Low-Temperature Fabrication of Stable Black-Phase CsPbI3 Perovskite Flexible Photodetectors Toward Wearable Health Monitoring
Corresponding Author: Yanlin Song
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 63
Abstract
Flexible wearable optoelectronic devices fabricated from organic–inorganic hybrid perovskites significantly accelerate the development of portable energy, biomedicine, and sensing fields, but their poor thermal stability hinders further applications. Conversely, all-inorganic perovskites possess excellent thermal stability, but black-phase all-inorganic perovskite film usually requires high-temperature annealing steps, which increases energy consumption and is not conducive to the fabrication of flexible wearable devices. In this work, an unprecedented low-temperature fabrication of stable black-phase CsPbI3 perovskite films is demonstrated by the in situ hydrolysis reaction of diphenylphosphinic chloride additive. The released diphenyl phosphate and chloride ions during the hydrolysis reaction significantly lower the phase transition temperature and effectively passivate the defects in the perovskite films, yielding high-performance photodetectors with a responsivity of 42.1 A W−1 and a detectivity of 1.3 × 1014 Jones. Furthermore, high-fidelity image and photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors. This work provides a new perspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices.
Highlights:
1 Low-temperature fabrication of black-phase CsPbI3 perovskite films is first demonstrated by using diphenylphosphinic chloride additive under 30–50 °C, arising from the steric effect and chloride insertion engineering.
2 Large-area high-quality all-inorganic perovskite films with fewer defects enhanced crystallographic orientation, and excellent environmental stability is fabricated.
3 The record performances are demonstrated for flexible wearable photodetectors with a responsivity of 42.1 A W−1, a detectivity of 1.3 × 1014 Jones, high-fidelity image, photoplethysmography sensor functions, and high mechanical stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Jiang, A.A. Trotsyuk, S. Niu, D. Henn, K. Chen et al., Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41(5), 652–662 (2022). https://doi.org/10.1038/s41587-022-01528-3
- Z. Yan, D. Xu, Z. Lin, P. Wang, B. Cao et al., Highly stretchable van der Waals thin films foradaptable and breathable electronic membranes. Science 375, 852–859 (2022). https://doi.org/10.1126/science.abl8941
- S. Li, Y. Zhang, X. Liang, H. Wang, H. Lu et al., Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 13(1), 5416 (2022). https://doi.org/10.1038/s41467-022-33133-y
- B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11(1), 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
- H. Xu, L. Yin, C. Liu, X. Sheng, N. Zhao, Recent advances in biointegrated optoelectronic devices. Adv. Mater. 30(33), 1800156 (2018). https://doi.org/10.1002/adma.201800156
- H. Liu, H. Zhang, W. Han, H. Lin, R. Li et al., 3D printed flexible strain sensors: From printing to devices and signals. Adv. Mater. 33(8), 2004782 (2021). https://doi.org/10.1002/adma.202004782
- M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. U.S.A. 117(13), 7063–7070 (2020). https://doi.org/10.1073/pnas.1920911117
- C. Liu, J.T. Kim, D.S. Yang, D. Cho, S. Yoo et al., Multifunctional materials strategies for enhanced safety of wireless, skin-interfaced bioelectronic devices. Adv. Funct. Mater. 33(34), 2302256 (2023). https://doi.org/10.1002/adfm.202302256
- Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: From molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15(1), 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
- Y. Tang, P. Jin, Y. Wang, D. Li, Y. Chen et al., Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging. Nat. Commun. 14(1), 4961 (2023). https://doi.org/10.1038/s41467-023-40711-1
- X. Li, H. Yu, Z. Liu, J. Huang, X. Ma et al., Progress and challenges toward effective flexible perovskite solar cells. Nano-Micro Lett. 15(1), 206 (2023). https://doi.org/10.1007/s40820-023-01165-8
- D. Yang, R. Yang, S. Priya, S. Liu, Recent advances in flexible perovskite solar cells: fabrication and applications. Angew. Chem. Int. Ed. 58(14), 4466–4483 (2019). https://doi.org/10.1002/anie.201809781
- G. Lee, M.-C. Kim, Y.W. Choi, N. Ahn, J. Jang et al., Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ. Sci. 12(10), 3182–3191 (2019). https://doi.org/10.1039/c9ee01944h
- L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu et al., A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59(16), 6442–6450 (2020). https://doi.org/10.1002/anie.201915912
- L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
- Y. Zhou, C. Fei, M.A. Uddin, L. Zhao, Z. Ni et al., Self-powered perovskite photon-counting detectors. Nature 616(7958), 712–718 (2023). https://doi.org/10.1038/s41586-023-05847-6
- Y. Fu, M. Yuan, Y.J. Zhao, M.Q. Dong, Y.W. Guo et al., Gradient bandgap-tunable perovskite microwire arrays toward flexible color-cognitive devices. Adv. Funct. Mater. 33, 2214094 (2023). https://doi.org/10.1002/adfm.202214094
- H. Zhu, S. Teale, M.N. Lintangpradipto, S. Mahesh, B. Chen et al., Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8(9), 569–586 (2023). https://doi.org/10.1038/s41578-023-00582-w
- C. Chen, J. Chen, H. Han, L. Chao, J. Hu et al., Perovskite solar cells based on screen-printed thin films. Nature 612(7939), 266–271 (2022). https://doi.org/10.1038/s41586-022-05346-0
- H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370(6512), 74 (2020). https://doi.org/10.1126/science.abb8985
- X. Yin, Z. Wang, Y. Zhao, S. Zhang, Y. Zhang et al., Cross-linking polymerization boosts the performance of perovskite solar cells: From material design to performance regulation. Energy Environ. Sci. 16, 4251–4279 (2023). https://doi.org/10.1039/d3ee01546g
- J. Bai, H. Wang, J. Ma, Y. Zhao, H. Lu et al., Wafer-scale patterning integration of chiral 3D perovskite single crystals toward high-performance full-stokes polarimeter. J. Am. Chem. Soc. 146, 18771–18780 (2024). https://doi.org/10.1021/jacs.4c06822
- Z. Gu, Y. Zhang, Y. Zhao, Q. Xu, Y. Song, From planar structures to curved optoelectronic devices: The advances of halide perovskite arrays. Matter. 6(9), 2666–2696 (2023). https://doi.org/10.1016/j.matt.2023.05.007
- J.A. Steele, H. Jin, I. Dovgaliuk, R.F. Berger, T. Braeckevelt et al., Thermal unequilibrium of strainedblack CsPbI3 thin films. Science 365, 679–684 (2019). https://doi.org/10.1126/science.aax3878
- P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye et al., Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 9(1), 2225 (2018). https://doi.org/10.1038/s41467-018-04636-4
- R.J. Sutton, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger et al., Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 3(8), 1787–1794 (2018). https://doi.org/10.1021/acsenergylett.8b00672
- A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.M. Jancu et al., Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12(4), 3477–3486 (2018). https://doi.org/10.1021/acsnano.8b00267
- Y. Chen, X. Liu, T. Wang, Y. Zhao, Highly stable inorganic lead halide perovskite toward efficient photovoltaics. Acc. Chem. Res. 54, 3452–3461 (2021). https://doi.org/10.1126/science.aav8680
- H. Yao, J. Zhao, Z. Li, Z. Ci, Z. Jin, Research and progress of black metastable phase CsPbI3 solar cells. Mater. Chem. Front. 5(3), 1221–1235 (2021). https://doi.org/10.1039/d0qm00756k
- P. Becker, J.A. Márquez, J. Just, A. Al-Ashouri, C. Hages et al., Low temperature synthesis of stable γ-CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation. Adv. Energy Mater. 9(22), 1900555 (2019). https://doi.org/10.1002/aenm.201900555
- B. Jeong, H. Han, Y.J. Choi, S.H. Cho, E.H. Kim et al., All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 28(16), 1706401 (2018). https://doi.org/10.1002/adfm.201706401
- U. Bansode, A. Rahman, S. Ogale, Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J. Mater. Chem. C 7(23), 6986–6996 (2019). https://doi.org/10.1039/c9tc01292c
- S. Dastidar, D.A. Egger, L.Z. Tan, S.B. Cromer, A.D. Dillon et al., High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 16(6), 3563–3570 (2016). https://doi.org/10.1021/acs.nanolett.6b00635
- Y. Fu, M.T. Rea, J. Chen, D.J. Morrow, M.P. Hautzinger et al., Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films. Chem. Mater. 29(19), 8385–8394 (2017). https://doi.org/10.1021/acs.chemmater.7b02948
- B. Han, B. Cai, Q. Shan, J. Song, J. Li et al., Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 28(47), 1804285 (2018). https://doi.org/10.1002/adfm.201804285
- S.M. Yoon, H. Min, J.B. Kim, G. Kim, K.S. Lee et al., Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule 5(1), 183–196 (2021). https://doi.org/10.1016/j.joule.2020.11.020
- B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou et al., Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9(1), 1076 (2018). https://doi.org/10.1038/s41467-018-03169-0
- T. Zhang, I. Dar, G. Li, F. Xu, N. Guo et al., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017). https://doi.org/10.1126/sciadv.1700841
- C. Dong, D. Liu, L. Wang, K. Li, X. Yang et al., Growth mechanism of thermally evaporated γ-CsPbI3 film. Adv. Funct. Mater. 33(28), 2214414 (2023). https://doi.org/10.1002/adfm.202214414
- D. Ma, P. Todorovic, S. Meshkat, M.I. Saidaminov, Y.K. Wang et al., Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142, 5126–5134 (2020). https://doi.org/10.1021/jacs.9b12323
- W. Xiong, C. Zou, W. Tang, S. Xing, Z. Wang et al., Efficient and bright blue perovskite LEDs enabled by a carbazole-phosphonic acid interface. ACS Energy Lett. 8, 2897–2903 (2023). https://doi.org/10.1021/acsenergylett.3c00589
- Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
- K. Wang, Z. Jin, L. Liang, H. Bian, H. Wang et al., Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy 58, 175–182 (2019). https://doi.org/10.1016/j.nanoen.2019.01.034
- T. Du, T.J. Macdonald, R.X. Yang, M. Li, Z. Jiang et al., Additive-free, low-temperature crystallization of stable α-FAPbI3 perovskite. Adv. Mater. 34(9), e2107850 (2022). https://doi.org/10.1002/adma.202107850
- P. Ahlawat, A. Hinderhofer, E.A. Alharbi, H. Lu, A. Ummadisingu et al., A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3. Sci. Adv. 7, eabe326 (2021). https://doi.org/10.1126/sciadv.abe3326
- Z. Yu, X. Shen, X. Fan, Y.-K. Jung, W.H. Jeong et al., Hydrogen bond-assisted dual passivation for blue perovskite light-emitting diodes. ACS Energy Lett. 8, 4296–4303 (2023). https://doi.org/10.1021/acsenergylett.3c01323
- Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan et al., The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: Additive or dopant? Angew. Chem. Int. Ed. 58(46), 16691–16696 (2019). https://doi.org/10.1002/anie.201910800
- G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3(39), 19688–19695 (2015). https://doi.org/10.1039/c5ta06398a
References
Y. Jiang, A.A. Trotsyuk, S. Niu, D. Henn, K. Chen et al., Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41(5), 652–662 (2022). https://doi.org/10.1038/s41587-022-01528-3
Z. Yan, D. Xu, Z. Lin, P. Wang, B. Cao et al., Highly stretchable van der Waals thin films foradaptable and breathable electronic membranes. Science 375, 852–859 (2022). https://doi.org/10.1126/science.abl8941
S. Li, Y. Zhang, X. Liang, H. Wang, H. Lu et al., Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 13(1), 5416 (2022). https://doi.org/10.1038/s41467-022-33133-y
B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11(1), 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
H. Xu, L. Yin, C. Liu, X. Sheng, N. Zhao, Recent advances in biointegrated optoelectronic devices. Adv. Mater. 30(33), 1800156 (2018). https://doi.org/10.1002/adma.201800156
H. Liu, H. Zhang, W. Han, H. Lin, R. Li et al., 3D printed flexible strain sensors: From printing to devices and signals. Adv. Mater. 33(8), 2004782 (2021). https://doi.org/10.1002/adma.202004782
M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. U.S.A. 117(13), 7063–7070 (2020). https://doi.org/10.1073/pnas.1920911117
C. Liu, J.T. Kim, D.S. Yang, D. Cho, S. Yoo et al., Multifunctional materials strategies for enhanced safety of wireless, skin-interfaced bioelectronic devices. Adv. Funct. Mater. 33(34), 2302256 (2023). https://doi.org/10.1002/adfm.202302256
Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: From molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15(1), 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
Y. Tang, P. Jin, Y. Wang, D. Li, Y. Chen et al., Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging. Nat. Commun. 14(1), 4961 (2023). https://doi.org/10.1038/s41467-023-40711-1
X. Li, H. Yu, Z. Liu, J. Huang, X. Ma et al., Progress and challenges toward effective flexible perovskite solar cells. Nano-Micro Lett. 15(1), 206 (2023). https://doi.org/10.1007/s40820-023-01165-8
D. Yang, R. Yang, S. Priya, S. Liu, Recent advances in flexible perovskite solar cells: fabrication and applications. Angew. Chem. Int. Ed. 58(14), 4466–4483 (2019). https://doi.org/10.1002/anie.201809781
G. Lee, M.-C. Kim, Y.W. Choi, N. Ahn, J. Jang et al., Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ. Sci. 12(10), 3182–3191 (2019). https://doi.org/10.1039/c9ee01944h
L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu et al., A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59(16), 6442–6450 (2020). https://doi.org/10.1002/anie.201915912
L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
Y. Zhou, C. Fei, M.A. Uddin, L. Zhao, Z. Ni et al., Self-powered perovskite photon-counting detectors. Nature 616(7958), 712–718 (2023). https://doi.org/10.1038/s41586-023-05847-6
Y. Fu, M. Yuan, Y.J. Zhao, M.Q. Dong, Y.W. Guo et al., Gradient bandgap-tunable perovskite microwire arrays toward flexible color-cognitive devices. Adv. Funct. Mater. 33, 2214094 (2023). https://doi.org/10.1002/adfm.202214094
H. Zhu, S. Teale, M.N. Lintangpradipto, S. Mahesh, B. Chen et al., Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8(9), 569–586 (2023). https://doi.org/10.1038/s41578-023-00582-w
C. Chen, J. Chen, H. Han, L. Chao, J. Hu et al., Perovskite solar cells based on screen-printed thin films. Nature 612(7939), 266–271 (2022). https://doi.org/10.1038/s41586-022-05346-0
H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370(6512), 74 (2020). https://doi.org/10.1126/science.abb8985
X. Yin, Z. Wang, Y. Zhao, S. Zhang, Y. Zhang et al., Cross-linking polymerization boosts the performance of perovskite solar cells: From material design to performance regulation. Energy Environ. Sci. 16, 4251–4279 (2023). https://doi.org/10.1039/d3ee01546g
J. Bai, H. Wang, J. Ma, Y. Zhao, H. Lu et al., Wafer-scale patterning integration of chiral 3D perovskite single crystals toward high-performance full-stokes polarimeter. J. Am. Chem. Soc. 146, 18771–18780 (2024). https://doi.org/10.1021/jacs.4c06822
Z. Gu, Y. Zhang, Y. Zhao, Q. Xu, Y. Song, From planar structures to curved optoelectronic devices: The advances of halide perovskite arrays. Matter. 6(9), 2666–2696 (2023). https://doi.org/10.1016/j.matt.2023.05.007
J.A. Steele, H. Jin, I. Dovgaliuk, R.F. Berger, T. Braeckevelt et al., Thermal unequilibrium of strainedblack CsPbI3 thin films. Science 365, 679–684 (2019). https://doi.org/10.1126/science.aax3878
P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye et al., Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 9(1), 2225 (2018). https://doi.org/10.1038/s41467-018-04636-4
R.J. Sutton, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger et al., Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 3(8), 1787–1794 (2018). https://doi.org/10.1021/acsenergylett.8b00672
A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.M. Jancu et al., Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12(4), 3477–3486 (2018). https://doi.org/10.1021/acsnano.8b00267
Y. Chen, X. Liu, T. Wang, Y. Zhao, Highly stable inorganic lead halide perovskite toward efficient photovoltaics. Acc. Chem. Res. 54, 3452–3461 (2021). https://doi.org/10.1126/science.aav8680
H. Yao, J. Zhao, Z. Li, Z. Ci, Z. Jin, Research and progress of black metastable phase CsPbI3 solar cells. Mater. Chem. Front. 5(3), 1221–1235 (2021). https://doi.org/10.1039/d0qm00756k
P. Becker, J.A. Márquez, J. Just, A. Al-Ashouri, C. Hages et al., Low temperature synthesis of stable γ-CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation. Adv. Energy Mater. 9(22), 1900555 (2019). https://doi.org/10.1002/aenm.201900555
B. Jeong, H. Han, Y.J. Choi, S.H. Cho, E.H. Kim et al., All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 28(16), 1706401 (2018). https://doi.org/10.1002/adfm.201706401
U. Bansode, A. Rahman, S. Ogale, Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J. Mater. Chem. C 7(23), 6986–6996 (2019). https://doi.org/10.1039/c9tc01292c
S. Dastidar, D.A. Egger, L.Z. Tan, S.B. Cromer, A.D. Dillon et al., High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 16(6), 3563–3570 (2016). https://doi.org/10.1021/acs.nanolett.6b00635
Y. Fu, M.T. Rea, J. Chen, D.J. Morrow, M.P. Hautzinger et al., Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films. Chem. Mater. 29(19), 8385–8394 (2017). https://doi.org/10.1021/acs.chemmater.7b02948
B. Han, B. Cai, Q. Shan, J. Song, J. Li et al., Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 28(47), 1804285 (2018). https://doi.org/10.1002/adfm.201804285
S.M. Yoon, H. Min, J.B. Kim, G. Kim, K.S. Lee et al., Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule 5(1), 183–196 (2021). https://doi.org/10.1016/j.joule.2020.11.020
B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou et al., Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9(1), 1076 (2018). https://doi.org/10.1038/s41467-018-03169-0
T. Zhang, I. Dar, G. Li, F. Xu, N. Guo et al., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017). https://doi.org/10.1126/sciadv.1700841
C. Dong, D. Liu, L. Wang, K. Li, X. Yang et al., Growth mechanism of thermally evaporated γ-CsPbI3 film. Adv. Funct. Mater. 33(28), 2214414 (2023). https://doi.org/10.1002/adfm.202214414
D. Ma, P. Todorovic, S. Meshkat, M.I. Saidaminov, Y.K. Wang et al., Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142, 5126–5134 (2020). https://doi.org/10.1021/jacs.9b12323
W. Xiong, C. Zou, W. Tang, S. Xing, Z. Wang et al., Efficient and bright blue perovskite LEDs enabled by a carbazole-phosphonic acid interface. ACS Energy Lett. 8, 2897–2903 (2023). https://doi.org/10.1021/acsenergylett.3c00589
Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
K. Wang, Z. Jin, L. Liang, H. Bian, H. Wang et al., Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy 58, 175–182 (2019). https://doi.org/10.1016/j.nanoen.2019.01.034
T. Du, T.J. Macdonald, R.X. Yang, M. Li, Z. Jiang et al., Additive-free, low-temperature crystallization of stable α-FAPbI3 perovskite. Adv. Mater. 34(9), e2107850 (2022). https://doi.org/10.1002/adma.202107850
P. Ahlawat, A. Hinderhofer, E.A. Alharbi, H. Lu, A. Ummadisingu et al., A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3. Sci. Adv. 7, eabe326 (2021). https://doi.org/10.1126/sciadv.abe3326
Z. Yu, X. Shen, X. Fan, Y.-K. Jung, W.H. Jeong et al., Hydrogen bond-assisted dual passivation for blue perovskite light-emitting diodes. ACS Energy Lett. 8, 4296–4303 (2023). https://doi.org/10.1021/acsenergylett.3c01323
Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan et al., The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: Additive or dopant? Angew. Chem. Int. Ed. 58(46), 16691–16696 (2019). https://doi.org/10.1002/anie.201910800
G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3(39), 19688–19695 (2015). https://doi.org/10.1039/c5ta06398a