Advanced Nanomedicines for Treating Refractory Inflammation-Related Diseases
Corresponding Author: Yu Chen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 323
Abstract
This review examines inflammation as a physiological defense mechanism against infectious agents, physical trauma, reactive oxygen species (ROS), and metabolic stress, which, under dysregulated conditions, may progress into chronic diseases. Nanomedicine, which integrates nanotechnology with medicine, suppresses inflammatory signaling pathways and overexpressed pro-inflammatory cytokines, such as ROS, to address inflammation-related pathologies. Current advances in nanomaterial design and synthesis strategies are systematically analyzed, with parallel discussions on toxicity mechanisms, influencing factors, and evaluation methods that are critical for clinical translation. Applications of functional nanomaterials are highlighted in the context of refractory inflammatory conditions, including wound healing, gastrointestinal disorders, and immune, neurological, or circulatory diseases, along with targeted delivery strategies. Persistent challenges in nanomedicine development, such as biocompatibility optimization, precise biodistribution control, and standardized toxicity assessment, are critically assessed. By bridging material innovation with therapeutic efficacy, this review establishes a framework for advancing nanomedicine to improve treatment outcomes while addressing translational barriers.
Highlights:
1 An overview of inflammation related diseases has been provided.
2 The classification of nanomaterials commonly utilized in the treatment of various inflammatory diseases has been outlined.
3 The current state of nanomedical applications with desirable therapeutic efficacy in the treatment of inflammatory diseases has been sum marized.
4 The challenges and perspectives in the evolving field of nanomedicine for treating inflammatory diseases have been discussed and proposed in depth.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.D. Kilmer, Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010). https://doi.org/10.1177/1461444810365020
- C. Zhang, L. Yan, X. Wang, S. Zhu, C. Chen et al., Progress, challenges, and future of nanomedicine. Nano Today 35, 101008 (2020). https://doi.org/10.1016/j.nantod.2020.101008
- D. Nie, C. Liu, M. Yu, X. Jiang, N. Wang et al., Elasticity regulates nanomaterial transport as delivery vehicles: design, characterization, mechanisms and state of the art. Biomaterials 291, 121879 (2022). https://doi.org/10.1016/j.biomaterials.2022.121879
- N. Joudeh, D. Linke, Nanop classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnology 20(1), 262 (2022). https://doi.org/10.1186/s12951-022-01477-8
- R. Brusini, M. Varna, P. Couvreur, Advanced nanomedicines for the treatment of inflammatory diseases. Adv. Drug Deliv. Rev. 157, 161–178 (2020). https://doi.org/10.1016/j.addr.2020.07.010
- C.T. Taylor, G. Doherty, P.G. Fallon, E.P. Cummins, The relationship between hypoxia and inflammation. J. Clin. Invest. 126, 3716–3724 (2016). https://doi.org/10.1172/JCI84433.Cellular
- C. Nathan, A. Ding, Nonresolving inflammation. Cell 140(6), 871–882 (2010). https://doi.org/10.1016/j.cell.2010.02.029
- R. Medzhitov, The spectrum of inflammatory responses. Science 374(6571), 1070–1075 (2021). https://doi.org/10.1126/science.abi5200
- A.G. Stewart, P.M. Beart, Inflammation: maladies, models, mechanisms and molecules. Br. J. Pharmacol. 173(4), 631–634 (2016). https://doi.org/10.1111/bph.13389
- Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117(17), 11302–11336 (2017). https://doi.org/10.1021/acs.chemrev.7b00161
- K.M. Holmström, T. Finkel, Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15(6), 411–421 (2014). https://doi.org/10.1038/nrm3801
- K. Dasuri, L. Zhang, J.N. Keller, Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med. 62, 170–185 (2013). https://doi.org/10.1016/j.freeradbiomed.2012.09.016
- A. Görlach, K. Bertram, S. Hudecova, O. Krizanova, Calcium and ROS: a mutual interplay. Redox Biol. 6, 260–271 (2015). https://doi.org/10.1016/j.redox.2015.08.010
- K. Zhang, R.J. Kaufman, From endoplasmic-reticulum stress to the inflammatory response. Nature 454(7203), 455–462 (2008). https://doi.org/10.1038/nature07203
- C. Martinelli, C. Pucci, M. Battaglini, A. Marino, G. Ciofani, Antioxidants and nanotechnology: promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases. Adv. Healthc. Mater. 9(3), e1901589 (2020). https://doi.org/10.1002/adhm.201901589
- C. Kunsch, R.M. Medford, Oxidative stress as a regulator of gene expression in the vasculature. Circ. Res. 85(8), 753–766 (1999). https://doi.org/10.1161/01.res.85.8.753
- H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31(45), 1805368 (2019). https://doi.org/10.1002/adma.201805368
- M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas et al., Engineering precision nanops for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8
- M. Yang, Y. Zhang, Y. Ma, X. Yan, L. Gong et al., Nanop-based therapeutics of inflammatory bowel diseases: a narrative review of the current state and prospects. J. Bio X Res. 3(4), 157–173 (2020). https://doi.org/10.1097/jbr.0000000000000078
- R. Böttger, G. Pauli, P.H. Chao, N. Al Fayez, L. Hohenwarter et al., Lipid-based nanop technologies for liver targeting. Adv. Drug Deliv. Rev. 154–155, 79–101 (2020). https://doi.org/10.1016/j.addr.2020.06.017
- S.S. Liew, X. Qin, J. Zhou, L. Li, W. Huang et al., Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew. Chem. Int. Ed. 60(5), 2232–2256 (2021). https://doi.org/10.1002/anie.201915826
- W. Poon, B.R. Kingston, B. Ouyang, W. Ngo, W.C.W. Chan, A framework for designing delivery systems. Nat. Nanotechnol. 15(10), 819–829 (2020). https://doi.org/10.1038/s41565-020-0759-5
- D.B. Diaz, A.K. Yudin, The versatility of boron in biological target engagement. Nat. Chem. 9(8), 731–742 (2017). https://doi.org/10.1038/nchem.2814
- W.L.A. Brooks, B.S. Sumerlin, Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev. 116(3), 1375–1397 (2016). https://doi.org/10.1021/acs.chemrev.5b00300
- Z. Liu, H. He, Synthesis and applications of boronate affinity materials: from class selectivity to biomimetic specificity. Acc. Chem. Res. 50(9), 2185–2193 (2017). https://doi.org/10.1021/acs.accounts.7b00179
- W. Chen, C. Liu, X. Ji, J. Joseph, Z. Tang et al., Stanene-based nanosheets for β-elemene delivery and ultrasound-mediated combination cancer therapy. Angew. Chem. Int. Ed. 60(13), 7155–7164 (2021). https://doi.org/10.1002/anie.202016330
- Y. Zhang, X. Zhang, H. Yang, L. Yu, Y. Xu et al., Advanced biotechnology-assisted precise sonodynamic therapy. Chem. Soc. Rev. 50(20), 11227–11248 (2021). https://doi.org/10.1039/d1cs00403d
- L. Zong, Y. Yu, J. Wang, P. Liu, W. Feng et al., Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication. Biomaterials 296, 122074 (2023). https://doi.org/10.1016/j.biomaterials.2023.122074
- D. Cabrera, A. Coene, J. Leliaert, E.J. Artés-Ibáñez, L. Dupré et al., Dynamical magnetic response of iron oxide nanops inside live cells. ACS Nano 12(3), 2741–2752 (2018). https://doi.org/10.1021/acsnano.7b08995
- H. Van Le, V. Dulong, L. Picton, D. Le Cerf, Thermoresponsive nanogels based on polyelectrolyte complexes between polycations and functionalized hyaluronic acid. Carbohydr. Polym. 292, 119711 (2022). https://doi.org/10.1016/j.carbpol.2022.119711
- M. He, F. Chen, D. Shao, P. Weis, Z. Wei et al., Photoresponsive metallopolymer nanops for cancer theranostics. Biomaterials 275, 120915 (2021). https://doi.org/10.1016/j.biomaterials.2021.120915
- H. Lu, L. Niu, L. Yu, K. Jin, J. Zhang et al., Cancer phototherapy with nano-bacteria biohybrids. J. Control. Release 360, 133–148 (2023). https://doi.org/10.1016/j.jconrel.2023.06.009
- R. Guo, S. Wang, L. Zhao, Q. Zong, T. Li et al., Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 282, 121425 (2022). https://doi.org/10.1016/j.biomaterials.2022.121425
- X. Han, J. Huang, X. Jing, D. Yang, H. Lin et al., Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano 12(5), 4545–4555 (2018). https://doi.org/10.1021/acsnano.8b00899
- A. Li, J. Yang, Y. He, J. Wen, X. Jiang, Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches. Nanoscale Horiz. 9(3), 365–383 (2024). https://doi.org/10.1039/D3NH00578J
- L. Xia, J. Chen, Y. Xie, S. Zhang, W. Xia et al., Photo-/ piezo-activated ultrathin molybdenum disulfide nanomedicine for synergistic tumor therapy. J. Mater. Chem. B 11(13), 2895–2903 (2023). https://doi.org/10.1039/d3tb00209h
- Z. Deng, Y. Qian, Y. Yu, G. Liu, J. Hu et al., Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J. Am. Chem. Soc. 138(33), 10452–10466 (2016). https://doi.org/10.1021/jacs.6b04115
- M. Wang, S. Su, X. Zhong, D. Kong, B. Li et al., Enhanced photocatalytic hydrogen production activity by constructing a robust organic-inorganic hybrid material based fulvalene and TiO2. Nanomaterials 12(11), 1918 (2022). https://doi.org/10.3390/nano12111918
- L. Chang, H. Huang, W. Feng, H. Fu, F. Qi et al., Programmed self-assembly of enzyme activity-inhibited nanomedicine for augmenting chemodynamic tumor nanotherapy. Nanoscale 14(16), 6171–6183 (2022). https://doi.org/10.1039/d2nr00165a
- F. Wang, H. Duan, R. Zhang, H. Guo, H. Lin et al., Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. Nanoscale 12(34), 17931–17946 (2020). https://doi.org/10.1039/D0NR05214K
- X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), e1701394 (2018). https://doi.org/10.1002/adhm.201701394
- S. Qiu, X. Wu, Z. Li, X. Xu, J. Wang et al., A smart nanoreactor based on an O2-economized dual energy inhibition strategy armed with dual multi-stimuli-responsive doorkeepers for enhanced CDT/PTT of rheumatoid arthritis. ACS Nano 16(10), 17062–17079 (2022). https://doi.org/10.1021/acsnano.2c07338
- X. Gao, P. Zhu, L. Yu, L. Yang, Y. Chen, Ultrasound/acidity-triggered and nanop-enabled analgesia. Adv. Healthc. Mater. 8(9), e1801350 (2019). https://doi.org/10.1002/adhm.201801350
- B.D. Cardoso, V.F. Cardoso, S. Lanceros-Méndez, E.M.S. Castanheira, Solid magnetoliposomes as multi-stimuli-responsive systems for controlled release of doxorubicin: assessment of lipid formulations. Biomedicines 10(5), 1207 (2022). https://doi.org/10.3390/biomedicines10051207
- R. Zhang, J. Gao, G. Zhao, L. Zhou, F. Kong et al., Tetrazine bioorthogonal chemistry makes nanotechnology a powerful toolbox for biological applications. Nanoscale 15(2), 461–469 (2023). https://doi.org/10.1039/D2NR06056F
- C. Wu, J. Xie, Q. Yao, Y. Song, G. Yang et al., Intrahippocampal supramolecular assemblies directed bioorthogonal liberation of neurotransmitters to suppress seizures in freely moving mice. Adv. Mater. 36(27), 2314310 (2024). https://doi.org/10.1002/adma.202314310
- A.S. Braegelman, M.J. Webber, Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems. Theranostics 9(11), 3017–3040 (2019). https://doi.org/10.7150/thno.31913
- Y. Ni, D. Zhang, Y. Wang, X. He, J. He et al., Host-guest interaction-mediated photo/temperature dual-controlled antibacterial surfaces. ACS Appl. Mater. Interfaces 13(12), 14543–14551 (2021). https://doi.org/10.1021/acsami.0c21626
- E. Sameiyan, E. Bagheri, S. Dehghani, M. Ramezani, M. Alibolandi et al., Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomater. 123, 110–122 (2021). https://doi.org/10.1016/j.actbio.2020.12.057
- E. Esawi, W. Alshaer, I.S. Mahmoud, D.A. Alqudah, B. Azab et al., Aptamer-aptamer Chimera for targeted delivery and ATP-responsive release of doxorubicin into cancer cells. Int. J. Mol. Sci. 22(23), 12940 (2021). https://doi.org/10.3390/ijms222312940
- Y. Xu, X. Luan, P. He, D. Zhu, R. Mu et al., Fabrication and functional regulation of biomimetic interfaces and their antifouling and antibacterial applications: a review. Small 20(21), 2308091 (2024). https://doi.org/10.1002/smll.202308091
- K. Tang, J. Xue, Y. Zhu, C. Wu, Design and synthesis of bioinspired nanomaterials for biomedical application. Wires Nanomed. Nanobiotechnol. 16(1), e1914 (2024). https://doi.org/10.1002/wnan.1914
- M. Imran, V. Gowd, P. Saha, S. Rashid, A. Ahmad Chaudhary et al., Biologically inspired stealth–Camouflaged strategies in nanotechnology for the improved therapies in various diseases. Int. J. Pharm. 631, 122407 (2023). https://doi.org/10.1016/j.ijpharm.2022.122407
- G. Zan, Q. Wu, Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 28(11), 2099–2147 (2016). https://doi.org/10.1002/adma.201503215
- F. Tian, M. Li, S. Wu, L. Li, H. Hu, A hybrid and scalable nanofabrication approach for bio-inspired bactericidal silicon nanospike surfaces. Colloids Surf. B Biointerfaces 222, 113092 (2023). https://doi.org/10.1016/j.colsurfb.2022.113092
- S. Wu, F. Zuber, K. Maniura-Weber, J. Brugger, Q. Ren, Nanostructured surface topographies have an effect on bactericidal activity. J. Nanobiotechnology 16(1), 20 (2018). https://doi.org/10.1186/s12951-018-0347-0
- F. Dundar Arisoy, K.W. Kolewe, B. Homyak, I.S. Kurtz, J.D. Schiffman et al., Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces 10(23), 20055–20063 (2018). https://doi.org/10.1021/acsami.8b05066
- A. Valiei, N. Lin, G. McKay, D. Nguyen, C. Moraes et al., Surface wettability is a key feature in the mechano-bactericidal activity of nanopillars. ACS Appl. Mater. Interfaces 14(24), 27564–27574 (2022). https://doi.org/10.1021/acsami.2c03258
- Y. Chen, J. Gao, J. Ao, J. Zhang, R. Jiang et al., Bioinspired nanoflakes with antifouling and mechano-bactericidal capacity. Colloids Surf. B Biointerfaces 224, 113229 (2023). https://doi.org/10.1016/j.colsurfb.2023.113229
- Y. Du, J. Ge, Y. Li, P.X. Ma, B. Lei, Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration. Biomaterials 157, 40–50 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.005
- P. Shi, N. Zhao, J. Coyne, Y. Wang, DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat. Commun. 10(1), 2223 (2019). https://doi.org/10.1038/s41467-019-10231-y
- Z. Dai, M. Dang, W. Zhang, S. Murugan, S.W. Teh et al., Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration. Artif. Cells Nanomed. Biotechnol. 47(1), 1898–1907 (2019). https://doi.org/10.1080/21691401.2019.1573183
- R. Rial, Z. Liu, P. Messina, J.M. Ruso, Role of nanostructured materials in hard tissue engineering. Adv. Colloid Interface Sci. 304, 102682 (2022). https://doi.org/10.1016/j.cis.2022.102682
- J.L. Van Eps, J.S. Fernandez-Moure, F.J. Cabrera, F. Taraballi, F. Paradiso et al., Improved posterolateral lumbar spinal fusion using a biomimetic, nanocomposite scaffold augmented by autologous platelet-rich plasma. Front. Bioeng. Biotechnol. 9, 622099 (2021). https://doi.org/10.3389/fbioe.2021.622099
- S. Zhou, J. Xiao, Y. Ji, Y. Feng, S. Yan et al., Natural silk nanofibers as building blocks for biomimetic aerogel scaffolds. Int. J. Biol. Macromol. 237, 124223 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124223
- Y. Wang, X. Yuan, K. Yu, H. Meng, Y. Zheng et al., Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials 171, 118–132 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.033
- E. Nazarzadeh Zare, D. Khorsandi, A. Zarepour, H. Yilmaz, T. Agarwal et al., Biomedical applications of engineered heparin-based materials. Bioact. Mater. 31, 87–118 (2024). https://doi.org/10.1016/j.bioactmat.2023.08.002
- Y. Hao, H. Li, J. Guo, D. Wang, J. Zhang et al., Bio-inspired antioxidant heparin-mimetic peptide hydrogel for radiation-induced skin injury repair. Adv. Healthc. Mater. 12(20), e2203387 (2023). https://doi.org/10.1002/adhm.202203387
- T. Tong, W. Tang, S. Xiao, J. Liang, Antiviral effects of heparan sulfate analogue-modified two-dimensional MXene nanocomposites on PRRSV and SARS-CoV-2. Adv. NanoBiomed Res. 2(10), 2200067 (2022). https://doi.org/10.1002/anbr.202200067
- Y. Chen, R. Wang, Y. Wang, W. Zhao, S. Sun et al., Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior. Int. J. Biol. Macromol. 98, 1–11 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.102
- B. Akgul, C. Gulcan, S. Tornaci, M. Erginer, E. Toksoy Oner et al., Manufacturing radially aligned PCL nanofibers reinforced with sulfated levan and evaluation of its biological activity for healing tympanic membrane perforations. Macromol. Biosci. 25(1), 2400291 (2025). https://doi.org/10.1002/mabi.202400291
- C. Li, M. Zhang, X. Liu, W. Zhao, C. Zhao, Immobilization of heparin-mimetic biomacromolecules on Fe3O4 nanops as magnetic anticoagulant via mussel-inspired coating. Mater. Sci. Eng. C 109, 110516 (2020). https://doi.org/10.1016/j.msec.2019.110516
- L. Wang, Y. Wu, T. Hu, P.X. Ma, B. Guo, Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater. 96, 175–187 (2019). https://doi.org/10.1016/j.actbio.2019.06.035
- C. Wu, Y. Sun, X. He, W. Weng, K. Cheng et al., Photothermal extracellular matrix based nanocomposite films and their effect on the osteogenic differentiation of BMSCs. Nanoscale 15(11), 5379–5390 (2023). https://doi.org/10.1039/D2NR05889H
- M. Li, Q. Guo, C. Zhong, Z. Zhang, Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective. Drug Deliv. 30(1), 2288797 (2023). https://doi.org/10.1080/10717544.2023.2288797
- P. Dash, A.M. Piras, M. Dash, Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J. Control. Release 327, 546–570 (2020). https://doi.org/10.1016/j.jconrel.2020.09.012
- Y. Zhao, A. Li, L. Jiang, Y. Gu, J. Liu, Hybrid membrane-coated biomimetic nanops (HM@BNPs): a multifunctional nanomaterial for biomedical applications. Biomacromol 22(8), 3149–3167 (2021). https://doi.org/10.1021/acs.biomac.1c00440
- Q. Tan, L. He, X. Meng, W. Wang, H. Pan et al., Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J. Nanobiotechnology 19(1), 173 (2021). https://doi.org/10.1186/s12951-021-00926-0
- H. Chen, J. Deng, X. Yao, Y. He, H. Li et al., Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanops for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J. Nanobiotechnology 19(1), 342 (2021). https://doi.org/10.1186/s12951-021-01088-9
- C. Montis, A. Salvatore, F. Valle, L. Paolini, F. Carlà et al., Biogenic supported lipid bilayers as a tool to investigate nano-bio interfaces. J. Colloid Interface Sci. 570, 340–349 (2020). https://doi.org/10.1016/j.jcis.2020.03.014
- L. Chen, W. Hong, W. Ren, T. Xu, Z. Qian et al., Recent progress in targeted delivery vectors based on biomimetic nanops. Signal Transduct. Target. Ther. 6(1), 225 (2021). https://doi.org/10.1038/s41392-021-00631-2
- Y. Zhang, M. Xiong, X. Ni, J. Wang, H. Rong et al., Virus-mimicking mesoporous silica nanops with an electrically neutral and hydrophilic surface to improve the oral absorption of insulin by breaking through dual barriers of the mucus layer and the intestinal epithelium. ACS Appl. Mater. Interfaces 13(15), 18077–18088 (2021). https://doi.org/10.1021/acsami.1c00580
- Y. Gao, Y. Zhang, H. Xia, Y. Ren, H. Zhang et al., Biomimetic virus-like mesoporous silica nanops improved cellular internalization for co-delivery of antigen and agonist to enhance Tumor immunotherapy. Drug Deliv. 30(1), 2183814 (2023). https://doi.org/10.1080/10717544.2023.2183814
- X. Zhao, Y. Wang, W. Jiang, Q. Wang, J. Li et al., Herpesvirus-mimicking DNAzyme-loaded nanops as a mitochondrial DNA stress inducer to activate innate immunity for tumor therapy. Adv. Mater. 34(37), 2204585 (2022). https://doi.org/10.1002/adma.202204585
- Z. Wang, J. Wu, J.-J. Zheng, X. Shen, L. Yan et al., Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 12(1), 6866 (2021). https://doi.org/10.1038/s41467-021-27194-8
- X. Qi, J. Pfaendtner, High-throughput computational screening of solid-binding peptides. J. Chem. Theory Comput. 20(7), 2959–2968 (2024). https://doi.org/10.1021/acs.jctc.3c01286
- J.O. Winter, High-throughput tool uncovers links between cell signaling and nanomaterial uptake. Science 377(6604), 371–372 (2022). https://doi.org/10.1126/science.add3666
- G. Perini, E. Rosa, G. Friggeri, L. Di Pietro, M. Barba et al., INSIDIA 20 high-throughput analysis of 3D cancer models: multiparametric quantification of graphene quantum dots photothermal therapy for glioblastoma and pancreatic cancer. Int. J. Mol. Sci. 23(6), 3217 (2022). https://doi.org/10.3390/ijms23063217
- J. Peng, D. Schwalbe-Koda, K. Akkiraju, T. Xie, L. Giordano et al., Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat. Rev. Mater. 7(12), 991–1009 (2022). https://doi.org/10.1038/s41578-022-00466-5
- C. Chen, Z. Yaari, E. Apfelbaum, P. Grodzinski, Y. Shamay et al., Merging data curation and machine learning to improve nanomedicines. Adv. Drug Deliv. Rev. 183, 114172 (2022). https://doi.org/10.1016/j.addr.2022.114172
- S. Dhoble, T.-H. Wu, Kenry, Decoding nanomaterial-biosystem interactions through machine learning. Angew. Chem. Int. Ed. 63(16), e202318380 (2024). https://doi.org/10.1002/anie.202318380
- M. Saeedimasine, R. Rahmani, A.P. Lyubartsev, Biomolecular adsorption on nanomaterials: combining molecular simulations with machine learning. J. Chem. Inf. Model. 64(9), 3799–3811 (2024). https://doi.org/10.1021/acs.jcim.3c01606
- O.M. Fahmy, R.A. Eissa, H.H. Mohamed, N.G. Eissa, M. Elsabahy, Machine learning algorithms for prediction of entrapment efficiency in nanomaterials. Methods 218, 133–140 (2023). https://doi.org/10.1016/j.ymeth.2023.08.008
- N. Serov, V. Vinogradov, Artificial intelligence to bring nanomedicine to life. Adv. Drug Deliv. Rev. 184, 114194 (2022). https://doi.org/10.1016/j.addr.2022.114194
- L. Sun, H. Liu, Y. Ye, Y. Lei, R. Islam et al., Smart nanops for cancer therapy. Signal Transduct. Target. Ther. 8, 418 (2023). https://doi.org/10.1038/s41392-023-01642-x
- L. Nuhn, Artificial intelligence assists nanops to enter solid tumours. Nat. Nanotechnol. 18(6), 550–551 (2023). https://doi.org/10.1038/s41565-023-01382-7
- Z. Lin, W.-C. Chou, Y.-H. Cheng, C. He, N.A. Monteiro-Riviere et al., Predicting nanop delivery to tumors using machine learning and artificial intelligence approaches. Int. J. Nanomed. 17, 1365–1379 (2022). https://doi.org/10.2147/IJN.S344208
- W.-C. Chou, Q. Chen, L. Yuan, Y.-H. Cheng, C. He et al., An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanop delivery to tumors in mice. J. Control. Release 361, 53–63 (2023). https://doi.org/10.1016/j.jconrel.2023.07.040
- Y. Yang, G.I.N. Waterhouse, Y. Chen, D. Sun-Waterhouse, D. Li, Microbial-enabled green biosynthesis of nanomaterials: current status and future prospects. Biotechnol. Adv. 55, 107914 (2022). https://doi.org/10.1016/j.biotechadv.2022.107914
- M.A. Ali, T. Ahmed, W. Wu, A. Hossain, R. Hafeez et al., Advancements in plant and microbe-based synthesis of metallic nanops and their antimicrobial activity against plant pathogens. Nanomaterials 10(6), 1146 (2020). https://doi.org/10.3390/nano10061146
- R. Singh, U.U. Shedbalkar, S.A. Wadhwani, B.A. Chopade, Bacteriagenic silver nanops: synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol. 99(11), 4579–4593 (2015). https://doi.org/10.1007/s00253-015-6622-1
- D. Gupta, A. Boora, A. Thakur, T.K. Gupta, Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environ. Res. 231, 116316 (2023). https://doi.org/10.1016/j.envres.2023.116316
- M. Šebesta, H. Vojtková, V. Cyprichová, A.P. Ingle, M. Urík et al., Mycosynthesis of metal-containing nanops-synthesis by ascomycetes and basidiomycetes and their application. Int. J. Mol. Sci. 24(1), 304 (2022). https://doi.org/10.3390/ijms24010304
- K. Vahabi, G.A. Mansoori, S. Karimi, Biosynthesis of silver nanops by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J. 1(1), 65–79 (2011). https://doi.org/10.5640/insc.010165
- L. Zou, F. Zhu, Z.-E. Long, Y. Huang, Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications. J. Nanobiotechnol. 19(1), 120 (2021). https://doi.org/10.1186/s12951-021-00868-7
- M. Ríos-Silva, M. Pérez, R. Luraschi, E. Vargas, C. Silva-Andrade et al., Anaerobiosis favors biosynthesis of single and multi-element nanostructures. PLoS ONE 17(10), e0273392 (2022). https://doi.org/10.1371/journal.pone.0273392
- Y. Yang, K. Yang, J. Wang, D. Cui, M. Zhao, Fabrication and characterization of CdS nanowires templated in tobacco mosaic virus with improved photocatalytic ability. Appl. Microbiol. Biotechnol. 105(21–22), 8255–8264 (2021). https://doi.org/10.1007/s00253-021-11596-1
- Y. Wang, T. Douglas, Bioinspired approaches to self-assembly of virus-like ps: from molecules to materials. Acc. Chem. Res. 55(10), 1349–1359 (2022). https://doi.org/10.1021/acs.accounts.2c00056
- H. Zhang, N. Tang, X. Yu, Z. Guo, Z. Liu et al., Natural glycyrrhizic acid-tailored hydrogel with in situ gradient reduction of AgNPs layer as high-performance, multi-functional, sustainable flexible sensors. Chem. Eng. J. 430, 132779 (2022). https://doi.org/10.1016/j.cej.2021.132779
- S.M. Reddy, S.B. Karmankar, H.A. Alzahrani, A. Hadap, A. Iqbal et al., Bioinspired synthesis of zinc molybdate nanops: an efficient material for growth inhibition of Escherichia coli, Staphylococcus aureus, and dye remediation. Bioinorg. Chem. Appl. 2023, 1287325 (2023). https://doi.org/10.1155/2023/1287325
- R. Nishanthi, S. Malathi, S. John Paul, P. Palani, Green synthesis and characterization of bioinspired silver, gold and platinum nanops and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater. Sci. Eng. C 96, 693–707 (2019). https://doi.org/10.1016/j.msec.2018.11.050
- Y. Abdallah, M. Liu, S.O. Ogunyemi, T. Ahmed, H. Fouad et al., Bioinspired green synthesis of chitosan and zinc oxide nanops with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae. Molecules 25(20), 4795 (2020). https://doi.org/10.3390/molecules25204795
- H. Ji, Q. Zhu, Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery. J. Control. Release 361, 803–818 (2023). https://doi.org/10.1016/j.jconrel.2023.08.036
- X. Luan, H. Kong, P. He, G. Yang, D. Zhu et al., Self-assembled peptide-based nanodrugs: molecular design, synthesis, functionalization, and targeted tumor bioimaging and biotherapy. Small 19(3), 2205787 (2023). https://doi.org/10.1002/smll.202205787
- T. Wang, C. Ménard-Moyon, A. Bianco, Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chem. Soc. Rev. 51(9), 3535–3560 (2022). https://doi.org/10.1039/d1cs01064f
- A. Olshefsky, C. Richardson, S.H. Pun, N.P. King, Engineering self-assembling protein nanops for therapeutic delivery. Bioconjug. Chem. 33(11), 2018–2034 (2022). https://doi.org/10.1021/acs.bioconjchem.2c00030
- M.P. Vincent, J.O. Navidzadeh, S. Bobbala, E.A. Scott, Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 40(3), 255–276 (2022). https://doi.org/10.1016/j.ccell.2022.01.006
- B. Li, Y. Cui, X. Wang, R. Tang, Novel nanomaterial–organism hybrids with biomedical potential. Wires Nanomed. Nanobiotechnol. 13(5), e1706 (2021). https://doi.org/10.1002/wnan.1706
- D. Athanasiadou, K.M.M. Carneiro, DNA nanostructures as templates for biomineralization. Nat. Rev. Chem. 5(2), 93–108 (2021). https://doi.org/10.1038/s41570-020-00242-5
- Y. Shang, N. Li, S. Liu, L. Wang, Z.-G. Wang et al., Site-specific synthesis of silica nanostructures on DNA origami templates. Adv. Mater. 32(21), e2000294 (2020). https://doi.org/10.1002/adma.202000294
- N. Zhao, Z. Zeng, Y. Zu, Self-assembled aptamer-nanomedicine for targeted chemotherapy and gene therapy. Small 14(4), 201702103 (2018). https://doi.org/10.1002/smll.201702103
- A.R. Voet, J.R. Tame, Protein-templated synthesis of metal-based nanomaterials. Curr. Opin. Biotechnol. 46, 14–19 (2017). https://doi.org/10.1016/j.copbio.2016.10.015
- R.J. Wilson, Y. Hui, A.K. Whittaker, C.-X. Zhao, Facile bioinspired synthesis of iron oxide encapsulating silica nanocapsules. J. Colloid Interface Sci. 601, 78–84 (2021). https://doi.org/10.1016/j.jcis.2021.05.021
- T. Yin, Y. Li, K. Bian, R. Zhu, Z. Liu et al., Self-assembly synthesis of vapreotide-gold hybrid nanoflower for photothermal antitumor activity. Mater. Sci. Eng. C Mater. Biol. Appl. 93, 716–723 (2018). https://doi.org/10.1016/j.msec.2018.08.017
- Y.-Y. Xie, X.-T. Qin, J. Zhang, M.-Y. Sun, F.-P. Wang et al., Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity. J. Colloid Interface Sci. 622, 135–146 (2022). https://doi.org/10.1016/j.jcis.2022.04.058
- J. Liu, F. Peng, Y. Kang, D. Gong, J. Fan et al., High-loading self-assembling peptide nanops as a lipid-free carrier for hydrophobic general anesthetics. Int. J. Nanomedicine 16, 5317–5331 (2021). https://doi.org/10.2147/IJN.S315310
- T. Wang, Z. Gao, Y. Zhang, Y. Hong, Y. Tang et al., A supramolecular self-assembled nanomaterial for synergistic therapy of immunosuppressive tumor. J. Control. Release 351, 272–283 (2022). https://doi.org/10.1016/j.jconrel.2022.09.018
- X. Zhang, M. Wang, J. Feng, B. Qin, C. Zhang et al., Multifunctional nanops co-loaded with Adriamycin and MDR-targeting siRNAs for treatment of chemotherapy-resistant esophageal cancer. J. Nanobiotechnology 20(1), 166 (2022). https://doi.org/10.1186/s12951-022-01377-x
- S. Yang, C. Wang, J. Zhu, C. Lu, H. Li et al., Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 10(18), 8227–8249 (2020). https://doi.org/10.7150/thno.44276
- J.L. Chen, C.N. Fries, S.J. Berendam, N.S. Rodgers, E.F. Roe et al., Self-assembling peptide nanofiber HIV vaccine elicits robust vaccine-induced antibody functions and modulates Fc glycosylation. Sci. Adv. 8(38), eabq0273 (2022). https://doi.org/10.1126/sciadv.abq0273
- M. Grzelczak, L.M. Liz-Marzán, R. Klajn, Stimuli-responsive self-assembly of nanops. Chem. Soc. Rev. 48(5), 1342–1361 (2019). https://doi.org/10.1039/c8cs00787j
- K. Ganguly, D.K. Patel, S.D. Dutta, W.-C. Shin, K.-T. Lim, Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. Int. J. Biol. Macromol. 155, 456–469 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.171
- Y. Zhou, Q. Li, Y. Wu, X. Li, Y. Zhou et al., Molecularly stimuli-responsive self-assembled peptide nanops for targeted imaging and therapy. ACS Nano 17(9), 8004–8025 (2023). https://doi.org/10.1021/acsnano.3c01452
- W. Zhan, G. Gao, Z. Liu, X. Liu, L. Xu et al., Enzymatic self-assembly of adamantane-peptide conjugate for combating Staphylococcus aureus infection. Adv. Healthc. Mater. 12(18), e2203283 (2023). https://doi.org/10.1002/adhm.202203283
- A. Vardaxi, S. Pispas, Stimuli-responsive self-assembly of poly(2-(dimethylamino)ethyl methacrylate-co-(oligo ethylene glycol)methacrylate) random copolymers and their modified derivatives. Polymers 15(6), 1519 (2023). https://doi.org/10.3390/polym15061519
- R. Solano, D. Patiño-Ruiz, L. Tejeda-Benitez, A. Herrera, Metal- and metal/oxide-based engineered nanops and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. Environ. Sci. Pollut. Res. Int. 28(14), 16962–16981 (2021). https://doi.org/10.1007/s11356-021-12996-6
- L. Sun, R. Zhang, T. Zhang, X. Liu, Y. Zhao et al., Synthesis, applications and biosafety evaluation of carbon dots derived from herbal medicine. Biomed. Mater. 18(4), 042004 (2023). https://doi.org/10.1088/1748-605X/acdeb8
- Y. Cheng, Z. Chen, S. Yang, T. Liu, L. Yin et al., Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. Sci. Total. Environ. 800, 149584 (2021). https://doi.org/10.1016/j.scitotenv.2021.149584
- T. Jiang, Y. Lin, C.A. Amadei, N. Gou, S.M. Rahman et al., Comparative and mechanistic toxicity assessment of structure-dependent toxicity of carbon-based nanomaterials. J. Hazard. Mater. 418, 126282 (2021). https://doi.org/10.1016/j.jhazmat.2021.126282
- K. Djayanti, P. Maharjan, K.H. Cho, S. Jeong, M.S. Kim et al., Mesoporous silica nanops as a potential nanoplatform: therapeutic applications and considerations. Int. J. Mol. Sci. 24(7), 6349 (2023). https://doi.org/10.3390/ijms24076349
- L. Xu, Y.-Y. Wang, J. Huang, C.-Y. Chen, Z.-X. Wang et al., Silver nanops: Synthesis, medical applications and biosafety. Theranostics 10(20), 8996–9031 (2020). https://doi.org/10.7150/thno.45413
- J.T. Buchman, N.V. Hudson-Smith, K.M. Landy, C.L. Haynes, Understanding nanop toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc. Chem. Res. 52(6), 1632–1642 (2019). https://doi.org/10.1021/acs.accounts.9b00053
- Y. Yao, T. Zhang, M. Tang, The DNA damage potential of quantum dots: Toxicity, mechanism and challenge. Environ. Pollut. 317, 120676 (2023). https://doi.org/10.1016/j.envpol.2022.120676
- A.D. Dey, A. Bigham, Y. Esmaeili, M. Ashrafizadeh, F.D. Moghaddam et al., Dendrimers as nanoscale vectors: unlocking the bars of cancer therapy. Semin. Cancer Biol. 86(Pt 2), 396–419 (2022). https://doi.org/10.1016/j.semcancer.2022.06.003
- H. Su, X. Song, J. Li, M.Z. Iqbal, S.S.F. Kenston et al., Biosafety evaluation of Janus Fe3O4-TiO2 nanops in Sprague Dawley rats after intravenous injection. Int. J. Nanomedicine 13, 6987–7001 (2018). https://doi.org/10.2147/IJN.S167851
- X. Liang, M. Tang, Research advances on cytotoxicity of cadmium-containing quantum dots. J. Nanosci. Nanotechnol. 19(9), 5375–5387 (2019). https://doi.org/10.1166/jnn.2019.16783
- J. Frontiñan-Rubio, E. Llanos-González, V.J. González, E. Vázquez, M. Durán-Prado, Subchronic graphene exposure reshapes skin cell metabolism. J. Proteome Res. 21(7), 1675–1685 (2022). https://doi.org/10.1021/acs.jproteome.2c00064
- J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu et al., Toxicity and mechanisms of action of titanium dioxide nanops in living organisms. J. Environ. Sci. 75, 40–53 (2019). https://doi.org/10.1016/j.jes.2018.06.010
- S. Chen, Y. Su, M. Zhang, Y. Zhang, P. Xiu et al., Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J. Nanobiotechnology 21(1), 140 (2023). https://doi.org/10.1186/s12951-023-01899-y
- H. Yu, Y. Wan, G. Zhang, X. Huang, L. Lin et al., Blood compatibility evaluations of two-dimensional Ti3C2T x nanosheets. Biomed. Mater. 17(2), 025004 (2022). https://doi.org/10.1088/1748-605X/ac45ed
- X. Zhou, W. Jin, H. Sun, C. Li, J. Jia, Perturbation of autophagy: an intrinsic toxicity mechanism of nanops. Sci. Total. Environ. 823, 153629 (2022). https://doi.org/10.1016/j.scitotenv.2022.153629
- X. Feng, Y. Zhang, C. Zhang, X. Lai, Y. Zhang et al., Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part. Fibre Toxicol. 17(1), 53 (2020). https://doi.org/10.1186/s12989-020-00372-0
- J. Zhang, F. Wang, S.S.K. Yalamarty, N. Filipczak, Y. Jin et al., Nano silver-induced toxicity and associated mechanisms. Int. J. Nanomed. 17, 1851–1864 (2022). https://doi.org/10.2147/IJN.S355131
- A. Lérida-Viso, A. Estepa-Fernández, A. García-Fernández, V. Martí-Centelles, R. Martínez-Máñez, Biosafety of mesoporous silica nanops; towards clinical translation. Adv. Drug Deliv. Rev. 201, 115049 (2023). https://doi.org/10.1016/j.addr.2023.115049
- N.A. Hanan, H.I. Chiu, M.R. Ramachandran, W.H. Tung, N.N. Mohamad Zain et al., Cytotoxicity of plant-mediated synthesis of metallic nanops: a systematic review. Int. J. Mol. Sci. 19(6), 1725 (2018). https://doi.org/10.3390/ijms19061725
- V. Vilas-Boas, M. Vinken, Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch. Toxicol. 95(1), 27–52 (2021). https://doi.org/10.1007/s00204-020-02940-x
- J.G. Croissant, Y. Fatieiev, A. Almalik, N.M. Khashab, Mesoporous silica and organosilica nanops: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 7(4), 1700831 (2018). https://doi.org/10.1002/adhm.201700831
- X. Gao, X. Zhang, Y. Wang, C. Fan, Effects of morphology and surface hydroxyl on the toxicity of BiOCl in human HaCaT cells. Chemosphere 163, 438–445 (2016). https://doi.org/10.1016/j.chemosphere.2016.08.063
- Z. Wang, Y. Long, J. Fan, C. Xiao, C. Tong et al., Biosafety and biocompatibility assessment of Prussian blue nanops in vitro and in vivo. Nanomedicine 15(27), 2655–2670 (2020). https://doi.org/10.2217/nnm-2020-0191
- F. Li, R. Li, F. Lu, L. Xu, L. Gan et al., Adverse effects of silver nanops on aquatic plants and zooplankton: a review. Chemosphere 338, 139459 (2023). https://doi.org/10.1016/j.chemosphere.2023.139459
- X. Yang, Z. Wang, J. Xu, C. Zhang, P. Gao et al., Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: a review. Chemosphere 358, 142208 (2024). https://doi.org/10.1016/j.chemosphere.2024.142208
- J. Zhang, L. Jiang, D. Wu, Y. Yin, H. Guo, Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO2 nanops stress. Sci. Total. Environ. 734, 139443 (2020). https://doi.org/10.1016/j.scitotenv.2020.139443
- L. Sun, Y. Sogo, X. Wang, A. Ito, Biosafety of mesoporous silica nanops: a combined experimental and literature study. J. Mater. Sci. Mater. Med. 32(9), 102 (2021). https://doi.org/10.1007/s10856-021-06582-y
- M. Hassanpour, S.A. Hosseini Tafreshi, O. Amiri, M. Hamadanian, M. Salavati-Niasari, Toxic effects of Fe2WO6 nanops towards microalga Dunaliella salina: Sonochemical synthesis nanops and investigate its impact on the growth. Chemosphere 258, 127348 (2020). https://doi.org/10.1016/j.chemosphere.2020.127348
- G. Wu, Y. Huang, J. Li, Y. Lu, L. Liu et al., Chronic level of exposures to low-dosed MoS2 nanomaterials exhibits more toxic effects in HaCaT keratinocytes. Ecotoxicol. Environ. Saf. 242, 113848 (2022). https://doi.org/10.1016/j.ecoenv.2022.113848
- M. Canta, V. Cauda, The investigation of the parameters affecting the ZnO nanop cytotoxicity behaviour: a tutorial review. Biomater. Sci. 8(22), 6157–6174 (2020). https://doi.org/10.1039/D0BM01086C
- A.A.M. Kämpfer, M. Busch, V. Büttner, G. Bredeck, B. Stahlmecke et al., Model complexity as determining factor for in vitro nanosafety studies: effects of silver and titanium dioxide nanomaterials in intestinal models. Small 17(15), 2004223 (2021). https://doi.org/10.1002/smll.202004223
- M.M. Alsmadi, N.K. Al-Nemrawi, R. Obaidat, A.E. Abu Alkahsi, K.M. Korshed et al., Insights into the mapping of green synthesis conditions for ZnO nanops and their toxicokinetics. Nanomedicine 17(18), 1281–1303 (2022). https://doi.org/10.2217/nnm-2022-0092
- M. Kus-Liśkiewicz, P. Fickers, I. Ben Tahar, Biocompatibility and cytotoxicity of gold nanops: recent advances in methodologies and regulations. Int. J. Mol. Sci. 22(20), 10952 (2021). https://doi.org/10.3390/ijms222010952
- Y. Li, L. Zhong, L. Zhang, X. Shen, L. Kong et al., Research advances on the adverse effects of nanomaterials in a model organism. Caenorhabditis elegans. Environ. Toxicol. Chem. 40(9), 2406–2424 (2021). https://doi.org/10.1002/etc.5133
- Y. Yao, T. Zhang, M. Tang, A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors. Environ. Pollut. 306, 119270 (2022). https://doi.org/10.1016/j.envpol.2022.119270
- H.-R. Jia, Y.-X. Zhu, Q.-Y. Duan, Z. Chen, F.-G. Wu, Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J. Control. Release 311–312, 301–318 (2019). https://doi.org/10.1016/j.jconrel.2019.08.022
- I. Guseva Canu, S. Fraize-Frontier, C. Michel, S. Charles, Weight of epidemiological evidence for titanium dioxide risk assessment: current state and further needs. J. Expo. Sci. Environ. Epidemiol. 30(3), 430–435 (2020). https://doi.org/10.1038/s41370-019-0161-2
- G. Squillacioti, T. Charreau, P. Wild, V. Bellisario, F. Ghelli et al., Worse pulmonary function in association with cumulative exposure to nanomaterials Hints of a mediation effect via pulmonary inflammation. Part. Fibre Toxicol.. Fibre Toxicol. 21(1), 28 (2024). https://doi.org/10.1186/s12989-024-00589-3
- M.R. Miller, C.A. Poland, Nanotoxicology: the need for a human touch? Small 16(36), e2001516 (2020). https://doi.org/10.1002/smll.202001516
- N. Weng, J. Meng, S. Huo, F. Wu, W.-X. Wang, Hemocytes of bivalve mollusks as cellular models in toxicological studies of metals and metal-based nanomaterials. Environ. Pollut. 312, 120082 (2022). https://doi.org/10.1016/j.envpol.2022.120082
- B. Hu, Z. Cheng, S. Liang, Advantages and prospects of stem cells in nanotoxicology. Chemosphere 291, 132861 (2022). https://doi.org/10.1016/j.chemosphere.2021.132861
- C. Yang, Z. Du, L. Mei, X. Chen, Y. Liao et al., Influences of lead-based perovskite nanops exposure on early development of human retina. J. Nanobiotechnol. 23(1), 144 (2025). https://doi.org/10.1186/s12951-025-03245-w
- C.D. Abueva, S.R. Yoon, N.T. Carpena, S.C. Ahn, S.Y. Chang et al., Development of NIR photocleavable nanops with BDNF for vestibular neuron regeneration. J. Nanobiotechnol. 23(1), 209 (2025). https://doi.org/10.1186/s12951-025-03298-x
- M. Prasad, R. Kumar, L. Buragohain, A. Kumari, M. Ghosh, Organoid technology: a reliable developmental biology tool for organ-specific nanotoxicity evaluation. Front. Cell Dev. Biol. 9, 696668 (2021). https://doi.org/10.3389/fcell.2021.696668
- J. Liu, M. Qin, Y. Shi, R. Jiang, Z. Wang et al., Volatile carbonyl metabolites analysis of nanop exposed lung cells in an organ-on-a-chip system. Talanta 274, 126066 (2024). https://doi.org/10.1016/j.talanta.2024.126066
- E. Joossens, P. Macko, T. Palosaari, K. Gerloff, I. Ojea-Jiménez et al., A high throughput imaging database of toxicological effects of nanomaterials tested on HepaRG cells. Sci. Data 6(1), 46 (2019). https://doi.org/10.1038/s41597-019-0053-2
- A.R. Collins, B. Annangi, L. Rubio, R. Marcos, M. Dorn et al., High throughput toxicity screening and intracellular detection of nanomaterials. Wires Nanomed. Nanobiotechnol. 9(1), e1413 (2017). https://doi.org/10.1002/wnan.1413
- D.A. Winkler, Role of artificial intelligence and machine learning in nanosafety. Small 16(36), e2001883 (2020). https://doi.org/10.1002/smll.202001883
- Y. Zhou, Y. Wang, W. Peijnenburg, M.G. Vijver, S. Balraadjsing et al., Using machine learning to predict adverse effects of metallic nanomaterials to various aquatic organisms. Environ. Sci. Technol. 57(46), 17786–17795 (2023). https://doi.org/10.1021/acs.est.2c07039
- Y. Wang, Y. Yang, Y. Shi, H. Song, C. Yu, Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32(18), e1904106 (2020). https://doi.org/10.1002/adma.201904106
- B. Abbasi, M. Zaka, S. Hashmi, Z. Khan, Biogenic synthesis of Au, Ag and Au–Ag alloy nanops using Cannabis sativa leaf extract. IET Nanobiotechnol. 12(3), 277–284 (2018). https://doi.org/10.1049/iet-nbt.2017.0169
- M. Zhang, C. Zhang, X. Zhai, F. Luo, Y. Du et al., Antibacterial mechanism and activity of cerium oxide nanops. Sci. China Mater. 62(11), 1727–1739 (2019). https://doi.org/10.1007/s40843-019-9471-7
- C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden et al., Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14(1), 89–96 (2017). https://doi.org/10.1111/iwj.12557
- Y. Feng, X. Li, D. Ji, J. Tian, Q. Peng et al., Functionalised penetrating peptide-chondroitin sulphate-gold nanops: Synthesis, characterization, and applications as an anti-Alzheimer’s disease drug. Int. J. Biol. Macromol. 230, 123125 (2023). https://doi.org/10.1016/j.ijbiomac.2022.123125
- D.M. Teleanu, A.-G. Niculescu, I.I. Lungu, C.I. Radu, O. Vladâcenco et al., An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 23(11), 5938 (2022). https://doi.org/10.3390/ijms23115938
- A. Misrani, S. Tabassum, L. Yang, Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 13, 617588 (2021). https://doi.org/10.3389/fnagi.2021.617588
- J.L.M. Björkegren, A.J. Lusis, Atherosclerosis: recent developments. Cell 185(10), 1630–1645 (2022). https://doi.org/10.1016/j.cell.2022.04.004
- Z. Han, X. Gao, Y. Wang, S. Cheng, X. Zhong et al., Ultrasmall iron-quercetin metal natural product nano complex with antioxidant and macrophage regulation in rheumatoid arthritis. Acta Pharm. Sin. B 13(4), 1726–1739 (2023). https://doi.org/10.1016/j.apsb.2022.11.020
- G. Aviello, U.G. Knaus, ROS in gastrointestinal inflammation: Rescue Or Sabotage? Br. J. Pharmacol. 174(12), 1704–1718 (2017). https://doi.org/10.1111/bph.13428
- S. Zhang, R. Langer, G. Traverso, Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 16, 82–96 (2017). https://doi.org/10.1016/j.nantod.2017.08.006
- H. Chen, S. Zhou, M. Zhu, B. Wang, W. Chen et al., Gold nanops modified with polyethyleneimine disturbed the activity of drug-metabolic enzymes and induced inflammation-mediated liver injury in mice. Front. Pharmacol. 12, 706791 (2021). https://doi.org/10.3389/fphar.2021.706791
- Y. Yang, S. Fan, Q. Chen, Y. Lu, Y. Zhu et al., Acute exposure to gold nanops aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk. J. Nanobiotechnology 20(1), 37 (2022). https://doi.org/10.1186/s12951-021-01203-w
- H. Chen, M. Zhang, B. Li, D. Chen, X. Dong et al., Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials 53, 532–544 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.105
- Y. Iqbal, A. Raouf Malik, T. Iqbal, M. Hammad Aziz, F. Ahmed et al., Green synthesis of ZnO and Ag-doped ZnO nanops using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater. Lett. 305, 130671 (2021). https://doi.org/10.1016/j.matlet.2021.130671
- M. Irfan, H. Munir, H. Ismail, Characterization and fabrication of zinc oxide nanops by gum Acacia modesta through green chemistry and impregnation on surgical sutures to boost up the wound healing process. Int. J. Biol. Macromol. 204, 466–475 (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.043
- K. Hou, J. Zhao, H. Wang, B. Li, K. Li et al., Chiral gold nanops enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun. 11(1), 4790 (2020). https://doi.org/10.1038/s41467-020-18525-2
- J. Xue, T. Liu, Y. Liu, Y. Jiang, V.D.D. Seshadri et al., Neuroprotective effect of biosynthesised gold nanops synthesised from root extract of Paeonia moutan against Parkinson disease - In vitro & In vivo model. J. Photochem. Photobiol. B. 200, 111635 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111635
- M. Jung, H. Kim, J.W. Hwang, Y. Choi, M. Kang et al., Iron oxide nanop-incorporated mesenchymal stem cells for Alzheimer’s disease treatment. Nano Lett. 23(2), 476–490 (2023). https://doi.org/10.1021/acs.nanolett.2c03682
- P.K. Pandey, R. Maheshwari, N. Raval, P. Gondaliya, K. Kalia et al., Nanogold-core multifunctional dendrimer for pulsatile chemo-, photothermal- and photodynamic- therapy of rheumatoid arthritis. J. Colloid Interface Sci. 544, 61–77 (2019). https://doi.org/10.1016/j.jcis.2019.02.073
- X. Lu, J. Liu, L. Gou, J. Li, B. Yuan et al., Designing melittin-graphene hybrid complexes for enhanced antibacterial activity. Adv. Healthc. Mater. 8(9), e1801521 (2019). https://doi.org/10.1002/adhm.201801521
- Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram et al., Antibacterial carbon-based nanomaterials. Adv. Mater. 31(45), e1804838 (2019). https://doi.org/10.1002/adma.201804838
- L. Kashinath, K. Namratha, K. Byrappa, Microwave mediated synthesis and characterization of CeO2-GO hybrid composite for removal of chromium ions and its antibacterial efficiency. J. Environ. Sci. 76, 65–79 (2019). https://doi.org/10.1016/j.jes.2018.03.027
- N. Dubey, K. Ellepola, F.E.D. Decroix, J.L.P. Morin, A.C. Neto et al., Graphene onto medical grade titanium: an atom-thick multimodal coating that promotes osteoblast maturation and inhibits biofilm formation from distinct species. Nanotoxicology 12(4), 274–289 (2018). https://doi.org/10.1080/17435390.2018.1434911
- B. Bhaduri, M. Engel, T. Polubesova, W. Wu, B. Xing et al., Dual functionality of an Ag-Fe3O4-carbon nanotube composite material: Catalytic reduction and antibacterial activity. J. Environ. Chem. Eng. 6(4), 4103–4113 (2018). https://doi.org/10.1016/j.jece.2018.06.023
- J. Cao, S.P. Hlaing, J. Lee, J. Kim, E.H. Lee et al., Bacteria-adhesive nitric oxide-releasing graphene oxide nanops for MRPA-infected wound healing therapy. ACS Appl. Mater. Interfaces 14(45), 50507–50519 (2022). https://doi.org/10.1021/acsami.2c13317
- X. He, Y. Lv, Y. Lin, H. Yu, Y. Zhang et al., Platinum nanops regulated V2C MXene nanoplatforms with NIR-II enhanced nanozyme effect for photothermal and chemodynamic anti-infective therapy. Adv. Mater. 36(25), 2400366 (2024). https://doi.org/10.1002/adma.202400366
- F. Attar, M.G. Shahpar, B. Rasti, M. Sharifi, A.A. Saboury et al., Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 278, 130–144 (2019). https://doi.org/10.1016/j.molliq.2018.12.011
- L. Mei, S. Zhu, Y. Liu, W. Yin, Z. Gu et al., An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418, 129431 (2021). https://doi.org/10.1016/j.cej.2021.129431
- S. Kumar, I.M. Adjei, S.B. Brown, O. Liseth, B. Sharma, Manganese dioxide nanops protect cartilage from inflammation-induced oxidative stress. Biomaterials 224, 119467 (2019). https://doi.org/10.1016/j.biomaterials.2019.119467
- A. Adhikari, S. Mondal, M. Das, P. Biswas, U. Pal et al., Incorporation of a biocompatible nanozyme in cellular antioxidant enzyme cascade reverses Huntington’s like disorder in preclinical model. Adv. Healthc. Mater. 10(7), e2001736 (2021). https://doi.org/10.1002/adhm.202001736
- X. Zhang, H. Yang, Y. He, D. Zhang, G. Lu et al., Yeast-inspired orally-administered nanocomposite scavenges oxidative stress and restores gut immune homeostasis for inflammatory bowel disease treatment. ACS Nano 19(7), 7350–7369 (2025). https://doi.org/10.1021/acsnano.4c18099
- Y. Gao, L. Zhai, J. Chen, D. Lin, L.-K. Zhang et al., Focused ultrasound-mediated cerium-based nanoreactor against Parkinson’s disease via ROS regulation and microglia polarization. J. Control. Release 368, 580–594 (2024). https://doi.org/10.1016/j.jconrel.2024.03.010
- J. Zhang, C. Wang, X. Wu, Q. Shen, Y. Du, Nanozyme-based therapeutic strategies for rheumatoid arthritis. J. Control. Release 377, 716–734 (2025). https://doi.org/10.1016/j.jconrel.2024.11.072
- J. Yang, S. Xiao, J. Deng, Y. Li, H. Hu et al., Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy. J. Nanobiotechnology 22(1), 491 (2024). https://doi.org/10.1186/s12951-024-02678-z
- Q. Chen, X. Yang, Y. Yu, X. Duan, R. Ni et al., Biomimetic cerium-assisted supra-carbon dots assembly for reactive oxygen species-activated atherosclerosis theranostic. Small 21(8), 2408980 (2025). https://doi.org/10.1002/smll.202408980
- Y. He, E. Peng, X. Ba, J. Wu, W. Deng et al., ROS responsive cerium oxide biomimetic nanops alleviates calcium oxalate crystals induced kidney injury via suppressing oxidative stress and M1 macrophage polarization. Small 21(3), 2405417 (2025). https://doi.org/10.1002/smll.202405417
- K. Zhang, M. Tu, W. Gao, X. Cai, F. Song et al., Hollow Prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 19(5), 2812–2823 (2019). https://doi.org/10.1021/acs.nanolett.8b04729
- M. Xu, D. Ran, J. Hu, J. Mao, D. Qiao et al., Multifunctional Prussian blue nanozymes alleviate atherosclerosis through inhibiting the inflammation feedback loop. J. Mater. Chem. B 13(4), 1459–1473 (2025). https://doi.org/10.1039/D4TB01926A
- C. Cho, H. Oh, J.S. Lee, L.-J. Kang, E.-J. Oh et al., Prussian blue nanozymes coated with Pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation. Biomaterials 297, 122131 (2023). https://doi.org/10.1016/j.biomaterials.2023.122131
- C. Chen, H. Wu, Q. Li, M. Liu, F. Yin et al., Manganese Prussian blue nanozymes with antioxidant capacity prevent acetaminophen-induced acute liver injury. Biomater. Sci. 11(7), 2348–2358 (2023). https://doi.org/10.1039/D2BM01968J
- S. Zhang, W. Ruan, J. Guan, Single-atom nanozymes for antibacterial applications. Food Chem. 456, 140094 (2024). https://doi.org/10.1016/j.foodchem.2024.140094
- Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
- F. Wu, Y. Wang, Y. Li, L. Shi, L. Yuan et al., Single-atom Cu anchored on carbon nitride as a bifunctional glucose oxidase and peroxidase nanozyme for antibacterial therapy. ACS Nano 19(11), 10816–10828 (2025). https://doi.org/10.1021/acsnano.4c12348
- Y. Zhang, C. Zhang, W. Qian, F. Lei, Z. Chen et al., Recent advances in MOF-based nanozymes: synthesis, activities, and bioapplications. Biosens. Bioelectron. 263, 116593 (2024). https://doi.org/10.1016/j.bios.2024.116593
- L. Huang, D.-W. Sun, H. Pu, Photosensitized peroxidase mimicry at the hierarchical 0D/2D heterojunction-like quasi metal-organic framework interface for boosting biocatalytic disinfection. Small 18(20), 2200178 (2022). https://doi.org/10.1002/smll.202200178
- B. Yang, H. Yao, J. Yang, C. Chen, Y. Guo et al., In situ synthesis of natural antioxidase mimics for catalytic anti-inflammatory treatments: rheumatoid arthritis as an example. J. Am. Chem. Soc. 144(1), 314–330 (2022). https://doi.org/10.1021/jacs.1c09993
- B. Yang, H. Yao, J. Yang, C. Chen, J. Shi, Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat. Commun. 13(1), 1988 (2022). https://doi.org/10.1038/s41467-022-29735-1
- M. Liao, Q. Cui, Y. Hu, J. Xing, D. Wu et al., Recent advances in the application of MXenes for neural tissue engineering and regeneration. Neural Regen. Res. 19(2), 258–263 (2024). https://doi.org/10.4103/1673-5374.379037
- H. Hu, H. Huang, L. Xia, X. Qian, W. Feng et al., Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem. Eng. J. 440, 135810 (2022). https://doi.org/10.1016/j.cej.2022.135810
- X. Sun, S. Luo, L. Zhang, Y. Miao, G. Yan, Photodynamic antibacterial activity of oxidase-like nanozyme based on long-lived room-temperature phosphorescent carbon dots. Food Chem. 434, 137541 (2024). https://doi.org/10.1016/j.foodchem.2023.137541
- E.A. McHugh, A.V. Liopo, K. Mendoza, C.S. Robertson, G. Wu et al., Oxidized activated charcoal nanozymes: synthesis, and optimization for in vitro and in vivo bioactivity for traumatic brain injury. Adv. Mater. 36(10), 2211239 (2024). https://doi.org/10.1002/adma.202211239
- Q. Huang, Y. Yang, Y. Zhu, Q. Chen, T. Zhao et al., Oral metal-free melanin nanozymes for natural and durable targeted treatment of inflammatory bowel disease (IBD). Small 19(19), e2207350 (2023). https://doi.org/10.1002/smll.202207350
- M. Cordani, J. Fernández-Lucas, A. Khosravi, E.N. Zare, P. Makvandi et al., Carbon-based nanozymes for cancer therapy and diagnosis: a review. Int. J. Biol. Macromol. 297, 139704 (2025). https://doi.org/10.1016/j.ijbiomac.2025.139704
- A. Nair, R.H. Chandrashekhar, C.M. Day, S. Garg, Y. Nayak et al., Polymeric functionalization of mesoporous silica nanops: Biomedical insights. Int. J. Pharm. 660, 124314 (2024). https://doi.org/10.1016/j.ijpharm.2024.124314
- Y. Yu, R. Tian, Y. Zhao, X. Qin, L. Hu et al., Self-assembled corrole/chitosan photothermal nanops for accelerating infected diabetic wound healing. Adv. Healthc. Mater. 12(16), e2201651 (2023). https://doi.org/10.1002/adhm.202201651
- J. Ye, Y. Fan, Y. She, J. Shi, Y. Yang et al., Biomimetic self-propelled asymmetric nanomotors for cascade-targeted treatment of neurological inflammation. Adv. Sci. 11(22), e2310211 (2024). https://doi.org/10.1002/advs.202310211
- K.A. Choi, J.H. Kim, K. Ryu, N. Kaushik, Current nanomedicine for targeted vascular disease treatment: trends and perspectives. Int. J. Mol. Sci. 23(20), 12397 (2022). https://doi.org/10.3390/ijms232012397
- L. Li, S. Liu, J. Tan, L. Wei, D. Wu et al., Recent advance in treatment of atherosclerosis: key targets and plaque-positioned delivery strategies. J. Tissue Eng. 13, 20417314221088508 (2022). https://doi.org/10.1177/20417314221088509
- P. Dosta, I. Tamargo, V. Ramos, S. Kumar, D.W. Kang et al., Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(β-amino ester) nanops conjugated with VCAM-1 targeting peptide. Adv. Healthc. Mater. 10(15), e2001894 (2021). https://doi.org/10.1002/adhm.202001894
- Q. Bai, Y. Xiao, H. Hong, X. Cao, L. Zhang et al., Scavenger receptor-targeted plaque delivery of microRNA-coated nanops for alleviating atherosclerosis. Proc. Natl. Acad. Sci. U.S.A. 119(39), e2201443119 (2022). https://doi.org/10.1073/pnas.2201443119
- Y. Wang, Q. Zhou, L. Lu, J. Xu, G. Yang et al., Combining oxygen delivery and generation for targeted atherosclerosis therapy. J. Control. Release 380, 1017–1030 (2025). https://doi.org/10.1016/j.jconrel.2025.02.053
- T. Gui, L. Luo, B. Chhay, L. Zhong, Y. Wei et al., Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidant nanops targeting synovium for osteoarthritis therapy. Biomaterials 283, 121437 (2022). https://doi.org/10.1016/j.biomaterials.2022.121437
- M.A. Beach, U. Nayanathara, Y. Gao et al., Polymeric nanops for drug delivery. Chem. Rev. 124(9), 5505–5616 (2024). https://doi.org/10.1021/acs.chemrev.3c00705
- L. Guo, H. Yan, Q. Gong, W. Zheng, L. Zhong et al., Glomerulus-targeted ROS-responsive polymeric nanops for effective membranous nephropathy therapy. ACS Appl. Mater. Interfaces 16(27), 35447–35462 (2024). https://doi.org/10.1021/acsami.4c04345
- D. González-Restrepo, A. Zuluaga-Vélez, L.M. Orozco, J.C. Sepúlveda-Arias, Silk fibroin-based dressings with antibacterial and anti-inflammatory properties. Eur. J. Pharm. Sci. 195, 106710 (2024). https://doi.org/10.1016/j.ejps.2024.106710
- X. Zhang, Y. Liang, S. Huang, B. Guo, Chitosan-based self-healing hydrogel dressing for wound healing. Adv. Colloid Interface Sci. 332, 103267 (2024). https://doi.org/10.1016/j.cis.2024.103267
- X. Ai, Y. Duan, Q. Zhang, D. Sun, R.H. Fang et al., Cartilage-targeting ultrasmall lipid-polymer hybrid nanops for the prevention of cartilage degradation. Bioeng. Transl. Med. 6(1), e10187 (2021). https://doi.org/10.1002/btm2.10187
- R.M. Williams, J. Shah, E. Mercer, H.S. Tian, V. Thompson et al., Kidney-targeted redox scavenger therapy prevents cisplatin-induced acute kidney injury. Front. Pharmacol. 12, 790913 (2022). https://doi.org/10.3389/fphar.2021.790913
- S. Meng, H. Wu, D. Xiao, S. Lan, A. Dong, Recent advances in bacterial cellulose-based antibacterial composites for infected wound therapy. Carbohydr. Polym. 316, 121082 (2023). https://doi.org/10.1016/j.carbpol.2023.121082
- F.V. Ferreira, A.G. Souza, R. Ajdary, L.P. de Souza, J.H. Lopes et al., Nanocellulose-based porous materials: regulation and pathway to commercialization in regenerative medicine. Bioact. Mater. 29, 151–176 (2023). https://doi.org/10.1016/j.bioactmat.2023.06.020
- Y. Li, Y. Tian, W. Zheng, Y. Feng, R. Huang et al., Composites of bacterial cellulose and small molecule-decorated gold nanops for treating gram-negative bacteria-infected wounds. Small 13(27), 1700130 (2017). https://doi.org/10.1002/smll.201700130
- G. Tan, L. Wang, W. Pan, K. Chen, Polysaccharide electrospun nanofibers for wound healing applications. Int. J. Nanomed. 17, 3913–3931 (2022). https://doi.org/10.2147/IJN.S371900
- S. Chen, R. Li, X. Li, J. Xie, Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev. 132, 188–213 (2018). https://doi.org/10.1016/j.addr.2018.05.001
- I. Dasgupta, A. Chatterjee, Recent advances in miRNA delivery systems. Methods Protoc. 4(1), 10 (2021). https://doi.org/10.3390/mps4010010
- A. Vyawahare, R. Prakash, C. Jori, A. Ali, S.S. Raza et al., Caffeic acid modified nanomicelles inhibit articular cartilage deterioration and reduce disease severity in experimental inflammatory arthritis. ACS Nano 16(11), 18579–18591 (2022). https://doi.org/10.1021/acsnano.2c07027
- Y. Li, Q. Liang, L. Zhou, Y. Cao, J. Yang et al., An ROS-responsive artesunate prodrug nanosystem co-delivers dexamethasone for rheumatoid arthritis treatment through the HIF-1α/NF-κB cascade regulation of ROS scavenging and macrophage repolarization. Acta Biomater. 152, 406–424 (2022). https://doi.org/10.1016/j.actbio.2022.08.054
- P. Khare, S.X. Edgecomb, C.M. Hamadani, E.E.L. Tanner, D.S. Manickam, Lipid nanop-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 197, 114861 (2023). https://doi.org/10.1016/j.addr.2023.114861
- H.M. Eid, A.A. Ali, A.M. Abdelhaleem Ali, E.M. Eissa, R.M. Hassan et al., Potential use of tailored citicoline chitosan-coated liposomes for effective wound healing in diabetic rat model. Int. J. Nanomed. 17, 555–575 (2022). https://doi.org/10.2147/IJN.S342504
- M.R. Arabestani, A. Bigham, F. Kamarehei, M. Dini, F. Gorjikhah et al., Solid lipid nanops and their application in the treatment of bacterial infectious diseases. Biomed. Pharmacother. 174, 116433 (2024). https://doi.org/10.1016/j.biopha.2024.116433
- E. Ortega Martínez, M.E. Morales Hernández, J. Castillo-González, E. González-Rey, M.A. Ruiz Martínez, Dopamine-loaded chitosan-coated solid lipid nanops as a promise nanocarriers to the CNS. Neuropharmacology 249, 109871 (2024). https://doi.org/10.1016/j.neuropharm.2024.109871
- M. Abudurexiti, J. Xue, X. Li, X. Zhang, Y. Qiu et al., Curcumin/TGF-β1 siRNA loaded solid lipid nanops alleviate cerebral injury after intracerebral hemorrhage by transnasal brain targeting. Colloids Surf. B Biointerfaces 237, 113857 (2024). https://doi.org/10.1016/j.colsurfb.2024.113857
- M. Mohammed, U.H. Ibrahim, A. Aljoundi, C.A. Omolo, N. Devnarain et al., Enzyme-responsive biomimetic solid lipid nanops for antibiotic delivery against hyaluronidase-secreting bacteria. Int. J. Pharm. 640, 122967 (2023). https://doi.org/10.1016/j.ijpharm.2023.122967
- H.-C. Wang, W. Yang, L. Xu, Y.-H. Han, Y. Lin et al., BV2 membrane-coated PEGylated-liposomes delivered hFGF21 to cortical and hippocampal microglia for Alzheimer’s disease therapy. Adv. Healthc. Mater. 13(19), 2400125 (2024). https://doi.org/10.1002/adhm.202400125
- J. Mondal, S. Pillarisetti, V. Junnuthula, M. Saha, S.R. Hwang et al., Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J. Control. Release 353, 1127–1149 (2023). https://doi.org/10.1016/j.jconrel.2022.12.027
- R. Yang, Y. Liao, L. Wang, P. He, Y. Hu et al., Exosomes derived from M2b macrophages attenuate DSS-induced colitis. Front. Immunol. 10, 2346 (2019). https://doi.org/10.3389/fimmu.2019.02346
- G. Guo, Z. Tan, Y. Liu, F. Shi, J. She, The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res. Ther. 13(1), 138 (2022). https://doi.org/10.1186/s13287-022-02811-5
- E. Jin, Y. Yang, S. Cong, D. Chen, R. Chen et al., Lemon-derived nanop-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J. Nanobiotechnology 23(1), 68 (2025). https://doi.org/10.1186/s12951-025-03138-y
- B. Zhao, H. Lin, X. Jiang, W. Li, Y. Gao et al., Exosome-like nanops derived from fruits, vegetables, and herbs: innovative strategies of therapeutic and drug delivery. Theranostics 14(12), 4598–4621 (2024). https://doi.org/10.7150/thno.97096
- Z. Tian, H. Ning, X. Wang, Y. Wang, T. Han et al., Endothelial autophagy promotes atheroprotective communication between endothelial and smooth muscle cells via exosome-mediated delivery of miR-204-5p. Arterioscler. Thromb. Vasc. Biol. 44(8), 1813–1832 (2024). https://doi.org/10.1161/ATVBAHA.123.319993
References
P.D. Kilmer, Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010). https://doi.org/10.1177/1461444810365020
C. Zhang, L. Yan, X. Wang, S. Zhu, C. Chen et al., Progress, challenges, and future of nanomedicine. Nano Today 35, 101008 (2020). https://doi.org/10.1016/j.nantod.2020.101008
D. Nie, C. Liu, M. Yu, X. Jiang, N. Wang et al., Elasticity regulates nanomaterial transport as delivery vehicles: design, characterization, mechanisms and state of the art. Biomaterials 291, 121879 (2022). https://doi.org/10.1016/j.biomaterials.2022.121879
N. Joudeh, D. Linke, Nanop classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnology 20(1), 262 (2022). https://doi.org/10.1186/s12951-022-01477-8
R. Brusini, M. Varna, P. Couvreur, Advanced nanomedicines for the treatment of inflammatory diseases. Adv. Drug Deliv. Rev. 157, 161–178 (2020). https://doi.org/10.1016/j.addr.2020.07.010
C.T. Taylor, G. Doherty, P.G. Fallon, E.P. Cummins, The relationship between hypoxia and inflammation. J. Clin. Invest. 126, 3716–3724 (2016). https://doi.org/10.1172/JCI84433.Cellular
C. Nathan, A. Ding, Nonresolving inflammation. Cell 140(6), 871–882 (2010). https://doi.org/10.1016/j.cell.2010.02.029
R. Medzhitov, The spectrum of inflammatory responses. Science 374(6571), 1070–1075 (2021). https://doi.org/10.1126/science.abi5200
A.G. Stewart, P.M. Beart, Inflammation: maladies, models, mechanisms and molecules. Br. J. Pharmacol. 173(4), 631–634 (2016). https://doi.org/10.1111/bph.13389
Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117(17), 11302–11336 (2017). https://doi.org/10.1021/acs.chemrev.7b00161
K.M. Holmström, T. Finkel, Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15(6), 411–421 (2014). https://doi.org/10.1038/nrm3801
K. Dasuri, L. Zhang, J.N. Keller, Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med. 62, 170–185 (2013). https://doi.org/10.1016/j.freeradbiomed.2012.09.016
A. Görlach, K. Bertram, S. Hudecova, O. Krizanova, Calcium and ROS: a mutual interplay. Redox Biol. 6, 260–271 (2015). https://doi.org/10.1016/j.redox.2015.08.010
K. Zhang, R.J. Kaufman, From endoplasmic-reticulum stress to the inflammatory response. Nature 454(7203), 455–462 (2008). https://doi.org/10.1038/nature07203
C. Martinelli, C. Pucci, M. Battaglini, A. Marino, G. Ciofani, Antioxidants and nanotechnology: promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases. Adv. Healthc. Mater. 9(3), e1901589 (2020). https://doi.org/10.1002/adhm.201901589
C. Kunsch, R.M. Medford, Oxidative stress as a regulator of gene expression in the vasculature. Circ. Res. 85(8), 753–766 (1999). https://doi.org/10.1161/01.res.85.8.753
H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31(45), 1805368 (2019). https://doi.org/10.1002/adma.201805368
M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas et al., Engineering precision nanops for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8
M. Yang, Y. Zhang, Y. Ma, X. Yan, L. Gong et al., Nanop-based therapeutics of inflammatory bowel diseases: a narrative review of the current state and prospects. J. Bio X Res. 3(4), 157–173 (2020). https://doi.org/10.1097/jbr.0000000000000078
R. Böttger, G. Pauli, P.H. Chao, N. Al Fayez, L. Hohenwarter et al., Lipid-based nanop technologies for liver targeting. Adv. Drug Deliv. Rev. 154–155, 79–101 (2020). https://doi.org/10.1016/j.addr.2020.06.017
S.S. Liew, X. Qin, J. Zhou, L. Li, W. Huang et al., Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew. Chem. Int. Ed. 60(5), 2232–2256 (2021). https://doi.org/10.1002/anie.201915826
W. Poon, B.R. Kingston, B. Ouyang, W. Ngo, W.C.W. Chan, A framework for designing delivery systems. Nat. Nanotechnol. 15(10), 819–829 (2020). https://doi.org/10.1038/s41565-020-0759-5
D.B. Diaz, A.K. Yudin, The versatility of boron in biological target engagement. Nat. Chem. 9(8), 731–742 (2017). https://doi.org/10.1038/nchem.2814
W.L.A. Brooks, B.S. Sumerlin, Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev. 116(3), 1375–1397 (2016). https://doi.org/10.1021/acs.chemrev.5b00300
Z. Liu, H. He, Synthesis and applications of boronate affinity materials: from class selectivity to biomimetic specificity. Acc. Chem. Res. 50(9), 2185–2193 (2017). https://doi.org/10.1021/acs.accounts.7b00179
W. Chen, C. Liu, X. Ji, J. Joseph, Z. Tang et al., Stanene-based nanosheets for β-elemene delivery and ultrasound-mediated combination cancer therapy. Angew. Chem. Int. Ed. 60(13), 7155–7164 (2021). https://doi.org/10.1002/anie.202016330
Y. Zhang, X. Zhang, H. Yang, L. Yu, Y. Xu et al., Advanced biotechnology-assisted precise sonodynamic therapy. Chem. Soc. Rev. 50(20), 11227–11248 (2021). https://doi.org/10.1039/d1cs00403d
L. Zong, Y. Yu, J. Wang, P. Liu, W. Feng et al., Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication. Biomaterials 296, 122074 (2023). https://doi.org/10.1016/j.biomaterials.2023.122074
D. Cabrera, A. Coene, J. Leliaert, E.J. Artés-Ibáñez, L. Dupré et al., Dynamical magnetic response of iron oxide nanops inside live cells. ACS Nano 12(3), 2741–2752 (2018). https://doi.org/10.1021/acsnano.7b08995
H. Van Le, V. Dulong, L. Picton, D. Le Cerf, Thermoresponsive nanogels based on polyelectrolyte complexes between polycations and functionalized hyaluronic acid. Carbohydr. Polym. 292, 119711 (2022). https://doi.org/10.1016/j.carbpol.2022.119711
M. He, F. Chen, D. Shao, P. Weis, Z. Wei et al., Photoresponsive metallopolymer nanops for cancer theranostics. Biomaterials 275, 120915 (2021). https://doi.org/10.1016/j.biomaterials.2021.120915
H. Lu, L. Niu, L. Yu, K. Jin, J. Zhang et al., Cancer phototherapy with nano-bacteria biohybrids. J. Control. Release 360, 133–148 (2023). https://doi.org/10.1016/j.jconrel.2023.06.009
R. Guo, S. Wang, L. Zhao, Q. Zong, T. Li et al., Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 282, 121425 (2022). https://doi.org/10.1016/j.biomaterials.2022.121425
X. Han, J. Huang, X. Jing, D. Yang, H. Lin et al., Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano 12(5), 4545–4555 (2018). https://doi.org/10.1021/acsnano.8b00899
A. Li, J. Yang, Y. He, J. Wen, X. Jiang, Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches. Nanoscale Horiz. 9(3), 365–383 (2024). https://doi.org/10.1039/D3NH00578J
L. Xia, J. Chen, Y. Xie, S. Zhang, W. Xia et al., Photo-/ piezo-activated ultrathin molybdenum disulfide nanomedicine for synergistic tumor therapy. J. Mater. Chem. B 11(13), 2895–2903 (2023). https://doi.org/10.1039/d3tb00209h
Z. Deng, Y. Qian, Y. Yu, G. Liu, J. Hu et al., Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J. Am. Chem. Soc. 138(33), 10452–10466 (2016). https://doi.org/10.1021/jacs.6b04115
M. Wang, S. Su, X. Zhong, D. Kong, B. Li et al., Enhanced photocatalytic hydrogen production activity by constructing a robust organic-inorganic hybrid material based fulvalene and TiO2. Nanomaterials 12(11), 1918 (2022). https://doi.org/10.3390/nano12111918
L. Chang, H. Huang, W. Feng, H. Fu, F. Qi et al., Programmed self-assembly of enzyme activity-inhibited nanomedicine for augmenting chemodynamic tumor nanotherapy. Nanoscale 14(16), 6171–6183 (2022). https://doi.org/10.1039/d2nr00165a
F. Wang, H. Duan, R. Zhang, H. Guo, H. Lin et al., Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. Nanoscale 12(34), 17931–17946 (2020). https://doi.org/10.1039/D0NR05214K
X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), e1701394 (2018). https://doi.org/10.1002/adhm.201701394
S. Qiu, X. Wu, Z. Li, X. Xu, J. Wang et al., A smart nanoreactor based on an O2-economized dual energy inhibition strategy armed with dual multi-stimuli-responsive doorkeepers for enhanced CDT/PTT of rheumatoid arthritis. ACS Nano 16(10), 17062–17079 (2022). https://doi.org/10.1021/acsnano.2c07338
X. Gao, P. Zhu, L. Yu, L. Yang, Y. Chen, Ultrasound/acidity-triggered and nanop-enabled analgesia. Adv. Healthc. Mater. 8(9), e1801350 (2019). https://doi.org/10.1002/adhm.201801350
B.D. Cardoso, V.F. Cardoso, S. Lanceros-Méndez, E.M.S. Castanheira, Solid magnetoliposomes as multi-stimuli-responsive systems for controlled release of doxorubicin: assessment of lipid formulations. Biomedicines 10(5), 1207 (2022). https://doi.org/10.3390/biomedicines10051207
R. Zhang, J. Gao, G. Zhao, L. Zhou, F. Kong et al., Tetrazine bioorthogonal chemistry makes nanotechnology a powerful toolbox for biological applications. Nanoscale 15(2), 461–469 (2023). https://doi.org/10.1039/D2NR06056F
C. Wu, J. Xie, Q. Yao, Y. Song, G. Yang et al., Intrahippocampal supramolecular assemblies directed bioorthogonal liberation of neurotransmitters to suppress seizures in freely moving mice. Adv. Mater. 36(27), 2314310 (2024). https://doi.org/10.1002/adma.202314310
A.S. Braegelman, M.J. Webber, Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems. Theranostics 9(11), 3017–3040 (2019). https://doi.org/10.7150/thno.31913
Y. Ni, D. Zhang, Y. Wang, X. He, J. He et al., Host-guest interaction-mediated photo/temperature dual-controlled antibacterial surfaces. ACS Appl. Mater. Interfaces 13(12), 14543–14551 (2021). https://doi.org/10.1021/acsami.0c21626
E. Sameiyan, E. Bagheri, S. Dehghani, M. Ramezani, M. Alibolandi et al., Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomater. 123, 110–122 (2021). https://doi.org/10.1016/j.actbio.2020.12.057
E. Esawi, W. Alshaer, I.S. Mahmoud, D.A. Alqudah, B. Azab et al., Aptamer-aptamer Chimera for targeted delivery and ATP-responsive release of doxorubicin into cancer cells. Int. J. Mol. Sci. 22(23), 12940 (2021). https://doi.org/10.3390/ijms222312940
Y. Xu, X. Luan, P. He, D. Zhu, R. Mu et al., Fabrication and functional regulation of biomimetic interfaces and their antifouling and antibacterial applications: a review. Small 20(21), 2308091 (2024). https://doi.org/10.1002/smll.202308091
K. Tang, J. Xue, Y. Zhu, C. Wu, Design and synthesis of bioinspired nanomaterials for biomedical application. Wires Nanomed. Nanobiotechnol. 16(1), e1914 (2024). https://doi.org/10.1002/wnan.1914
M. Imran, V. Gowd, P. Saha, S. Rashid, A. Ahmad Chaudhary et al., Biologically inspired stealth–Camouflaged strategies in nanotechnology for the improved therapies in various diseases. Int. J. Pharm. 631, 122407 (2023). https://doi.org/10.1016/j.ijpharm.2022.122407
G. Zan, Q. Wu, Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 28(11), 2099–2147 (2016). https://doi.org/10.1002/adma.201503215
F. Tian, M. Li, S. Wu, L. Li, H. Hu, A hybrid and scalable nanofabrication approach for bio-inspired bactericidal silicon nanospike surfaces. Colloids Surf. B Biointerfaces 222, 113092 (2023). https://doi.org/10.1016/j.colsurfb.2022.113092
S. Wu, F. Zuber, K. Maniura-Weber, J. Brugger, Q. Ren, Nanostructured surface topographies have an effect on bactericidal activity. J. Nanobiotechnology 16(1), 20 (2018). https://doi.org/10.1186/s12951-018-0347-0
F. Dundar Arisoy, K.W. Kolewe, B. Homyak, I.S. Kurtz, J.D. Schiffman et al., Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces 10(23), 20055–20063 (2018). https://doi.org/10.1021/acsami.8b05066
A. Valiei, N. Lin, G. McKay, D. Nguyen, C. Moraes et al., Surface wettability is a key feature in the mechano-bactericidal activity of nanopillars. ACS Appl. Mater. Interfaces 14(24), 27564–27574 (2022). https://doi.org/10.1021/acsami.2c03258
Y. Chen, J. Gao, J. Ao, J. Zhang, R. Jiang et al., Bioinspired nanoflakes with antifouling and mechano-bactericidal capacity. Colloids Surf. B Biointerfaces 224, 113229 (2023). https://doi.org/10.1016/j.colsurfb.2023.113229
Y. Du, J. Ge, Y. Li, P.X. Ma, B. Lei, Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration. Biomaterials 157, 40–50 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.005
P. Shi, N. Zhao, J. Coyne, Y. Wang, DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat. Commun. 10(1), 2223 (2019). https://doi.org/10.1038/s41467-019-10231-y
Z. Dai, M. Dang, W. Zhang, S. Murugan, S.W. Teh et al., Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration. Artif. Cells Nanomed. Biotechnol. 47(1), 1898–1907 (2019). https://doi.org/10.1080/21691401.2019.1573183
R. Rial, Z. Liu, P. Messina, J.M. Ruso, Role of nanostructured materials in hard tissue engineering. Adv. Colloid Interface Sci. 304, 102682 (2022). https://doi.org/10.1016/j.cis.2022.102682
J.L. Van Eps, J.S. Fernandez-Moure, F.J. Cabrera, F. Taraballi, F. Paradiso et al., Improved posterolateral lumbar spinal fusion using a biomimetic, nanocomposite scaffold augmented by autologous platelet-rich plasma. Front. Bioeng. Biotechnol. 9, 622099 (2021). https://doi.org/10.3389/fbioe.2021.622099
S. Zhou, J. Xiao, Y. Ji, Y. Feng, S. Yan et al., Natural silk nanofibers as building blocks for biomimetic aerogel scaffolds. Int. J. Biol. Macromol. 237, 124223 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124223
Y. Wang, X. Yuan, K. Yu, H. Meng, Y. Zheng et al., Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials 171, 118–132 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.033
E. Nazarzadeh Zare, D. Khorsandi, A. Zarepour, H. Yilmaz, T. Agarwal et al., Biomedical applications of engineered heparin-based materials. Bioact. Mater. 31, 87–118 (2024). https://doi.org/10.1016/j.bioactmat.2023.08.002
Y. Hao, H. Li, J. Guo, D. Wang, J. Zhang et al., Bio-inspired antioxidant heparin-mimetic peptide hydrogel for radiation-induced skin injury repair. Adv. Healthc. Mater. 12(20), e2203387 (2023). https://doi.org/10.1002/adhm.202203387
T. Tong, W. Tang, S. Xiao, J. Liang, Antiviral effects of heparan sulfate analogue-modified two-dimensional MXene nanocomposites on PRRSV and SARS-CoV-2. Adv. NanoBiomed Res. 2(10), 2200067 (2022). https://doi.org/10.1002/anbr.202200067
Y. Chen, R. Wang, Y. Wang, W. Zhao, S. Sun et al., Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior. Int. J. Biol. Macromol. 98, 1–11 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.102
B. Akgul, C. Gulcan, S. Tornaci, M. Erginer, E. Toksoy Oner et al., Manufacturing radially aligned PCL nanofibers reinforced with sulfated levan and evaluation of its biological activity for healing tympanic membrane perforations. Macromol. Biosci. 25(1), 2400291 (2025). https://doi.org/10.1002/mabi.202400291
C. Li, M. Zhang, X. Liu, W. Zhao, C. Zhao, Immobilization of heparin-mimetic biomacromolecules on Fe3O4 nanops as magnetic anticoagulant via mussel-inspired coating. Mater. Sci. Eng. C 109, 110516 (2020). https://doi.org/10.1016/j.msec.2019.110516
L. Wang, Y. Wu, T. Hu, P.X. Ma, B. Guo, Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater. 96, 175–187 (2019). https://doi.org/10.1016/j.actbio.2019.06.035
C. Wu, Y. Sun, X. He, W. Weng, K. Cheng et al., Photothermal extracellular matrix based nanocomposite films and their effect on the osteogenic differentiation of BMSCs. Nanoscale 15(11), 5379–5390 (2023). https://doi.org/10.1039/D2NR05889H
M. Li, Q. Guo, C. Zhong, Z. Zhang, Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective. Drug Deliv. 30(1), 2288797 (2023). https://doi.org/10.1080/10717544.2023.2288797
P. Dash, A.M. Piras, M. Dash, Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J. Control. Release 327, 546–570 (2020). https://doi.org/10.1016/j.jconrel.2020.09.012
Y. Zhao, A. Li, L. Jiang, Y. Gu, J. Liu, Hybrid membrane-coated biomimetic nanops (HM@BNPs): a multifunctional nanomaterial for biomedical applications. Biomacromol 22(8), 3149–3167 (2021). https://doi.org/10.1021/acs.biomac.1c00440
Q. Tan, L. He, X. Meng, W. Wang, H. Pan et al., Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J. Nanobiotechnology 19(1), 173 (2021). https://doi.org/10.1186/s12951-021-00926-0
H. Chen, J. Deng, X. Yao, Y. He, H. Li et al., Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanops for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J. Nanobiotechnology 19(1), 342 (2021). https://doi.org/10.1186/s12951-021-01088-9
C. Montis, A. Salvatore, F. Valle, L. Paolini, F. Carlà et al., Biogenic supported lipid bilayers as a tool to investigate nano-bio interfaces. J. Colloid Interface Sci. 570, 340–349 (2020). https://doi.org/10.1016/j.jcis.2020.03.014
L. Chen, W. Hong, W. Ren, T. Xu, Z. Qian et al., Recent progress in targeted delivery vectors based on biomimetic nanops. Signal Transduct. Target. Ther. 6(1), 225 (2021). https://doi.org/10.1038/s41392-021-00631-2
Y. Zhang, M. Xiong, X. Ni, J. Wang, H. Rong et al., Virus-mimicking mesoporous silica nanops with an electrically neutral and hydrophilic surface to improve the oral absorption of insulin by breaking through dual barriers of the mucus layer and the intestinal epithelium. ACS Appl. Mater. Interfaces 13(15), 18077–18088 (2021). https://doi.org/10.1021/acsami.1c00580
Y. Gao, Y. Zhang, H. Xia, Y. Ren, H. Zhang et al., Biomimetic virus-like mesoporous silica nanops improved cellular internalization for co-delivery of antigen and agonist to enhance Tumor immunotherapy. Drug Deliv. 30(1), 2183814 (2023). https://doi.org/10.1080/10717544.2023.2183814
X. Zhao, Y. Wang, W. Jiang, Q. Wang, J. Li et al., Herpesvirus-mimicking DNAzyme-loaded nanops as a mitochondrial DNA stress inducer to activate innate immunity for tumor therapy. Adv. Mater. 34(37), 2204585 (2022). https://doi.org/10.1002/adma.202204585
Z. Wang, J. Wu, J.-J. Zheng, X. Shen, L. Yan et al., Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 12(1), 6866 (2021). https://doi.org/10.1038/s41467-021-27194-8
X. Qi, J. Pfaendtner, High-throughput computational screening of solid-binding peptides. J. Chem. Theory Comput. 20(7), 2959–2968 (2024). https://doi.org/10.1021/acs.jctc.3c01286
J.O. Winter, High-throughput tool uncovers links between cell signaling and nanomaterial uptake. Science 377(6604), 371–372 (2022). https://doi.org/10.1126/science.add3666
G. Perini, E. Rosa, G. Friggeri, L. Di Pietro, M. Barba et al., INSIDIA 20 high-throughput analysis of 3D cancer models: multiparametric quantification of graphene quantum dots photothermal therapy for glioblastoma and pancreatic cancer. Int. J. Mol. Sci. 23(6), 3217 (2022). https://doi.org/10.3390/ijms23063217
J. Peng, D. Schwalbe-Koda, K. Akkiraju, T. Xie, L. Giordano et al., Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat. Rev. Mater. 7(12), 991–1009 (2022). https://doi.org/10.1038/s41578-022-00466-5
C. Chen, Z. Yaari, E. Apfelbaum, P. Grodzinski, Y. Shamay et al., Merging data curation and machine learning to improve nanomedicines. Adv. Drug Deliv. Rev. 183, 114172 (2022). https://doi.org/10.1016/j.addr.2022.114172
S. Dhoble, T.-H. Wu, Kenry, Decoding nanomaterial-biosystem interactions through machine learning. Angew. Chem. Int. Ed. 63(16), e202318380 (2024). https://doi.org/10.1002/anie.202318380
M. Saeedimasine, R. Rahmani, A.P. Lyubartsev, Biomolecular adsorption on nanomaterials: combining molecular simulations with machine learning. J. Chem. Inf. Model. 64(9), 3799–3811 (2024). https://doi.org/10.1021/acs.jcim.3c01606
O.M. Fahmy, R.A. Eissa, H.H. Mohamed, N.G. Eissa, M. Elsabahy, Machine learning algorithms for prediction of entrapment efficiency in nanomaterials. Methods 218, 133–140 (2023). https://doi.org/10.1016/j.ymeth.2023.08.008
N. Serov, V. Vinogradov, Artificial intelligence to bring nanomedicine to life. Adv. Drug Deliv. Rev. 184, 114194 (2022). https://doi.org/10.1016/j.addr.2022.114194
L. Sun, H. Liu, Y. Ye, Y. Lei, R. Islam et al., Smart nanops for cancer therapy. Signal Transduct. Target. Ther. 8, 418 (2023). https://doi.org/10.1038/s41392-023-01642-x
L. Nuhn, Artificial intelligence assists nanops to enter solid tumours. Nat. Nanotechnol. 18(6), 550–551 (2023). https://doi.org/10.1038/s41565-023-01382-7
Z. Lin, W.-C. Chou, Y.-H. Cheng, C. He, N.A. Monteiro-Riviere et al., Predicting nanop delivery to tumors using machine learning and artificial intelligence approaches. Int. J. Nanomed. 17, 1365–1379 (2022). https://doi.org/10.2147/IJN.S344208
W.-C. Chou, Q. Chen, L. Yuan, Y.-H. Cheng, C. He et al., An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanop delivery to tumors in mice. J. Control. Release 361, 53–63 (2023). https://doi.org/10.1016/j.jconrel.2023.07.040
Y. Yang, G.I.N. Waterhouse, Y. Chen, D. Sun-Waterhouse, D. Li, Microbial-enabled green biosynthesis of nanomaterials: current status and future prospects. Biotechnol. Adv. 55, 107914 (2022). https://doi.org/10.1016/j.biotechadv.2022.107914
M.A. Ali, T. Ahmed, W. Wu, A. Hossain, R. Hafeez et al., Advancements in plant and microbe-based synthesis of metallic nanops and their antimicrobial activity against plant pathogens. Nanomaterials 10(6), 1146 (2020). https://doi.org/10.3390/nano10061146
R. Singh, U.U. Shedbalkar, S.A. Wadhwani, B.A. Chopade, Bacteriagenic silver nanops: synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol. 99(11), 4579–4593 (2015). https://doi.org/10.1007/s00253-015-6622-1
D. Gupta, A. Boora, A. Thakur, T.K. Gupta, Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environ. Res. 231, 116316 (2023). https://doi.org/10.1016/j.envres.2023.116316
M. Šebesta, H. Vojtková, V. Cyprichová, A.P. Ingle, M. Urík et al., Mycosynthesis of metal-containing nanops-synthesis by ascomycetes and basidiomycetes and their application. Int. J. Mol. Sci. 24(1), 304 (2022). https://doi.org/10.3390/ijms24010304
K. Vahabi, G.A. Mansoori, S. Karimi, Biosynthesis of silver nanops by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J. 1(1), 65–79 (2011). https://doi.org/10.5640/insc.010165
L. Zou, F. Zhu, Z.-E. Long, Y. Huang, Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications. J. Nanobiotechnol. 19(1), 120 (2021). https://doi.org/10.1186/s12951-021-00868-7
M. Ríos-Silva, M. Pérez, R. Luraschi, E. Vargas, C. Silva-Andrade et al., Anaerobiosis favors biosynthesis of single and multi-element nanostructures. PLoS ONE 17(10), e0273392 (2022). https://doi.org/10.1371/journal.pone.0273392
Y. Yang, K. Yang, J. Wang, D. Cui, M. Zhao, Fabrication and characterization of CdS nanowires templated in tobacco mosaic virus with improved photocatalytic ability. Appl. Microbiol. Biotechnol. 105(21–22), 8255–8264 (2021). https://doi.org/10.1007/s00253-021-11596-1
Y. Wang, T. Douglas, Bioinspired approaches to self-assembly of virus-like ps: from molecules to materials. Acc. Chem. Res. 55(10), 1349–1359 (2022). https://doi.org/10.1021/acs.accounts.2c00056
H. Zhang, N. Tang, X. Yu, Z. Guo, Z. Liu et al., Natural glycyrrhizic acid-tailored hydrogel with in situ gradient reduction of AgNPs layer as high-performance, multi-functional, sustainable flexible sensors. Chem. Eng. J. 430, 132779 (2022). https://doi.org/10.1016/j.cej.2021.132779
S.M. Reddy, S.B. Karmankar, H.A. Alzahrani, A. Hadap, A. Iqbal et al., Bioinspired synthesis of zinc molybdate nanops: an efficient material for growth inhibition of Escherichia coli, Staphylococcus aureus, and dye remediation. Bioinorg. Chem. Appl. 2023, 1287325 (2023). https://doi.org/10.1155/2023/1287325
R. Nishanthi, S. Malathi, S. John Paul, P. Palani, Green synthesis and characterization of bioinspired silver, gold and platinum nanops and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater. Sci. Eng. C 96, 693–707 (2019). https://doi.org/10.1016/j.msec.2018.11.050
Y. Abdallah, M. Liu, S.O. Ogunyemi, T. Ahmed, H. Fouad et al., Bioinspired green synthesis of chitosan and zinc oxide nanops with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae. Molecules 25(20), 4795 (2020). https://doi.org/10.3390/molecules25204795
H. Ji, Q. Zhu, Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery. J. Control. Release 361, 803–818 (2023). https://doi.org/10.1016/j.jconrel.2023.08.036
X. Luan, H. Kong, P. He, G. Yang, D. Zhu et al., Self-assembled peptide-based nanodrugs: molecular design, synthesis, functionalization, and targeted tumor bioimaging and biotherapy. Small 19(3), 2205787 (2023). https://doi.org/10.1002/smll.202205787
T. Wang, C. Ménard-Moyon, A. Bianco, Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chem. Soc. Rev. 51(9), 3535–3560 (2022). https://doi.org/10.1039/d1cs01064f
A. Olshefsky, C. Richardson, S.H. Pun, N.P. King, Engineering self-assembling protein nanops for therapeutic delivery. Bioconjug. Chem. 33(11), 2018–2034 (2022). https://doi.org/10.1021/acs.bioconjchem.2c00030
M.P. Vincent, J.O. Navidzadeh, S. Bobbala, E.A. Scott, Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 40(3), 255–276 (2022). https://doi.org/10.1016/j.ccell.2022.01.006
B. Li, Y. Cui, X. Wang, R. Tang, Novel nanomaterial–organism hybrids with biomedical potential. Wires Nanomed. Nanobiotechnol. 13(5), e1706 (2021). https://doi.org/10.1002/wnan.1706
D. Athanasiadou, K.M.M. Carneiro, DNA nanostructures as templates for biomineralization. Nat. Rev. Chem. 5(2), 93–108 (2021). https://doi.org/10.1038/s41570-020-00242-5
Y. Shang, N. Li, S. Liu, L. Wang, Z.-G. Wang et al., Site-specific synthesis of silica nanostructures on DNA origami templates. Adv. Mater. 32(21), e2000294 (2020). https://doi.org/10.1002/adma.202000294
N. Zhao, Z. Zeng, Y. Zu, Self-assembled aptamer-nanomedicine for targeted chemotherapy and gene therapy. Small 14(4), 201702103 (2018). https://doi.org/10.1002/smll.201702103
A.R. Voet, J.R. Tame, Protein-templated synthesis of metal-based nanomaterials. Curr. Opin. Biotechnol. 46, 14–19 (2017). https://doi.org/10.1016/j.copbio.2016.10.015
R.J. Wilson, Y. Hui, A.K. Whittaker, C.-X. Zhao, Facile bioinspired synthesis of iron oxide encapsulating silica nanocapsules. J. Colloid Interface Sci. 601, 78–84 (2021). https://doi.org/10.1016/j.jcis.2021.05.021
T. Yin, Y. Li, K. Bian, R. Zhu, Z. Liu et al., Self-assembly synthesis of vapreotide-gold hybrid nanoflower for photothermal antitumor activity. Mater. Sci. Eng. C Mater. Biol. Appl. 93, 716–723 (2018). https://doi.org/10.1016/j.msec.2018.08.017
Y.-Y. Xie, X.-T. Qin, J. Zhang, M.-Y. Sun, F.-P. Wang et al., Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity. J. Colloid Interface Sci. 622, 135–146 (2022). https://doi.org/10.1016/j.jcis.2022.04.058
J. Liu, F. Peng, Y. Kang, D. Gong, J. Fan et al., High-loading self-assembling peptide nanops as a lipid-free carrier for hydrophobic general anesthetics. Int. J. Nanomedicine 16, 5317–5331 (2021). https://doi.org/10.2147/IJN.S315310
T. Wang, Z. Gao, Y. Zhang, Y. Hong, Y. Tang et al., A supramolecular self-assembled nanomaterial for synergistic therapy of immunosuppressive tumor. J. Control. Release 351, 272–283 (2022). https://doi.org/10.1016/j.jconrel.2022.09.018
X. Zhang, M. Wang, J. Feng, B. Qin, C. Zhang et al., Multifunctional nanops co-loaded with Adriamycin and MDR-targeting siRNAs for treatment of chemotherapy-resistant esophageal cancer. J. Nanobiotechnology 20(1), 166 (2022). https://doi.org/10.1186/s12951-022-01377-x
S. Yang, C. Wang, J. Zhu, C. Lu, H. Li et al., Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 10(18), 8227–8249 (2020). https://doi.org/10.7150/thno.44276
J.L. Chen, C.N. Fries, S.J. Berendam, N.S. Rodgers, E.F. Roe et al., Self-assembling peptide nanofiber HIV vaccine elicits robust vaccine-induced antibody functions and modulates Fc glycosylation. Sci. Adv. 8(38), eabq0273 (2022). https://doi.org/10.1126/sciadv.abq0273
M. Grzelczak, L.M. Liz-Marzán, R. Klajn, Stimuli-responsive self-assembly of nanops. Chem. Soc. Rev. 48(5), 1342–1361 (2019). https://doi.org/10.1039/c8cs00787j
K. Ganguly, D.K. Patel, S.D. Dutta, W.-C. Shin, K.-T. Lim, Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. Int. J. Biol. Macromol. 155, 456–469 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.171
Y. Zhou, Q. Li, Y. Wu, X. Li, Y. Zhou et al., Molecularly stimuli-responsive self-assembled peptide nanops for targeted imaging and therapy. ACS Nano 17(9), 8004–8025 (2023). https://doi.org/10.1021/acsnano.3c01452
W. Zhan, G. Gao, Z. Liu, X. Liu, L. Xu et al., Enzymatic self-assembly of adamantane-peptide conjugate for combating Staphylococcus aureus infection. Adv. Healthc. Mater. 12(18), e2203283 (2023). https://doi.org/10.1002/adhm.202203283
A. Vardaxi, S. Pispas, Stimuli-responsive self-assembly of poly(2-(dimethylamino)ethyl methacrylate-co-(oligo ethylene glycol)methacrylate) random copolymers and their modified derivatives. Polymers 15(6), 1519 (2023). https://doi.org/10.3390/polym15061519
R. Solano, D. Patiño-Ruiz, L. Tejeda-Benitez, A. Herrera, Metal- and metal/oxide-based engineered nanops and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. Environ. Sci. Pollut. Res. Int. 28(14), 16962–16981 (2021). https://doi.org/10.1007/s11356-021-12996-6
L. Sun, R. Zhang, T. Zhang, X. Liu, Y. Zhao et al., Synthesis, applications and biosafety evaluation of carbon dots derived from herbal medicine. Biomed. Mater. 18(4), 042004 (2023). https://doi.org/10.1088/1748-605X/acdeb8
Y. Cheng, Z. Chen, S. Yang, T. Liu, L. Yin et al., Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. Sci. Total. Environ. 800, 149584 (2021). https://doi.org/10.1016/j.scitotenv.2021.149584
T. Jiang, Y. Lin, C.A. Amadei, N. Gou, S.M. Rahman et al., Comparative and mechanistic toxicity assessment of structure-dependent toxicity of carbon-based nanomaterials. J. Hazard. Mater. 418, 126282 (2021). https://doi.org/10.1016/j.jhazmat.2021.126282
K. Djayanti, P. Maharjan, K.H. Cho, S. Jeong, M.S. Kim et al., Mesoporous silica nanops as a potential nanoplatform: therapeutic applications and considerations. Int. J. Mol. Sci. 24(7), 6349 (2023). https://doi.org/10.3390/ijms24076349
L. Xu, Y.-Y. Wang, J. Huang, C.-Y. Chen, Z.-X. Wang et al., Silver nanops: Synthesis, medical applications and biosafety. Theranostics 10(20), 8996–9031 (2020). https://doi.org/10.7150/thno.45413
J.T. Buchman, N.V. Hudson-Smith, K.M. Landy, C.L. Haynes, Understanding nanop toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc. Chem. Res. 52(6), 1632–1642 (2019). https://doi.org/10.1021/acs.accounts.9b00053
Y. Yao, T. Zhang, M. Tang, The DNA damage potential of quantum dots: Toxicity, mechanism and challenge. Environ. Pollut. 317, 120676 (2023). https://doi.org/10.1016/j.envpol.2022.120676
A.D. Dey, A. Bigham, Y. Esmaeili, M. Ashrafizadeh, F.D. Moghaddam et al., Dendrimers as nanoscale vectors: unlocking the bars of cancer therapy. Semin. Cancer Biol. 86(Pt 2), 396–419 (2022). https://doi.org/10.1016/j.semcancer.2022.06.003
H. Su, X. Song, J. Li, M.Z. Iqbal, S.S.F. Kenston et al., Biosafety evaluation of Janus Fe3O4-TiO2 nanops in Sprague Dawley rats after intravenous injection. Int. J. Nanomedicine 13, 6987–7001 (2018). https://doi.org/10.2147/IJN.S167851
X. Liang, M. Tang, Research advances on cytotoxicity of cadmium-containing quantum dots. J. Nanosci. Nanotechnol. 19(9), 5375–5387 (2019). https://doi.org/10.1166/jnn.2019.16783
J. Frontiñan-Rubio, E. Llanos-González, V.J. González, E. Vázquez, M. Durán-Prado, Subchronic graphene exposure reshapes skin cell metabolism. J. Proteome Res. 21(7), 1675–1685 (2022). https://doi.org/10.1021/acs.jproteome.2c00064
J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu et al., Toxicity and mechanisms of action of titanium dioxide nanops in living organisms. J. Environ. Sci. 75, 40–53 (2019). https://doi.org/10.1016/j.jes.2018.06.010
S. Chen, Y. Su, M. Zhang, Y. Zhang, P. Xiu et al., Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J. Nanobiotechnology 21(1), 140 (2023). https://doi.org/10.1186/s12951-023-01899-y
H. Yu, Y. Wan, G. Zhang, X. Huang, L. Lin et al., Blood compatibility evaluations of two-dimensional Ti3C2T x nanosheets. Biomed. Mater. 17(2), 025004 (2022). https://doi.org/10.1088/1748-605X/ac45ed
X. Zhou, W. Jin, H. Sun, C. Li, J. Jia, Perturbation of autophagy: an intrinsic toxicity mechanism of nanops. Sci. Total. Environ. 823, 153629 (2022). https://doi.org/10.1016/j.scitotenv.2022.153629
X. Feng, Y. Zhang, C. Zhang, X. Lai, Y. Zhang et al., Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part. Fibre Toxicol. 17(1), 53 (2020). https://doi.org/10.1186/s12989-020-00372-0
J. Zhang, F. Wang, S.S.K. Yalamarty, N. Filipczak, Y. Jin et al., Nano silver-induced toxicity and associated mechanisms. Int. J. Nanomed. 17, 1851–1864 (2022). https://doi.org/10.2147/IJN.S355131
A. Lérida-Viso, A. Estepa-Fernández, A. García-Fernández, V. Martí-Centelles, R. Martínez-Máñez, Biosafety of mesoporous silica nanops; towards clinical translation. Adv. Drug Deliv. Rev. 201, 115049 (2023). https://doi.org/10.1016/j.addr.2023.115049
N.A. Hanan, H.I. Chiu, M.R. Ramachandran, W.H. Tung, N.N. Mohamad Zain et al., Cytotoxicity of plant-mediated synthesis of metallic nanops: a systematic review. Int. J. Mol. Sci. 19(6), 1725 (2018). https://doi.org/10.3390/ijms19061725
V. Vilas-Boas, M. Vinken, Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch. Toxicol. 95(1), 27–52 (2021). https://doi.org/10.1007/s00204-020-02940-x
J.G. Croissant, Y. Fatieiev, A. Almalik, N.M. Khashab, Mesoporous silica and organosilica nanops: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater. 7(4), 1700831 (2018). https://doi.org/10.1002/adhm.201700831
X. Gao, X. Zhang, Y. Wang, C. Fan, Effects of morphology and surface hydroxyl on the toxicity of BiOCl in human HaCaT cells. Chemosphere 163, 438–445 (2016). https://doi.org/10.1016/j.chemosphere.2016.08.063
Z. Wang, Y. Long, J. Fan, C. Xiao, C. Tong et al., Biosafety and biocompatibility assessment of Prussian blue nanops in vitro and in vivo. Nanomedicine 15(27), 2655–2670 (2020). https://doi.org/10.2217/nnm-2020-0191
F. Li, R. Li, F. Lu, L. Xu, L. Gan et al., Adverse effects of silver nanops on aquatic plants and zooplankton: a review. Chemosphere 338, 139459 (2023). https://doi.org/10.1016/j.chemosphere.2023.139459
X. Yang, Z. Wang, J. Xu, C. Zhang, P. Gao et al., Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: a review. Chemosphere 358, 142208 (2024). https://doi.org/10.1016/j.chemosphere.2024.142208
J. Zhang, L. Jiang, D. Wu, Y. Yin, H. Guo, Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO2 nanops stress. Sci. Total. Environ. 734, 139443 (2020). https://doi.org/10.1016/j.scitotenv.2020.139443
L. Sun, Y. Sogo, X. Wang, A. Ito, Biosafety of mesoporous silica nanops: a combined experimental and literature study. J. Mater. Sci. Mater. Med. 32(9), 102 (2021). https://doi.org/10.1007/s10856-021-06582-y
M. Hassanpour, S.A. Hosseini Tafreshi, O. Amiri, M. Hamadanian, M. Salavati-Niasari, Toxic effects of Fe2WO6 nanops towards microalga Dunaliella salina: Sonochemical synthesis nanops and investigate its impact on the growth. Chemosphere 258, 127348 (2020). https://doi.org/10.1016/j.chemosphere.2020.127348
G. Wu, Y. Huang, J. Li, Y. Lu, L. Liu et al., Chronic level of exposures to low-dosed MoS2 nanomaterials exhibits more toxic effects in HaCaT keratinocytes. Ecotoxicol. Environ. Saf. 242, 113848 (2022). https://doi.org/10.1016/j.ecoenv.2022.113848
M. Canta, V. Cauda, The investigation of the parameters affecting the ZnO nanop cytotoxicity behaviour: a tutorial review. Biomater. Sci. 8(22), 6157–6174 (2020). https://doi.org/10.1039/D0BM01086C
A.A.M. Kämpfer, M. Busch, V. Büttner, G. Bredeck, B. Stahlmecke et al., Model complexity as determining factor for in vitro nanosafety studies: effects of silver and titanium dioxide nanomaterials in intestinal models. Small 17(15), 2004223 (2021). https://doi.org/10.1002/smll.202004223
M.M. Alsmadi, N.K. Al-Nemrawi, R. Obaidat, A.E. Abu Alkahsi, K.M. Korshed et al., Insights into the mapping of green synthesis conditions for ZnO nanops and their toxicokinetics. Nanomedicine 17(18), 1281–1303 (2022). https://doi.org/10.2217/nnm-2022-0092
M. Kus-Liśkiewicz, P. Fickers, I. Ben Tahar, Biocompatibility and cytotoxicity of gold nanops: recent advances in methodologies and regulations. Int. J. Mol. Sci. 22(20), 10952 (2021). https://doi.org/10.3390/ijms222010952
Y. Li, L. Zhong, L. Zhang, X. Shen, L. Kong et al., Research advances on the adverse effects of nanomaterials in a model organism. Caenorhabditis elegans. Environ. Toxicol. Chem. 40(9), 2406–2424 (2021). https://doi.org/10.1002/etc.5133
Y. Yao, T. Zhang, M. Tang, A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors. Environ. Pollut. 306, 119270 (2022). https://doi.org/10.1016/j.envpol.2022.119270
H.-R. Jia, Y.-X. Zhu, Q.-Y. Duan, Z. Chen, F.-G. Wu, Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J. Control. Release 311–312, 301–318 (2019). https://doi.org/10.1016/j.jconrel.2019.08.022
I. Guseva Canu, S. Fraize-Frontier, C. Michel, S. Charles, Weight of epidemiological evidence for titanium dioxide risk assessment: current state and further needs. J. Expo. Sci. Environ. Epidemiol. 30(3), 430–435 (2020). https://doi.org/10.1038/s41370-019-0161-2
G. Squillacioti, T. Charreau, P. Wild, V. Bellisario, F. Ghelli et al., Worse pulmonary function in association with cumulative exposure to nanomaterials Hints of a mediation effect via pulmonary inflammation. Part. Fibre Toxicol.. Fibre Toxicol. 21(1), 28 (2024). https://doi.org/10.1186/s12989-024-00589-3
M.R. Miller, C.A. Poland, Nanotoxicology: the need for a human touch? Small 16(36), e2001516 (2020). https://doi.org/10.1002/smll.202001516
N. Weng, J. Meng, S. Huo, F. Wu, W.-X. Wang, Hemocytes of bivalve mollusks as cellular models in toxicological studies of metals and metal-based nanomaterials. Environ. Pollut. 312, 120082 (2022). https://doi.org/10.1016/j.envpol.2022.120082
B. Hu, Z. Cheng, S. Liang, Advantages and prospects of stem cells in nanotoxicology. Chemosphere 291, 132861 (2022). https://doi.org/10.1016/j.chemosphere.2021.132861
C. Yang, Z. Du, L. Mei, X. Chen, Y. Liao et al., Influences of lead-based perovskite nanops exposure on early development of human retina. J. Nanobiotechnol. 23(1), 144 (2025). https://doi.org/10.1186/s12951-025-03245-w
C.D. Abueva, S.R. Yoon, N.T. Carpena, S.C. Ahn, S.Y. Chang et al., Development of NIR photocleavable nanops with BDNF for vestibular neuron regeneration. J. Nanobiotechnol. 23(1), 209 (2025). https://doi.org/10.1186/s12951-025-03298-x
M. Prasad, R. Kumar, L. Buragohain, A. Kumari, M. Ghosh, Organoid technology: a reliable developmental biology tool for organ-specific nanotoxicity evaluation. Front. Cell Dev. Biol. 9, 696668 (2021). https://doi.org/10.3389/fcell.2021.696668
J. Liu, M. Qin, Y. Shi, R. Jiang, Z. Wang et al., Volatile carbonyl metabolites analysis of nanop exposed lung cells in an organ-on-a-chip system. Talanta 274, 126066 (2024). https://doi.org/10.1016/j.talanta.2024.126066
E. Joossens, P. Macko, T. Palosaari, K. Gerloff, I. Ojea-Jiménez et al., A high throughput imaging database of toxicological effects of nanomaterials tested on HepaRG cells. Sci. Data 6(1), 46 (2019). https://doi.org/10.1038/s41597-019-0053-2
A.R. Collins, B. Annangi, L. Rubio, R. Marcos, M. Dorn et al., High throughput toxicity screening and intracellular detection of nanomaterials. Wires Nanomed. Nanobiotechnol. 9(1), e1413 (2017). https://doi.org/10.1002/wnan.1413
D.A. Winkler, Role of artificial intelligence and machine learning in nanosafety. Small 16(36), e2001883 (2020). https://doi.org/10.1002/smll.202001883
Y. Zhou, Y. Wang, W. Peijnenburg, M.G. Vijver, S. Balraadjsing et al., Using machine learning to predict adverse effects of metallic nanomaterials to various aquatic organisms. Environ. Sci. Technol. 57(46), 17786–17795 (2023). https://doi.org/10.1021/acs.est.2c07039
Y. Wang, Y. Yang, Y. Shi, H. Song, C. Yu, Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32(18), e1904106 (2020). https://doi.org/10.1002/adma.201904106
B. Abbasi, M. Zaka, S. Hashmi, Z. Khan, Biogenic synthesis of Au, Ag and Au–Ag alloy nanops using Cannabis sativa leaf extract. IET Nanobiotechnol. 12(3), 277–284 (2018). https://doi.org/10.1049/iet-nbt.2017.0169
M. Zhang, C. Zhang, X. Zhai, F. Luo, Y. Du et al., Antibacterial mechanism and activity of cerium oxide nanops. Sci. China Mater. 62(11), 1727–1739 (2019). https://doi.org/10.1007/s40843-019-9471-7
C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden et al., Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14(1), 89–96 (2017). https://doi.org/10.1111/iwj.12557
Y. Feng, X. Li, D. Ji, J. Tian, Q. Peng et al., Functionalised penetrating peptide-chondroitin sulphate-gold nanops: Synthesis, characterization, and applications as an anti-Alzheimer’s disease drug. Int. J. Biol. Macromol. 230, 123125 (2023). https://doi.org/10.1016/j.ijbiomac.2022.123125
D.M. Teleanu, A.-G. Niculescu, I.I. Lungu, C.I. Radu, O. Vladâcenco et al., An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 23(11), 5938 (2022). https://doi.org/10.3390/ijms23115938
A. Misrani, S. Tabassum, L. Yang, Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 13, 617588 (2021). https://doi.org/10.3389/fnagi.2021.617588
J.L.M. Björkegren, A.J. Lusis, Atherosclerosis: recent developments. Cell 185(10), 1630–1645 (2022). https://doi.org/10.1016/j.cell.2022.04.004
Z. Han, X. Gao, Y. Wang, S. Cheng, X. Zhong et al., Ultrasmall iron-quercetin metal natural product nano complex with antioxidant and macrophage regulation in rheumatoid arthritis. Acta Pharm. Sin. B 13(4), 1726–1739 (2023). https://doi.org/10.1016/j.apsb.2022.11.020
G. Aviello, U.G. Knaus, ROS in gastrointestinal inflammation: Rescue Or Sabotage? Br. J. Pharmacol. 174(12), 1704–1718 (2017). https://doi.org/10.1111/bph.13428
S. Zhang, R. Langer, G. Traverso, Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 16, 82–96 (2017). https://doi.org/10.1016/j.nantod.2017.08.006
H. Chen, S. Zhou, M. Zhu, B. Wang, W. Chen et al., Gold nanops modified with polyethyleneimine disturbed the activity of drug-metabolic enzymes and induced inflammation-mediated liver injury in mice. Front. Pharmacol. 12, 706791 (2021). https://doi.org/10.3389/fphar.2021.706791
Y. Yang, S. Fan, Q. Chen, Y. Lu, Y. Zhu et al., Acute exposure to gold nanops aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk. J. Nanobiotechnology 20(1), 37 (2022). https://doi.org/10.1186/s12951-021-01203-w
H. Chen, M. Zhang, B. Li, D. Chen, X. Dong et al., Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials 53, 532–544 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.105
Y. Iqbal, A. Raouf Malik, T. Iqbal, M. Hammad Aziz, F. Ahmed et al., Green synthesis of ZnO and Ag-doped ZnO nanops using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater. Lett. 305, 130671 (2021). https://doi.org/10.1016/j.matlet.2021.130671
M. Irfan, H. Munir, H. Ismail, Characterization and fabrication of zinc oxide nanops by gum Acacia modesta through green chemistry and impregnation on surgical sutures to boost up the wound healing process. Int. J. Biol. Macromol. 204, 466–475 (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.043
K. Hou, J. Zhao, H. Wang, B. Li, K. Li et al., Chiral gold nanops enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun. 11(1), 4790 (2020). https://doi.org/10.1038/s41467-020-18525-2
J. Xue, T. Liu, Y. Liu, Y. Jiang, V.D.D. Seshadri et al., Neuroprotective effect of biosynthesised gold nanops synthesised from root extract of Paeonia moutan against Parkinson disease - In vitro & In vivo model. J. Photochem. Photobiol. B. 200, 111635 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111635
M. Jung, H. Kim, J.W. Hwang, Y. Choi, M. Kang et al., Iron oxide nanop-incorporated mesenchymal stem cells for Alzheimer’s disease treatment. Nano Lett. 23(2), 476–490 (2023). https://doi.org/10.1021/acs.nanolett.2c03682
P.K. Pandey, R. Maheshwari, N. Raval, P. Gondaliya, K. Kalia et al., Nanogold-core multifunctional dendrimer for pulsatile chemo-, photothermal- and photodynamic- therapy of rheumatoid arthritis. J. Colloid Interface Sci. 544, 61–77 (2019). https://doi.org/10.1016/j.jcis.2019.02.073
X. Lu, J. Liu, L. Gou, J. Li, B. Yuan et al., Designing melittin-graphene hybrid complexes for enhanced antibacterial activity. Adv. Healthc. Mater. 8(9), e1801521 (2019). https://doi.org/10.1002/adhm.201801521
Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram et al., Antibacterial carbon-based nanomaterials. Adv. Mater. 31(45), e1804838 (2019). https://doi.org/10.1002/adma.201804838
L. Kashinath, K. Namratha, K. Byrappa, Microwave mediated synthesis and characterization of CeO2-GO hybrid composite for removal of chromium ions and its antibacterial efficiency. J. Environ. Sci. 76, 65–79 (2019). https://doi.org/10.1016/j.jes.2018.03.027
N. Dubey, K. Ellepola, F.E.D. Decroix, J.L.P. Morin, A.C. Neto et al., Graphene onto medical grade titanium: an atom-thick multimodal coating that promotes osteoblast maturation and inhibits biofilm formation from distinct species. Nanotoxicology 12(4), 274–289 (2018). https://doi.org/10.1080/17435390.2018.1434911
B. Bhaduri, M. Engel, T. Polubesova, W. Wu, B. Xing et al., Dual functionality of an Ag-Fe3O4-carbon nanotube composite material: Catalytic reduction and antibacterial activity. J. Environ. Chem. Eng. 6(4), 4103–4113 (2018). https://doi.org/10.1016/j.jece.2018.06.023
J. Cao, S.P. Hlaing, J. Lee, J. Kim, E.H. Lee et al., Bacteria-adhesive nitric oxide-releasing graphene oxide nanops for MRPA-infected wound healing therapy. ACS Appl. Mater. Interfaces 14(45), 50507–50519 (2022). https://doi.org/10.1021/acsami.2c13317
X. He, Y. Lv, Y. Lin, H. Yu, Y. Zhang et al., Platinum nanops regulated V2C MXene nanoplatforms with NIR-II enhanced nanozyme effect for photothermal and chemodynamic anti-infective therapy. Adv. Mater. 36(25), 2400366 (2024). https://doi.org/10.1002/adma.202400366
F. Attar, M.G. Shahpar, B. Rasti, M. Sharifi, A.A. Saboury et al., Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 278, 130–144 (2019). https://doi.org/10.1016/j.molliq.2018.12.011
L. Mei, S. Zhu, Y. Liu, W. Yin, Z. Gu et al., An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418, 129431 (2021). https://doi.org/10.1016/j.cej.2021.129431
S. Kumar, I.M. Adjei, S.B. Brown, O. Liseth, B. Sharma, Manganese dioxide nanops protect cartilage from inflammation-induced oxidative stress. Biomaterials 224, 119467 (2019). https://doi.org/10.1016/j.biomaterials.2019.119467
A. Adhikari, S. Mondal, M. Das, P. Biswas, U. Pal et al., Incorporation of a biocompatible nanozyme in cellular antioxidant enzyme cascade reverses Huntington’s like disorder in preclinical model. Adv. Healthc. Mater. 10(7), e2001736 (2021). https://doi.org/10.1002/adhm.202001736
X. Zhang, H. Yang, Y. He, D. Zhang, G. Lu et al., Yeast-inspired orally-administered nanocomposite scavenges oxidative stress and restores gut immune homeostasis for inflammatory bowel disease treatment. ACS Nano 19(7), 7350–7369 (2025). https://doi.org/10.1021/acsnano.4c18099
Y. Gao, L. Zhai, J. Chen, D. Lin, L.-K. Zhang et al., Focused ultrasound-mediated cerium-based nanoreactor against Parkinson’s disease via ROS regulation and microglia polarization. J. Control. Release 368, 580–594 (2024). https://doi.org/10.1016/j.jconrel.2024.03.010
J. Zhang, C. Wang, X. Wu, Q. Shen, Y. Du, Nanozyme-based therapeutic strategies for rheumatoid arthritis. J. Control. Release 377, 716–734 (2025). https://doi.org/10.1016/j.jconrel.2024.11.072
J. Yang, S. Xiao, J. Deng, Y. Li, H. Hu et al., Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy. J. Nanobiotechnology 22(1), 491 (2024). https://doi.org/10.1186/s12951-024-02678-z
Q. Chen, X. Yang, Y. Yu, X. Duan, R. Ni et al., Biomimetic cerium-assisted supra-carbon dots assembly for reactive oxygen species-activated atherosclerosis theranostic. Small 21(8), 2408980 (2025). https://doi.org/10.1002/smll.202408980
Y. He, E. Peng, X. Ba, J. Wu, W. Deng et al., ROS responsive cerium oxide biomimetic nanops alleviates calcium oxalate crystals induced kidney injury via suppressing oxidative stress and M1 macrophage polarization. Small 21(3), 2405417 (2025). https://doi.org/10.1002/smll.202405417
K. Zhang, M. Tu, W. Gao, X. Cai, F. Song et al., Hollow Prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 19(5), 2812–2823 (2019). https://doi.org/10.1021/acs.nanolett.8b04729
M. Xu, D. Ran, J. Hu, J. Mao, D. Qiao et al., Multifunctional Prussian blue nanozymes alleviate atherosclerosis through inhibiting the inflammation feedback loop. J. Mater. Chem. B 13(4), 1459–1473 (2025). https://doi.org/10.1039/D4TB01926A
C. Cho, H. Oh, J.S. Lee, L.-J. Kang, E.-J. Oh et al., Prussian blue nanozymes coated with Pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation. Biomaterials 297, 122131 (2023). https://doi.org/10.1016/j.biomaterials.2023.122131
C. Chen, H. Wu, Q. Li, M. Liu, F. Yin et al., Manganese Prussian blue nanozymes with antioxidant capacity prevent acetaminophen-induced acute liver injury. Biomater. Sci. 11(7), 2348–2358 (2023). https://doi.org/10.1039/D2BM01968J
S. Zhang, W. Ruan, J. Guan, Single-atom nanozymes for antibacterial applications. Food Chem. 456, 140094 (2024). https://doi.org/10.1016/j.foodchem.2024.140094
Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
F. Wu, Y. Wang, Y. Li, L. Shi, L. Yuan et al., Single-atom Cu anchored on carbon nitride as a bifunctional glucose oxidase and peroxidase nanozyme for antibacterial therapy. ACS Nano 19(11), 10816–10828 (2025). https://doi.org/10.1021/acsnano.4c12348
Y. Zhang, C. Zhang, W. Qian, F. Lei, Z. Chen et al., Recent advances in MOF-based nanozymes: synthesis, activities, and bioapplications. Biosens. Bioelectron. 263, 116593 (2024). https://doi.org/10.1016/j.bios.2024.116593
L. Huang, D.-W. Sun, H. Pu, Photosensitized peroxidase mimicry at the hierarchical 0D/2D heterojunction-like quasi metal-organic framework interface for boosting biocatalytic disinfection. Small 18(20), 2200178 (2022). https://doi.org/10.1002/smll.202200178
B. Yang, H. Yao, J. Yang, C. Chen, Y. Guo et al., In situ synthesis of natural antioxidase mimics for catalytic anti-inflammatory treatments: rheumatoid arthritis as an example. J. Am. Chem. Soc. 144(1), 314–330 (2022). https://doi.org/10.1021/jacs.1c09993
B. Yang, H. Yao, J. Yang, C. Chen, J. Shi, Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat. Commun. 13(1), 1988 (2022). https://doi.org/10.1038/s41467-022-29735-1
M. Liao, Q. Cui, Y. Hu, J. Xing, D. Wu et al., Recent advances in the application of MXenes for neural tissue engineering and regeneration. Neural Regen. Res. 19(2), 258–263 (2024). https://doi.org/10.4103/1673-5374.379037
H. Hu, H. Huang, L. Xia, X. Qian, W. Feng et al., Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem. Eng. J. 440, 135810 (2022). https://doi.org/10.1016/j.cej.2022.135810
X. Sun, S. Luo, L. Zhang, Y. Miao, G. Yan, Photodynamic antibacterial activity of oxidase-like nanozyme based on long-lived room-temperature phosphorescent carbon dots. Food Chem. 434, 137541 (2024). https://doi.org/10.1016/j.foodchem.2023.137541
E.A. McHugh, A.V. Liopo, K. Mendoza, C.S. Robertson, G. Wu et al., Oxidized activated charcoal nanozymes: synthesis, and optimization for in vitro and in vivo bioactivity for traumatic brain injury. Adv. Mater. 36(10), 2211239 (2024). https://doi.org/10.1002/adma.202211239
Q. Huang, Y. Yang, Y. Zhu, Q. Chen, T. Zhao et al., Oral metal-free melanin nanozymes for natural and durable targeted treatment of inflammatory bowel disease (IBD). Small 19(19), e2207350 (2023). https://doi.org/10.1002/smll.202207350
M. Cordani, J. Fernández-Lucas, A. Khosravi, E.N. Zare, P. Makvandi et al., Carbon-based nanozymes for cancer therapy and diagnosis: a review. Int. J. Biol. Macromol. 297, 139704 (2025). https://doi.org/10.1016/j.ijbiomac.2025.139704
A. Nair, R.H. Chandrashekhar, C.M. Day, S. Garg, Y. Nayak et al., Polymeric functionalization of mesoporous silica nanops: Biomedical insights. Int. J. Pharm. 660, 124314 (2024). https://doi.org/10.1016/j.ijpharm.2024.124314
Y. Yu, R. Tian, Y. Zhao, X. Qin, L. Hu et al., Self-assembled corrole/chitosan photothermal nanops for accelerating infected diabetic wound healing. Adv. Healthc. Mater. 12(16), e2201651 (2023). https://doi.org/10.1002/adhm.202201651
J. Ye, Y. Fan, Y. She, J. Shi, Y. Yang et al., Biomimetic self-propelled asymmetric nanomotors for cascade-targeted treatment of neurological inflammation. Adv. Sci. 11(22), e2310211 (2024). https://doi.org/10.1002/advs.202310211
K.A. Choi, J.H. Kim, K. Ryu, N. Kaushik, Current nanomedicine for targeted vascular disease treatment: trends and perspectives. Int. J. Mol. Sci. 23(20), 12397 (2022). https://doi.org/10.3390/ijms232012397
L. Li, S. Liu, J. Tan, L. Wei, D. Wu et al., Recent advance in treatment of atherosclerosis: key targets and plaque-positioned delivery strategies. J. Tissue Eng. 13, 20417314221088508 (2022). https://doi.org/10.1177/20417314221088509
P. Dosta, I. Tamargo, V. Ramos, S. Kumar, D.W. Kang et al., Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(β-amino ester) nanops conjugated with VCAM-1 targeting peptide. Adv. Healthc. Mater. 10(15), e2001894 (2021). https://doi.org/10.1002/adhm.202001894
Q. Bai, Y. Xiao, H. Hong, X. Cao, L. Zhang et al., Scavenger receptor-targeted plaque delivery of microRNA-coated nanops for alleviating atherosclerosis. Proc. Natl. Acad. Sci. U.S.A. 119(39), e2201443119 (2022). https://doi.org/10.1073/pnas.2201443119
Y. Wang, Q. Zhou, L. Lu, J. Xu, G. Yang et al., Combining oxygen delivery and generation for targeted atherosclerosis therapy. J. Control. Release 380, 1017–1030 (2025). https://doi.org/10.1016/j.jconrel.2025.02.053
T. Gui, L. Luo, B. Chhay, L. Zhong, Y. Wei et al., Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidant nanops targeting synovium for osteoarthritis therapy. Biomaterials 283, 121437 (2022). https://doi.org/10.1016/j.biomaterials.2022.121437
M.A. Beach, U. Nayanathara, Y. Gao et al., Polymeric nanops for drug delivery. Chem. Rev. 124(9), 5505–5616 (2024). https://doi.org/10.1021/acs.chemrev.3c00705
L. Guo, H. Yan, Q. Gong, W. Zheng, L. Zhong et al., Glomerulus-targeted ROS-responsive polymeric nanops for effective membranous nephropathy therapy. ACS Appl. Mater. Interfaces 16(27), 35447–35462 (2024). https://doi.org/10.1021/acsami.4c04345
D. González-Restrepo, A. Zuluaga-Vélez, L.M. Orozco, J.C. Sepúlveda-Arias, Silk fibroin-based dressings with antibacterial and anti-inflammatory properties. Eur. J. Pharm. Sci. 195, 106710 (2024). https://doi.org/10.1016/j.ejps.2024.106710
X. Zhang, Y. Liang, S. Huang, B. Guo, Chitosan-based self-healing hydrogel dressing for wound healing. Adv. Colloid Interface Sci. 332, 103267 (2024). https://doi.org/10.1016/j.cis.2024.103267
X. Ai, Y. Duan, Q. Zhang, D. Sun, R.H. Fang et al., Cartilage-targeting ultrasmall lipid-polymer hybrid nanops for the prevention of cartilage degradation. Bioeng. Transl. Med. 6(1), e10187 (2021). https://doi.org/10.1002/btm2.10187
R.M. Williams, J. Shah, E. Mercer, H.S. Tian, V. Thompson et al., Kidney-targeted redox scavenger therapy prevents cisplatin-induced acute kidney injury. Front. Pharmacol. 12, 790913 (2022). https://doi.org/10.3389/fphar.2021.790913
S. Meng, H. Wu, D. Xiao, S. Lan, A. Dong, Recent advances in bacterial cellulose-based antibacterial composites for infected wound therapy. Carbohydr. Polym. 316, 121082 (2023). https://doi.org/10.1016/j.carbpol.2023.121082
F.V. Ferreira, A.G. Souza, R. Ajdary, L.P. de Souza, J.H. Lopes et al., Nanocellulose-based porous materials: regulation and pathway to commercialization in regenerative medicine. Bioact. Mater. 29, 151–176 (2023). https://doi.org/10.1016/j.bioactmat.2023.06.020
Y. Li, Y. Tian, W. Zheng, Y. Feng, R. Huang et al., Composites of bacterial cellulose and small molecule-decorated gold nanops for treating gram-negative bacteria-infected wounds. Small 13(27), 1700130 (2017). https://doi.org/10.1002/smll.201700130
G. Tan, L. Wang, W. Pan, K. Chen, Polysaccharide electrospun nanofibers for wound healing applications. Int. J. Nanomed. 17, 3913–3931 (2022). https://doi.org/10.2147/IJN.S371900
S. Chen, R. Li, X. Li, J. Xie, Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev. 132, 188–213 (2018). https://doi.org/10.1016/j.addr.2018.05.001
I. Dasgupta, A. Chatterjee, Recent advances in miRNA delivery systems. Methods Protoc. 4(1), 10 (2021). https://doi.org/10.3390/mps4010010
A. Vyawahare, R. Prakash, C. Jori, A. Ali, S.S. Raza et al., Caffeic acid modified nanomicelles inhibit articular cartilage deterioration and reduce disease severity in experimental inflammatory arthritis. ACS Nano 16(11), 18579–18591 (2022). https://doi.org/10.1021/acsnano.2c07027
Y. Li, Q. Liang, L. Zhou, Y. Cao, J. Yang et al., An ROS-responsive artesunate prodrug nanosystem co-delivers dexamethasone for rheumatoid arthritis treatment through the HIF-1α/NF-κB cascade regulation of ROS scavenging and macrophage repolarization. Acta Biomater. 152, 406–424 (2022). https://doi.org/10.1016/j.actbio.2022.08.054
P. Khare, S.X. Edgecomb, C.M. Hamadani, E.E.L. Tanner, D.S. Manickam, Lipid nanop-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 197, 114861 (2023). https://doi.org/10.1016/j.addr.2023.114861
H.M. Eid, A.A. Ali, A.M. Abdelhaleem Ali, E.M. Eissa, R.M. Hassan et al., Potential use of tailored citicoline chitosan-coated liposomes for effective wound healing in diabetic rat model. Int. J. Nanomed. 17, 555–575 (2022). https://doi.org/10.2147/IJN.S342504
M.R. Arabestani, A. Bigham, F. Kamarehei, M. Dini, F. Gorjikhah et al., Solid lipid nanops and their application in the treatment of bacterial infectious diseases. Biomed. Pharmacother. 174, 116433 (2024). https://doi.org/10.1016/j.biopha.2024.116433
E. Ortega Martínez, M.E. Morales Hernández, J. Castillo-González, E. González-Rey, M.A. Ruiz Martínez, Dopamine-loaded chitosan-coated solid lipid nanops as a promise nanocarriers to the CNS. Neuropharmacology 249, 109871 (2024). https://doi.org/10.1016/j.neuropharm.2024.109871
M. Abudurexiti, J. Xue, X. Li, X. Zhang, Y. Qiu et al., Curcumin/TGF-β1 siRNA loaded solid lipid nanops alleviate cerebral injury after intracerebral hemorrhage by transnasal brain targeting. Colloids Surf. B Biointerfaces 237, 113857 (2024). https://doi.org/10.1016/j.colsurfb.2024.113857
M. Mohammed, U.H. Ibrahim, A. Aljoundi, C.A. Omolo, N. Devnarain et al., Enzyme-responsive biomimetic solid lipid nanops for antibiotic delivery against hyaluronidase-secreting bacteria. Int. J. Pharm. 640, 122967 (2023). https://doi.org/10.1016/j.ijpharm.2023.122967
H.-C. Wang, W. Yang, L. Xu, Y.-H. Han, Y. Lin et al., BV2 membrane-coated PEGylated-liposomes delivered hFGF21 to cortical and hippocampal microglia for Alzheimer’s disease therapy. Adv. Healthc. Mater. 13(19), 2400125 (2024). https://doi.org/10.1002/adhm.202400125
J. Mondal, S. Pillarisetti, V. Junnuthula, M. Saha, S.R. Hwang et al., Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J. Control. Release 353, 1127–1149 (2023). https://doi.org/10.1016/j.jconrel.2022.12.027
R. Yang, Y. Liao, L. Wang, P. He, Y. Hu et al., Exosomes derived from M2b macrophages attenuate DSS-induced colitis. Front. Immunol. 10, 2346 (2019). https://doi.org/10.3389/fimmu.2019.02346
G. Guo, Z. Tan, Y. Liu, F. Shi, J. She, The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res. Ther. 13(1), 138 (2022). https://doi.org/10.1186/s13287-022-02811-5
E. Jin, Y. Yang, S. Cong, D. Chen, R. Chen et al., Lemon-derived nanop-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J. Nanobiotechnology 23(1), 68 (2025). https://doi.org/10.1186/s12951-025-03138-y
B. Zhao, H. Lin, X. Jiang, W. Li, Y. Gao et al., Exosome-like nanops derived from fruits, vegetables, and herbs: innovative strategies of therapeutic and drug delivery. Theranostics 14(12), 4598–4621 (2024). https://doi.org/10.7150/thno.97096
Z. Tian, H. Ning, X. Wang, Y. Wang, T. Han et al., Endothelial autophagy promotes atheroprotective communication between endothelial and smooth muscle cells via exosome-mediated delivery of miR-204-5p. Arterioscler. Thromb. Vasc. Biol. 44(8), 1813–1832 (2024). https://doi.org/10.1161/ATVBAHA.123.319993