase-change enthalpy and photo-thermal energy in phase-change materials at low temperatures. Adv. Funct. Mater. 31(6), 2008496 (2021). https://doi.org/10.1002/adfm.202008496
H. Akiyama, M. Yoshida, Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 24(17), 2353–2356 (2012). https://doi.org/10.1002/adma.201104880
H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang et al., Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 9(2), 145–151 (2017). https://doi.org/10.1038/nchem.2625
Z. Wu, C. Ji, X. Zhao, Y. Han, K. Müllen et al., Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives. J. Am. Chem. Soc. 141(18), 7385–7390 (2019). https://doi.org/10.1021/jacs.9b01056
J. Hu, S. Huang, M. Yu, H. Yu, Flexible solar thermal fuel devices: composites of fabric and a photoliquefiable azobenzene derivative. Adv. Energy Mater. 9(37), 1901363 (2019). https://doi.org/10.1002/aenm.201901363
W.C. Xu, S. Sun, S. Wu, Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew. Chem. Int. Ed. 58(29), 9712–9740 (2019). https://doi.org/10.1002/anie.201814441
H. Liu, Y. Feng, W. Feng, Alkyl-grafted azobenzene molecules for photo-induced heat storage and release via integration function of phase change and photoisomerization. Compos. Commun. 21, 100402 (2020). https://doi.org/10.1016/j.coco.2020.100402
M.A. Strauss, H.A. Wegner, Exploring london dispersion and solvent interactions at alkyl–alkyl interfaces using azobenzene switches. Angew. Chem. Int. Ed. 58(51), 18552–18556 (2019). https://doi.org/10.1002/anie.201910734
J.P. Wagner, P.R. Schreiner, London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 54(42), 12274–12296 (2015). https://doi.org/10.1002/anie.201503476
A. Kunz, A.H. Heindl, A. Dreos, Z. Wang, K. Moth-Poulsen et al., Intermolecular london dispersion interactions of azobenzene switches for tuning molecular solar thermal energy storage systems. ChemPlusChem 84(8), 1145–1148 (2019). https://doi.org/10.1002/cplu.201900330
T. Song, H. Lei, F. Cai, Y. Kang, H. Yu et al., Supramolecular cation−π interaction enhances molecular solar thermal fuel. ACS Appl. Mater. Int. 14(1), 1940–1949 (2022). https://doi.org/10.1021/acsami.1c19819
R. Siewertsen, H. Neumann, B. Buchheim-Stehn, R. Herges, C. Näther et al., Highly efficient reversible Z−E photoisomerization of a bridged azobenzene with visible light through resolved S1(nπ*) absorption bands. J. Am. Chem. Soc. 131(43), 15594–15595 (2009). https://doi.org/10.1021/ja906547d
W. Gao, L. Yu, X. Zheng, Y. Lei, C. Zhu et al., Chiral conversion and periodical decay in bridged-azobenzene photoisomerization: an ab initio on-the-fly nonadiabatic dynamics simulation. RSC Adv. 6(46), 39542–39552 (2016). https://doi.org/10.1039/C6RA03788G
S. Poyer, C.M. Choi, C. Deo, N. Bogliotti, J. Xie et al., Kinetic study of azobenzene E/Z isomerization using ion mobility-mass spectrometry and liquid chromatography-uv detection. Analyst 145(11), 4012–4020 (2020). https://doi.org/10.1039/D0AN00048E
Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497(7447), 95–99 (2013). https://doi.org/10.1038/nature12083
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
D.L. Nika, E.P. Pokatilov, A.A. Balandin, Theoretical description of thermal transport in graphene: the issues of phonon cut-off frequencies and polarization branches. Phys. Status Solidi B 248(11), 2609–2614 (2011). https://doi.org/10.1002/pssb.201100186
H. Song, J. Liu, B. Liu, J. Wu, H.M. Cheng et al., Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
A.Y. Matveeva, S.V. Lomov, L. Gorbatikh, Debonding at the fiber/matrix interface in carbon nanotube reinforced composites: modelling investigation. Comput. Mater. Sci. 159, 412–419 (2019). https://doi.org/10.1016/j.commatsci.2018.10.031
Y. Zhao, S. Ippolito, P. Samorì, Functionalization of 2D materials with photosensitive molecules: from light-responsive hybrid systems to multifunctional devices. Adv. Opt. Mater. 7(16), 1900286 (2019). https://doi.org/10.1002/adom.201900286
W. Luo, Y. Feng, C. Qin, M. Li, S. Li et al., High-energy, stable and recycled molecular solar thermal storage materials using azo/graphene hybrids by optimizing hydrogen bonds. Nanoscale 7(39), 16214–16221 (2015). https://doi.org/10.1039/C5NR03558A
Y. Feng, H. Liu, W. Luo, E. Liu, N. Zhao et al., Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci. Rep. 3(1), 3260 (2013). https://doi.org/10.1038/srep03260
Y. Liang, D. Wu, X. Feng, K. Müllen, Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21(17), 1679–1683 (2009). https://doi.org/10.1002/adma.200803160
S.P.S. Koo, T. Junkers, C. Barner-Kowollik, Quantitative product spectrum analysis of poly(butyl acrylate) via electrospray ionization mass spectrometry. Macromolecules 42(1), 62–69 (2009). https://doi.org/10.1021/ma801196w
S. Wu, Q. Zhang, C. Bubeck, Solvent effects on structure, morphology, and photophysical properties of an azo chromophore-functionalized polydiacetylene. Macromolecules 43(14), 6142–6151 (2010). https://doi.org/10.1021/ma100628y
J. Stumpe, T. Fischer, H. Menzel, Langmuir−blodgett films of photochromic polyglutamates. 9. Relation between photochemical modification and thermotropic properties. Macromolecules 29(8), 2831–2842 (1996). https://doi.org/10.1021/ma951462d
J.M. Kuiper, J.B.F.N. Engberts, H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes. Langmuir 20(4), 1152–1160 (2004). https://doi.org/10.1021/la0358724
X. Zhao, Y. Feng, C. Qin, W. Yang, Q. Si et al., Controlling heat release from a close-packed bisazobenzene–reduced-graphene-oxide assembly film for high-energy solid-state photothermal fuels. Chemsuschem 10(7), 1302–1302 (2017). https://doi.org/10.1002/cssc.201700482
A.M. Kolpak, J.C. Grossman, Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett. 11(8), 3156–3162 (2011). https://doi.org/10.1021/nl201357n
Z. Wang, Z. Li, Z. Liu, Photostimulated reversible attachment of gold nanops on multiwalled carbon nanotubes. J. Phys. Chem. C 113(10), 3899–3902 (2009). https://doi.org/10.1021/jp900055z
X. Zhang, Y. Feng, D. Huang, Y. Li, W. Feng, Investigation of optical modulated conductance effects based on a graphene oxide–azobenzene hybrid. Carbon 48(11), 3236–3241 (2010). https://doi.org/10.1016/j.carbon.2010.05.009
X. Zhang, Y. Feng, P. Lv, Y. Shen, W. Feng, Enhanced reversible photoswitching of azobenzene-functionalized graphene oxide hybrids. Langmuir 26(23), 18508–18511 (2010). https://doi.org/10.1021/la1037537
W. Luo, Y. Feng, C. Cao, M. Li, E. Liu et al., A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage. J. Mater. Chem. A 3(22), 11787–11795 (2015). https://doi.org/10.1039/C5TA01263E
L.I. Man, Y.Y. Feng, E.Z. Liu, C.Q. Qin, W. Feng, Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure. Sci. China Technol. Sci. 59(9), 1383–1390 (2016). https://doi.org/10.1007/s11431-016-6091-5
W. Yang, Y. Feng, Q. Si, Q. Yan, P. Long et al., Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output. J. Mater. Chem. A 7(1), 97–106 (2019). https://doi.org/10.1039/C8TA05333B
L. You, D. Zha, E.V. Anslyn, Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 115(15), 7840–7892 (2015). https://doi.org/10.1021/cr5005524
C.H. Li, J.L. Zuo, Self-healing polymers based on coordination bonds. Adv. Mater. 32(27), 1903762 (2020). https://doi.org/10.1002/adma.201903762
H. Wang, Y. Feng, H. Yu, L. Dong, F. Zhai et al., Utilisation of photo-thermal energy and bond enthalpy based on optically triggered formation and dissociation of coordination bonds. Nano Energy 89, 106401 (2021). https://doi.org/10.1016/j.nanoen.2021.106401
X. Xu, B. Wu, P. Zhang, H. Yu, G. Wang, Molecular solar thermal storage enhanced by hyperbranched structures. Solar RRL 4(1), 1900422 (2020). https://doi.org/10.1002/solr.201900422
Y. Li, Z. Chen, Xh/π (x = C, Si) interactions in graphene and silicene: weak in strength, strong in tuning band structures. J. Phys. Chem. Lett. 4(2), 269–275 (2013). https://doi.org/10.1021/jz301821n
W. Pang, J. Xue, H. Pang, A high energy density azobenzene/graphene oxide hybrid with weak nonbonding interactions for solar thermal storage. Sci. Rep. 9(1), 5224 (2019). https://doi.org/10.1038/s41598-019-41563-w
A.M. Kolpak, J.C. Grossman, Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion. J. Chem. Phys. 138(3), 034303 (2013). https://doi.org/10.1063/1.4773306
J.M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp et al., Covalent bulk functionalization of graphene. Nat. Chem. 3(4), 279–286 (2011). https://doi.org/10.1038/nchem.1010
W. Feng, S. Li, M. Li, C. Qin, Y. Feng, An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel. J. Mater. Chem. A 4(21), 8020–8028 (2016). https://doi.org/10.1039/C6TA00221H
X. Yang, S. Li, L. Li, X. Wang, Y. Wang et al., A high power density photoactive thermal energy storage material for rapid heat release at low temperatures. Mater. Chem. Phys. 263, 124336 (2021). https://doi.org/10.1016/j.matchemphys.2021.124336
Y. Jiang, J. Huang, W. Feng, X. Zhao, T. Wang et al., Molecular regulation of nano-structured solid-state AZO-SWCNTs assembly film for the high-energy and short-term solar thermal storage. Solar Energy Mater. Solar Cells 193, 198–205 (2019). https://doi.org/10.1016/j.solmat.2019.01.017
A.E. Telgerafchi, M. Mehranpour, H. Nazockdast, Templated assembly of photoswitch azobenzene (4-(4-nitrophenylazoyl)-phenol) by functionalization of multi-walled carbon nanotube for solar energy storage applications. Chem. Phys. Lett. 707, 113–116 (2018). https://doi.org/10.1016/j.cplett.2018.07.043
S. Kitagawa, R. Kitaura, S. Noro, Functional porous coordination polymers. ChemInform (2004). https://doi.org/10.1002/chin.200429230
C. Wang, W. Lin, Diffusion-controlled luminescence quenching in metal−organic frameworks. J. Am. Chem. Soc. 133(12), 4232–4235 (2011). https://doi.org/10.1021/ja111197d
S. Pramanik, C. Zheng, X. Zhang, T.J. Emge, J. Li, New microporous metal−organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J. Am. Chem. Soc. 133(12), 4153–4155 (2011). https://doi.org/10.1021/ja106851d
N. Liu, Z. Chen, D.R. Dunphy, Y.B. Jiang, R.A. Assink et al., Photoresponsive nanocomposite formed by self-assembly of an azobenzene-modified silane. Angew. Chem. Int. Ed. 42(15), 1731–1734 (2003). https://doi.org/10.1002/anie.200250189
T. Muraoka, K. Kinbara, T. Aida, Mechanical twisting of a guest by a photoresponsive host. Nature 440(7083), 512–515 (2006). https://doi.org/10.1038/nature04635
H. Koshima, N. Ojima, H. Uchimoto, Mechanical motion of azobenzene crystals upon photoirradiation. J. Am. Chem. Soc. 131(20), 6890–6891 (2009). https://doi.org/10.1021/ja8098596
J. Park, D. Yuan, K.T. Pham, J.R. Li, A. Yakovenko et al., Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework. J. Am. Chem. Soc. 134(1), 99–102 (2012). https://doi.org/10.1021/ja209197f
A.R. Kshirsagar, C. Attaccalite, X. Blase, J. Li, R. Poloni, Bethe–salpeter study of the optical absorption of trans and cis azobenzene-functionalized metal–organic frameworks using molecular and periodic models. J. Phys. Chem. C 125(13), 7401–7412 (2021). https://doi.org/10.1021/acs.jpcc.1c00367
J.W. Brown, B.L. Henderson, M.D. Kiesz, A.C. Whalley, W. Morris et al., Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4(7), 2858–2864 (2013). https://doi.org/10.1039/c3sc21659d
Z. Wang, S. Grosjean, S. Bräse, L. Heinke, Photoswitchable adsorption in metal-organic frameworks based on polar guest-host interactions. ChemPhysChem 16(18), 3779–3783 (2015). https://doi.org/10.1002/cphc.201500829
K. Müller, A. Knebel, F. Zhao, D. Bléger, J. Caro et al., Switching thin films of azobenzene-containing metal–organic frameworks with visible light. Chem. A Eur. J. 23(23), 5434–5438 (2017). https://doi.org/10.1002/chem.201700989
Z. Wang, K. Müller, M. Valášek, S. Grosjean, S. Bräse et al., Series of photoswitchable azobenzene-containing metal–organic frameworks with variable adsorption switching effect. J. Phys. Chem. C 122(33), 19044–19050 (2018). https://doi.org/10.1021/acs.jpcc.8b05843
A.M. Rice, C.R. Martin, V.A. Galitskiy, A.A. Berseneva, G.A. Leith et al., Photophysics modulation in photoswitchable metal–organic frameworks. Chem. Rev. 120(16), 8790–8813 (2019). https://doi.org/10.1021/acs.chemrev.9b00350
L. Dong, Y. Chen, F. Zhai, L. Tang, W. Gao et al., Azobenzene-based solar thermal energy storage enhanced by gold nanops for rapid, optically-triggered heat release at room temperature. J. Mater. Chem. A 8(36), 18668–18676 (2020). https://doi.org/10.1039/D0TA06913B
J.H. Yoon, S. Yoon, Photoisomerization of azobenzene derivatives confined in gold nanop aggregates. Phys. Chem. Chem. Phys. 13(28), 12900–12905 (2011). https://doi.org/10.1039/C0CP02588G
O. Nachtigall, C. Kördel, L.H. Urner, R. Haag, Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene–oligoglycerol conjugates. Angew. Chem. Int. Ed. 53(36), 9669–9673 (2014). https://doi.org/10.1002/anie.201403331
G.L. Hallett-Tapley, C. D’Alfonso, N.L. Pacioni, C.D. McTiernan, M. González-Béjar et al., Gold nanop catalysis of the cis–trans isomerization of azobenzene. Chem. Commun. 49(86), 10073–10075 (2013). https://doi.org/10.1039/C3CC41669K
S. Simoncelli, P.F. Aramendía, Mechanistic insight into the Z-E isomerization catalysis of azobenzenes mediated by bare and core–shell gold nanops. Catal. Sci. Technol. 5(4), 2110–2116 (2015). https://doi.org/10.1039/C4CY01442A
S. Hagen, P. Kate, M.V. Peters, S. Hecht, M. Wolf et al., Kinetic analysis of the photochemically and thermally induced isomerization of an azobenzene derivative on Au(111) probed by two-photon photoemission. Appl. Phys. A 93(2), 253–260 (2008). https://doi.org/10.1007/s00339-008-4831-5
U. Jung, C. Schütt, O. Filinova, J. Kubitschke, R. Herges et al., Photoswitching of azobenzene-functionalized molecular platforms on au surfaces. J. Phys. Chem. C 116(49), 25943–25948 (2012). https://doi.org/10.1021/jp310451c
M. Alemani, M.V. Peters, S. Hecht, K.H. Rieder, F. Moresco et al., Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128(45), 14446–14447 (2006). https://doi.org/10.1021/ja065449s
C. Raimondo, B. Kenens, F. Reinders, M. Mayor, H. Uji-i et al., Au nanop scaffolds modulating intermolecular interactions among the conjugated azobenzenes chemisorbed on curved surfaces: tuning the kinetics of cis–trans isomerisation. Nanoscale 7(33), 13836–13839 (2015). https://doi.org/10.1039/C5NR03688G
E. Titov, L. Lysyakova, N. Lomadze, A.V. Kabashin, P. Saalfrank et al., Thermal cis-to-trans isomerization of azobenzene-containing molecules enhanced by gold nanops: an experimental and theoretical study. J. Phys. Chem. C 119(30), 17369–17377 (2015). https://doi.org/10.1021/acs.jpcc.5b02473
Z. Xie, S. Duan, C.K. Wang, Y. Luo, Finding the true pathway for reversible isomerization of a single azobenzene molecule tumbling on Au (111) surface. Nanoscale 12(19), 10474–10479 (2020). https://doi.org/10.1039/D0NR01629B
J.L. Kanyak, C.A. Pointer, D.C. Achey, Control of intramolecular isomerization reactivity of an azobenzene derivative anchored to ZrO2 nanop thin films. J. Phys. Chem. C 122(3), 1589–1594 (2018). https://doi.org/10.1021/acs.jpcc.7b09806
G. Angelini, L. Scotti, A. Aceto, C. Gasbarri, Silver nanops as interactive media for the azobenzenes isomerization in aqueous solution: from linear to stretched kinetics. J. Mol. Liquids 284, 592–598 (2019). https://doi.org/10.1016/j.molliq.2019.04.048
A. Yano, Y. Sato, K. Dachimba, R. Yano, Catalysis of thermal isomerization of methyl yellow by salts. ACS Omega 5(14), 7956–7961 (2020). https://doi.org/10.1021/acsomega.9b04342
M.S. Hossain, S. Bandyopadhyay, Metal ion mediated instant Z → E isomerization of azobenzene macrocycles in the absence of light. J. Org. Chem. 86(9), 6314–6321 (2021). https://doi.org/10.1021/acs.joc.1c00105
K. Gille, H. Knoll, K. Quitzsch, Rate constants of the thermal cis-trans isomerization of azobenzene dyes in solvents, acetone/water mixtures, and in microheterogeneous surfactant solutions. Int. J. Chem. Kinet. 31(5), 337–350 (1999). https://doi.org/10.1002/(SICI)1097-4601(1999)31:5%3c337::AID-KIN3%3e3.0.CO;2-E
R. Ochi, N. Perur, K. Yoshida, N. Tamaoki, Fast thermal cis–trans isomerization depending on pH and metal ions of water-soluble azobenzene derivatives containing a phosphate group. Tetrahedron 71(21), 3500–2506 (2015). https://doi.org/10.1016/j.tet.2015.03.054
H. Wang, Y. Feng, J. Gao, W. Fang, J. Ge et al., Metallic-ion controlled dynamic bonds to co-harvest isomerization energy and bond enthalpy for high energy output of flexible self-heated textile. Adv. Sci. 2201657. https://doi.org/10.1002/advs.202201657
J.C. Corchado, M.L. Sanchez, I.F. Galván, M.E. Martin, A. Muñoz-Losa et al., Theoretical study of solvent effects on the ground and low-lying excited free energy surfaces of a push–pull substituted azobenzene. J. Phys. Chem. B 118(43), 12518–12530 (2014)
K. Dąbrowa, P. Niedbała, J. Jurczak, Anion-tunable control of thermal Z→E isomerisation in basic azobenzene receptors. Chem. Commun. 50(99), 15748–15751 (2014). https://doi.org/10.1039/C4CC07798A
T.T. Yin, Z.X. Zhao, H.X. Zhang, Theoretical study of substituent and charge effects on the thermal cis → trans isomerization of ortho-fluoroazobenzenes photoswitches. Org. Electron. 52, 61–70 (2018). https://doi.org/10.1016/j.orgel.2017.10.002
M. Dong, A. Babalhavaeji, S. Samanta, A.A. Beharry, G.A. Woolley, Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48(10), 2662–2670 (2015). https://doi.org/10.1021/acs.accounts.5b00270
A.A. Beharry, O. Sadovski, G.A. Woolley, Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 133(49), 19684–19687 (2011). https://doi.org/10.1021/ja209239m
S. Samanta, A.A. Beharry, O. Sadovski, T.M. McCormick, A. Babalhavaeji et al., Photoswitching azo compounds in vivo with red light. J. Am. Chem. Soc. 135(26), 9777–9784 (2013). https://doi.org/10.1021/ja402220t
C. Weber, T. Liebig, M. Gensler, A. Zykov, L. Pithan et al., Cooperative switching in nanofibers of azobenzene oligomers. Sci. Rep. 6(1), 25605 (2016). https://doi.org/10.1038/srep25605
H.A. Wegner, Azobenzenes in a new light—switching in vivo. Angew. Chem. Int. Ed. 51(20), 4787–4788 (2012). https://doi.org/10.1002/anie.201201336
Z. Wu, R. Xue, M. Xie, X. Wang, Z. Liu et al., Self-assembly-triggered cis-to-trans conversion of azobenzene compounds. J. Phys. Chem. Lett. 9(1), 163–169 (2018). https://doi.org/10.1021/acs.jpclett.7b03060
M.J. Comstock, J. Cho, A. Kirakosian, M.F. Crommie, Manipulation of azobenzene molecules on Au (111) using scanning tunneling microscopy. Phys. Rev. B 72(15), 153414 (2005). https://doi.org/10.1103/PhysRevB.72.153414
S. Yogitha, B. Kumar, S.K. Gupta, Effect of local electric field on trans to cis photo-isomerization of azobenzene containing polymer. Mater. Sci. Eng. B 267, 115094 (2021). https://doi.org/10.1016/j.mseb.2021.115094
N. Al-Aqtash, R. Sabirianov, Photo-switching of magnetization in iron nanops. J. Mater. Chem. C 2(33), 6873–6878 (2014). https://doi.org/10.1039/C4TC01238K
G. Ji, F. Yang, Y. Yang, J. Wei, Z. Yang, Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanops under light and magnetic field. J. Colloid Interfaces Sci. 583, 586–593 (2021). https://doi.org/10.1016/j.jcis.2020.09.058
T.A. Singleton, K.S. Ramsay, M.M. Barsan, I.S. Butler, C.J. Barrett, Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle. J. Phys. Chem. B 116(32), 9860–9865 (2012). https://doi.org/10.1021/jp3060872
Z. Dong, N.M. Seemann, N. Lu, Y. Song, Effects of high pressure on azobenzene and hydrazobenzene probed by raman spectroscopy. J. Phys. Chem. B 115(50), 14912–14918 (2011). https://doi.org/10.1021/jp207170w
A. Li, C. Bi, S. Xu, H. Cui, W. Xu, Structural change of trans-azobenzene crystal and powder under high pressure. J. Mol. Struct. 1206, 127745 (2020). https://doi.org/10.1016/j.molstruc.2020.127745
M.H. Li, P. Keller, B. Li, X. Wang, M. Brunet, Light-driven side-on nematic elastomer actuators. Adv. Mater. 15(7–8), 569–572 (2003). https://doi.org/10.1002/adma.200304552
T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, A. Kanazawa, Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 15(3), 201–205 (2003). https://doi.org/10.1002/adma.200390045
Y. Yu, M. Nakano, A. Shishido, T. Shiono, T. Ikeda, Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene. Chem. Mater. 16(9), 1637–1643 (2004). https://doi.org/10.1021/cm035092g
S. Tanaka, H.K. Kim, A. Sudo, H. Nishida, T. Endo, Anisotropic photomechanical response of stretched blend film made of polycaprolactone-polyvinyl ether with azobenzene group as side chain. Macromol. Chem. Phys. 209(20), 2071–2077 (2008). https://doi.org/10.1002/macp.200800215
L. Fu, J. Yang, L. Dong, H. Yu, Q. Yan et al., Solar thermal storage and room-temperature fast release using a uniform flexible azobenzene-grafted polynorborene film enhanced by stretching. Macromolecules 52(11), 4222–4231 (2019). https://doi.org/10.1021/acs.macromol.9b00384