Pushing the Electrochemical Performance Limits of Polypyrrole Toward Stable Microelectronic Devices
Corresponding Author: Yanlin Song
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 49
Abstract
Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics, for instance, electrical conductivity, high ionic conductivity, visual transparency, and mechanical tractability. Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims, comprising energy storage and production devices, flexible and wearable optoelectronic devices. A two-step tactic to assemble high-performance polypyrrole (PPy)-based microsupercapacitor (MSC) is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy, and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed. The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm−2 (at a current density of 0.1 mA cm−2), an exceptional cycling performance of retaining 79% capacitance after 10,000 charge/discharge cycles at 5 mA cm−2. Benefiting from the intermediate graphene, current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate, which delivered an areal capacitance of 70.25 mF cm−2 at 0.1 mA cm−2 and retained 46% of the initial capacitance at a current density of 1.0 mA cm−2. The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.
Highlights:
1 Optimizing the current collectors with rGO and the addition of CNT in PPy, and the structural pulverization is prevented significantly.
2 Areal capacitances of 65.9 to 70 mF cm−2 are achieved for PPy-CNT@rGO microsupercapacitors (MSCs) with 79% capacitance retention after 10,000 cycles.
3 The MSC-derived capacitive micro-strain sensor is capable of biosignals detection.
4 The micro strain sensor is capable of detecting wide levels of applied strain with short response/recovery time and excellent reliability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Meng, J. Maeng, S.W. John, P.P. Irazoqui, Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices. Adv. Energy Mater. 4(7), 1301269 (2014). https://doi.org/10.1002/aenm.201301269
- M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7(3), 867–884 (2014). https://doi.org/10.1039/C3EE43526A
- M.S. Javed, H. Lei, Z. Wang, B.T. Liu, X. Cai et al., 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 70, 104573 (2020). https://doi.org/10.1016/j.nanoen.2020.104573
- S.S. Delekta, M.M. Laurila, M. Mäntysalo, J. Li, Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors. Nano-Micro Lett. 12, 40 (2020). https://doi.org/10.1007/s40820-020-0368-8
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
- B. Hsia, J. Marschewski, S. Wang, J.B. In, C. Carraro et al., Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 25(5), 055401 (2014). https://doi.org/10.1088/0957-4484/25/5/055401
- J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328(5977), 480–483 (2010). https://doi.org/10.1126/science.1184126
- A. Liu, P. Kovacik, N. Peard, W. Tian, H. Goktas et al., Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing. Adv. Mater. 29(19), 1606091 (2017). https://doi.org/10.1002/adma.201606091
- F. Niu, R. Guo, L. Dang, J. Sun, Q. Lic et al., Coral-like PEDOT nanotube arrays on carbon fibers as high-rate flexible supercapacitor electrodes. ACS Appl. Energy Mater. 3(8), 7794–7803 (2020). https://doi.org/10.1021/acsaem.0c01202
- C. Ding, T. Liu, X. Yan, L. Huang, S. Ryu et al., An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors. Nano-Micro Lett. 12, 63 (2020). https://doi.org/10.1007/s40820-020-0393-7
- S. Nejati, T.E. Minford, Y.Y. Smolin, K.K. Lau, Enhanced charge storage of ultrathin polythiophene films within porous nanostructures. ACS Nano 8(6), 5413–5422 (2014). https://doi.org/10.1021/nn500007c
- P. Moni, J. Lau, A.C. Mohr, T.C. Lin, S.H. Tolbert et al., Growth temperature and electrochemical performance in vapor-deposited poly (3, 4-ethylenedioxythiophene) thin films for high-rate electrochemical energy storage. ACS Appl. Energy Mater. 1(12), 7093–7105 (2018). https://doi.org/10.1021/acsaem.8b01529
- G.L. Xu, Y. Li, T. Ma, Y. Ren, H.H. Wang et al., PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy 18, 253–264 (2015). https://doi.org/10.1016/j.nanoen.2015.10.020
- B.H. Kim, K.Y. Bae, S.H. Cho, W.Y. Yoon, Electrochemical behaviors of a vapor-phase polymerized conductive polymer coated on LiV3O8 in Li–metal rechargeable batteries. ACS Appl. Mater. Interfaces 10(34), 28695–28701 (2018). https://doi.org/10.1021/acsami.8b09657
- M.H. Gharahcheshmeh, M.M. Tavakoli, E.F. Gleason, M.T. Robinson, J. Kong et al., Tuning, optimization, and perovskite solar cell device integration of ultrathin poly (3, 4-ethylene dioxythiophene) films via a single-step all-dry process. Sci. Adv. 5(11), 0414 (2019). https://doi.org/10.1126/sciadv.aay0414
- W.J. Jo, J.T. Nelson, S. Chang, V. Bulović, S. Gradečak et al., Oxidative chemical vapor deposition of neutral hole transporting polymer for enhanced solar cell efficiency and lifetime. Adv. Mater. 28(30), 6399–6404 (2016). https://doi.org/10.1002/adma.201601221
- H. Yi, D. Wang, L. Duan, F. Haque, C. Xu et al., Solution-processed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell. Electrochim. Acta 319, 349–358 (2019). https://doi.org/10.1016/j.electacta.2019.06.134
- S. Lee, D.C. Borrelli, K.K. Gleason, Air-stable polythiophene-based thin film transistors processed using oxidative chemical vapor deposition: carrier transport and channel/metallization contact interface. Org. Electron. 33, 253–262 (2016). https://doi.org/10.1016/j.orgel.2016.03.034
- D.C. Borrelli, S. Lee, K.K. Gleason, Optoelectronic properties of polythiophene thin films and organic TFTs fabricated by oxidative chemical vapor deposition. J. Mater. Chem. C 2(35), 7223–7231 (2014). https://doi.org/10.1039/C4TC00881B
- T. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M. El-Mansy, Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76(9), 4769–4784 (2019). https://doi.org/10.1007/s00289-018-2633-2
- W. Lv, Z. Liu, Z. Li, Z. Han, Y. Yang et al., Flexible substrates enabled highly integrated patterns with submicron precision toward intrinsically stretchable circuits. Smart Mater. 3(3), 503–512 (2022). https://doi.org/10.1002/smm2.1104
- A. Castro-Carranza, J.C. Nolasco, S. Bley, M. Rückmann, F. Meierhofer et al., Effects of FeCl3 as oxidizing agent on the conduction mechanisms in polypyrrole (PPy)/PC–ZnO hybrid heterojunctions grown by oxidative chemical vapor deposition. J. Polym. Sci. B Polym. Phys. 54(15), 1537–1544 (2016). https://doi.org/10.1002/polb.24049
- L. Krieg, Z. Zhang, D. Splith, H. Wenckstern, M. Grundmann et al., Controlled formation of Schottky diodes on n-doped ZnO layers by deposition of p-conductive polymer layers with oxidative chemical vapor deposition. Nano Express 1(1), 010013 (2020). https://doi.org/10.1088/2632-959X/ab82e6
- T. Yu, J. Xu, L. Liu, Z. Ren, W. Yang et al., Electrochemically deposited interlayer between PEDOT:PSS and phosphorescent emitting layer for multilayer solution-processed phosphorescent OLEDs. J. Mater. Chem. C 4(40), 9509–9515 (2016). https://doi.org/10.1039/C6TC03039D
- Y. Song, J.L. Xu, X.X. Liu, Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48–58 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.102
- M.D. Ingram, H. Staesche, K.S. Ryder, Activated polypyrrole electrodes for high-power supercapacitor applications. Solid State Ion. 169(1–4), 51–57 (2004). https://doi.org/10.1016/j.ssi.2002.12.003
- X. Lu, F. Zhang, H. Dou, C. Yuan, S. Yang et al., Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochim. Acta 69, 160–166 (2012). https://doi.org/10.1016/j.electacta.2012.02.107
- L. Yang, Z. Shi, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor. Electrochim. Acta 153, 76–82 (2015). https://doi.org/10.1016/j.electacta.2014.11.146
- Y. Chen, L. Du, P. Yang, P. Sun, X. Yu et al., Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J. Power Sources 287, 68–74 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.026
- P. Xu, X. Hong, Z. Zhu, H. Ouyang, Z. Zhou et al., Revealing kinetics process of fast charge-storage behavior associated with potential in 2D polyaniline. Energy Tech. 10(8), 2200257 (2022). https://doi.org/10.1002/ente.202200257
- C. Yang, J. Shen, C. Wang, H. Fei, H. Bao et al., All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J. Mater. Chem. A 2(5), 1458–1464 (2014). https://doi.org/10.1039/C3TA13953K
- W. He, H. Qiang, S. Liang, F. Guo, R. Wang et al., Hierarchically porous wood aerogel/polypyrrole (PPy) composite thick electrode for supercapacitor. Chem. Eng. J. 446, 137331 (2022). https://doi.org/10.1016/j.cej.2022.137331
- Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015). https://doi.org/10.1039/C5CS00362H
- S. Zeng, H. Chen, F. Cai, Y. Kang, M. Chen et al., Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A 3(47), 23864–23870 (2015). https://doi.org/10.1039/C5TA05937B
- J.Y. Kim, K.H. Kim, K.B. Kim, Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J. Power Sources 176(1), 396–402 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.117
- Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv. Mater. 29(26), 1700274 (2017). https://doi.org/10.1002/adma.201700274
- L. Qin, Q. Tao, X. Liu, M. Fahlman, J. Halim et al., Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 60, 734–742 (2019). https://doi.org/10.1016/j.nanoen.2019.04.002
- Q. Jiang, N. Kurra, H.N. Alshareef, Marker pen lithography for flexible and curvilinear on-chip energy storage. Adv. Funct. Mater. 25(31), 4976–4984 (2015). https://doi.org/10.1002/adfm.201501698
- Z. Wang, P. Tammela, P. Zhang, M. Strømme, L. Nyholm, Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. J. Mater. Chem. A 2(21), 7711–7716 (2014). https://doi.org/10.1039/C4TA01094A
- S. Lage-Rivera, A. Ares-Pernas, M.J. Abad, Last developments in polymers for wearable energy storage devices. Int. J. Energy Res. 46(8), 10475–10498 (2022). https://doi.org/10.1002/er.7934
- H. Rasouli, L. Naji, M.G. Hosseini, The influence of electrodeposited PPy film morphology on the electrochemical characteristics of Nafion-based energy storage devices. J. Electroanal. Chem. 836, 165–175 (2019). https://doi.org/10.1016/j.jelechem.2019.02.007
- M.H. Bai, T.Y. Liu, F. Luan, Y. Li, X.X. Liu, Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J. Mater. Chem. A 2(28), 10882–10888 (2014). https://doi.org/10.1039/C3TA15391F
- Y. Zhao, B. Liu, L. Pan, G. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 6(10), 2856–2870 (2013). https://doi.org/10.1039/C3EE40997J
- W. Zhang, X. Wen, S. Yang, Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir 19(10), 4420–4426 (2003). https://doi.org/10.1021/la020894w
- N. Kurra, M.K. Hota, H. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500–508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
- X. Li, Y. Ma, P. Shen, C. Zhang, M. Cao et al., An ultrahigh energy density flexible asymmetric microsupercapacitor based on Ti3C2Tx and PPy/MnO2 with wide voltage window. Adv. Mater. Technol. 5(8), 2000272 (2020). https://doi.org/10.1002/admt.202000272
- L. Liu, Q. Lu, S. Yang, J. Guo, Q. Tian et al., All-printed solid-state microsupercapacitors derived from self-template synthesis of Ag@ PPy nanocomposites. Adv. Mater. Technol. 3(1), 1700206 (2018). https://doi.org/10.1002/admt.201700206
- X. Ma, S. Feng, L. He, M. Yan, X. Tian et al., Rapid, all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors. Nanoscale 9(32), 11765–11772 (2017). https://doi.org/10.1039/C7NR01789H
- M. Tahir, L. He, W. Yang, X. Hong, W.A. Haider et al., Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. J. Energy Chem. 49, 224–232 (2020). https://doi.org/10.1016/j.jechem.2020.02.036
- M. Zhu, Y. Huang, Y. Huang, H. Li, Z. Wang et al., A highly durable, transferable, and substrate-versatile high-performance all-polymer micro-supercapacitor with plug-and-play function. Adv. Mater. 29(16), 1605137 (2017). https://doi.org/10.1002/adma.201605137
- L. Li, C. Fu, Z. Lou, S. Chen, W. Han et al., Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano Energy 41, 261–268 (2017). https://doi.org/10.1016/j.nanoen.2017.08.060
- J. Li, A. Levitt, N. Kurra, K. Juan, N. Noriega et al., MXene-conducting polymer electrochromic microsupercapacitors. Energy Stor. Mater. 20, 455–461 (2019). https://doi.org/10.1016/j.ensm.2019.04.028
- Y. Song, M. Shang, J. Li, Y. Su, Continuous and controllable synthesis of MnO2/PPy composites with core-shell structures for supercapacitors. Chem. Eng. J. 405, 127059 (2021). https://doi.org/10.1016/j.cej.2020.127059
- S. Ma, W. Li, J. Cao, X. Wang, Y. Xie et al., Flexible planar microsupercapacitors based on polypyrrole nanotubes. ACS Appl. Energy Mater. 4(9), 8857–8865 (2021). https://doi.org/10.1021/acsaem.1c00962
- Y. Han, L. Dai, Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys. 220(3), 1800355 (2019). https://doi.org/10.1002/macp.201800355
- X. Ma, X. Hong, L. He, L. Xu, Y. Zhang et al., High energy density micro-supercapacitor based on a three-dimensional bicontinuous porous carbon with interconnected hierarchical pores. ACS Appl. Mater. Interfaces 11(1), 948–956 (2018). https://doi.org/10.1021/acsami.8b18853
- W. Yang, L. He, X. Tian, M. Yan, H. Yuan et al., Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small 13(26), 1700639 (2017). https://doi.org/10.1002/smll.201700639
- L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13, 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
- Y. Zhao, B. Zhang, B. Yao, Y. Qiu, Z. Peng et al., Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 3(4), 1196–1210 (2020). https://doi.org/10.1016/j.matt.2020.08.024
- Z. He, W. Chen, B. Liang, C. Liu, L. Yang et al., Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl. Mater. Interfaces 10(15), 12816–12823 (2018). https://doi.org/10.1021/acsami.8b01050
References
C. Meng, J. Maeng, S.W. John, P.P. Irazoqui, Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices. Adv. Energy Mater. 4(7), 1301269 (2014). https://doi.org/10.1002/aenm.201301269
M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7(3), 867–884 (2014). https://doi.org/10.1039/C3EE43526A
M.S. Javed, H. Lei, Z. Wang, B.T. Liu, X. Cai et al., 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 70, 104573 (2020). https://doi.org/10.1016/j.nanoen.2020.104573
S.S. Delekta, M.M. Laurila, M. Mäntysalo, J. Li, Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors. Nano-Micro Lett. 12, 40 (2020). https://doi.org/10.1007/s40820-020-0368-8
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
B. Hsia, J. Marschewski, S. Wang, J.B. In, C. Carraro et al., Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 25(5), 055401 (2014). https://doi.org/10.1088/0957-4484/25/5/055401
J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328(5977), 480–483 (2010). https://doi.org/10.1126/science.1184126
A. Liu, P. Kovacik, N. Peard, W. Tian, H. Goktas et al., Monolithic flexible supercapacitors integrated into single sheets of paper and membrane via vapor printing. Adv. Mater. 29(19), 1606091 (2017). https://doi.org/10.1002/adma.201606091
F. Niu, R. Guo, L. Dang, J. Sun, Q. Lic et al., Coral-like PEDOT nanotube arrays on carbon fibers as high-rate flexible supercapacitor electrodes. ACS Appl. Energy Mater. 3(8), 7794–7803 (2020). https://doi.org/10.1021/acsaem.0c01202
C. Ding, T. Liu, X. Yan, L. Huang, S. Ryu et al., An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors. Nano-Micro Lett. 12, 63 (2020). https://doi.org/10.1007/s40820-020-0393-7
S. Nejati, T.E. Minford, Y.Y. Smolin, K.K. Lau, Enhanced charge storage of ultrathin polythiophene films within porous nanostructures. ACS Nano 8(6), 5413–5422 (2014). https://doi.org/10.1021/nn500007c
P. Moni, J. Lau, A.C. Mohr, T.C. Lin, S.H. Tolbert et al., Growth temperature and electrochemical performance in vapor-deposited poly (3, 4-ethylenedioxythiophene) thin films for high-rate electrochemical energy storage. ACS Appl. Energy Mater. 1(12), 7093–7105 (2018). https://doi.org/10.1021/acsaem.8b01529
G.L. Xu, Y. Li, T. Ma, Y. Ren, H.H. Wang et al., PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy 18, 253–264 (2015). https://doi.org/10.1016/j.nanoen.2015.10.020
B.H. Kim, K.Y. Bae, S.H. Cho, W.Y. Yoon, Electrochemical behaviors of a vapor-phase polymerized conductive polymer coated on LiV3O8 in Li–metal rechargeable batteries. ACS Appl. Mater. Interfaces 10(34), 28695–28701 (2018). https://doi.org/10.1021/acsami.8b09657
M.H. Gharahcheshmeh, M.M. Tavakoli, E.F. Gleason, M.T. Robinson, J. Kong et al., Tuning, optimization, and perovskite solar cell device integration of ultrathin poly (3, 4-ethylene dioxythiophene) films via a single-step all-dry process. Sci. Adv. 5(11), 0414 (2019). https://doi.org/10.1126/sciadv.aay0414
W.J. Jo, J.T. Nelson, S. Chang, V. Bulović, S. Gradečak et al., Oxidative chemical vapor deposition of neutral hole transporting polymer for enhanced solar cell efficiency and lifetime. Adv. Mater. 28(30), 6399–6404 (2016). https://doi.org/10.1002/adma.201601221
H. Yi, D. Wang, L. Duan, F. Haque, C. Xu et al., Solution-processed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell. Electrochim. Acta 319, 349–358 (2019). https://doi.org/10.1016/j.electacta.2019.06.134
S. Lee, D.C. Borrelli, K.K. Gleason, Air-stable polythiophene-based thin film transistors processed using oxidative chemical vapor deposition: carrier transport and channel/metallization contact interface. Org. Electron. 33, 253–262 (2016). https://doi.org/10.1016/j.orgel.2016.03.034
D.C. Borrelli, S. Lee, K.K. Gleason, Optoelectronic properties of polythiophene thin films and organic TFTs fabricated by oxidative chemical vapor deposition. J. Mater. Chem. C 2(35), 7223–7231 (2014). https://doi.org/10.1039/C4TC00881B
T. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M. El-Mansy, Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76(9), 4769–4784 (2019). https://doi.org/10.1007/s00289-018-2633-2
W. Lv, Z. Liu, Z. Li, Z. Han, Y. Yang et al., Flexible substrates enabled highly integrated patterns with submicron precision toward intrinsically stretchable circuits. Smart Mater. 3(3), 503–512 (2022). https://doi.org/10.1002/smm2.1104
A. Castro-Carranza, J.C. Nolasco, S. Bley, M. Rückmann, F. Meierhofer et al., Effects of FeCl3 as oxidizing agent on the conduction mechanisms in polypyrrole (PPy)/PC–ZnO hybrid heterojunctions grown by oxidative chemical vapor deposition. J. Polym. Sci. B Polym. Phys. 54(15), 1537–1544 (2016). https://doi.org/10.1002/polb.24049
L. Krieg, Z. Zhang, D. Splith, H. Wenckstern, M. Grundmann et al., Controlled formation of Schottky diodes on n-doped ZnO layers by deposition of p-conductive polymer layers with oxidative chemical vapor deposition. Nano Express 1(1), 010013 (2020). https://doi.org/10.1088/2632-959X/ab82e6
T. Yu, J. Xu, L. Liu, Z. Ren, W. Yang et al., Electrochemically deposited interlayer between PEDOT:PSS and phosphorescent emitting layer for multilayer solution-processed phosphorescent OLEDs. J. Mater. Chem. C 4(40), 9509–9515 (2016). https://doi.org/10.1039/C6TC03039D
Y. Song, J.L. Xu, X.X. Liu, Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48–58 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.102
M.D. Ingram, H. Staesche, K.S. Ryder, Activated polypyrrole electrodes for high-power supercapacitor applications. Solid State Ion. 169(1–4), 51–57 (2004). https://doi.org/10.1016/j.ssi.2002.12.003
X. Lu, F. Zhang, H. Dou, C. Yuan, S. Yang et al., Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochim. Acta 69, 160–166 (2012). https://doi.org/10.1016/j.electacta.2012.02.107
L. Yang, Z. Shi, W. Yang, Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor. Electrochim. Acta 153, 76–82 (2015). https://doi.org/10.1016/j.electacta.2014.11.146
Y. Chen, L. Du, P. Yang, P. Sun, X. Yu et al., Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J. Power Sources 287, 68–74 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.026
P. Xu, X. Hong, Z. Zhu, H. Ouyang, Z. Zhou et al., Revealing kinetics process of fast charge-storage behavior associated with potential in 2D polyaniline. Energy Tech. 10(8), 2200257 (2022). https://doi.org/10.1002/ente.202200257
C. Yang, J. Shen, C. Wang, H. Fei, H. Bao et al., All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J. Mater. Chem. A 2(5), 1458–1464 (2014). https://doi.org/10.1039/C3TA13953K
W. He, H. Qiang, S. Liang, F. Guo, R. Wang et al., Hierarchically porous wood aerogel/polypyrrole (PPy) composite thick electrode for supercapacitor. Chem. Eng. J. 446, 137331 (2022). https://doi.org/10.1016/j.cej.2022.137331
Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015). https://doi.org/10.1039/C5CS00362H
S. Zeng, H. Chen, F. Cai, Y. Kang, M. Chen et al., Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A 3(47), 23864–23870 (2015). https://doi.org/10.1039/C5TA05937B
J.Y. Kim, K.H. Kim, K.B. Kim, Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J. Power Sources 176(1), 396–402 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.117
Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv. Mater. 29(26), 1700274 (2017). https://doi.org/10.1002/adma.201700274
L. Qin, Q. Tao, X. Liu, M. Fahlman, J. Halim et al., Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 60, 734–742 (2019). https://doi.org/10.1016/j.nanoen.2019.04.002
Q. Jiang, N. Kurra, H.N. Alshareef, Marker pen lithography for flexible and curvilinear on-chip energy storage. Adv. Funct. Mater. 25(31), 4976–4984 (2015). https://doi.org/10.1002/adfm.201501698
Z. Wang, P. Tammela, P. Zhang, M. Strømme, L. Nyholm, Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. J. Mater. Chem. A 2(21), 7711–7716 (2014). https://doi.org/10.1039/C4TA01094A
S. Lage-Rivera, A. Ares-Pernas, M.J. Abad, Last developments in polymers for wearable energy storage devices. Int. J. Energy Res. 46(8), 10475–10498 (2022). https://doi.org/10.1002/er.7934
H. Rasouli, L. Naji, M.G. Hosseini, The influence of electrodeposited PPy film morphology on the electrochemical characteristics of Nafion-based energy storage devices. J. Electroanal. Chem. 836, 165–175 (2019). https://doi.org/10.1016/j.jelechem.2019.02.007
M.H. Bai, T.Y. Liu, F. Luan, Y. Li, X.X. Liu, Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J. Mater. Chem. A 2(28), 10882–10888 (2014). https://doi.org/10.1039/C3TA15391F
Y. Zhao, B. Liu, L. Pan, G. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 6(10), 2856–2870 (2013). https://doi.org/10.1039/C3EE40997J
W. Zhang, X. Wen, S. Yang, Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir 19(10), 4420–4426 (2003). https://doi.org/10.1021/la020894w
N. Kurra, M.K. Hota, H. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500–508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
X. Li, Y. Ma, P. Shen, C. Zhang, M. Cao et al., An ultrahigh energy density flexible asymmetric microsupercapacitor based on Ti3C2Tx and PPy/MnO2 with wide voltage window. Adv. Mater. Technol. 5(8), 2000272 (2020). https://doi.org/10.1002/admt.202000272
L. Liu, Q. Lu, S. Yang, J. Guo, Q. Tian et al., All-printed solid-state microsupercapacitors derived from self-template synthesis of Ag@ PPy nanocomposites. Adv. Mater. Technol. 3(1), 1700206 (2018). https://doi.org/10.1002/admt.201700206
X. Ma, S. Feng, L. He, M. Yan, X. Tian et al., Rapid, all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors. Nanoscale 9(32), 11765–11772 (2017). https://doi.org/10.1039/C7NR01789H
M. Tahir, L. He, W. Yang, X. Hong, W.A. Haider et al., Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. J. Energy Chem. 49, 224–232 (2020). https://doi.org/10.1016/j.jechem.2020.02.036
M. Zhu, Y. Huang, Y. Huang, H. Li, Z. Wang et al., A highly durable, transferable, and substrate-versatile high-performance all-polymer micro-supercapacitor with plug-and-play function. Adv. Mater. 29(16), 1605137 (2017). https://doi.org/10.1002/adma.201605137
L. Li, C. Fu, Z. Lou, S. Chen, W. Han et al., Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano Energy 41, 261–268 (2017). https://doi.org/10.1016/j.nanoen.2017.08.060
J. Li, A. Levitt, N. Kurra, K. Juan, N. Noriega et al., MXene-conducting polymer electrochromic microsupercapacitors. Energy Stor. Mater. 20, 455–461 (2019). https://doi.org/10.1016/j.ensm.2019.04.028
Y. Song, M. Shang, J. Li, Y. Su, Continuous and controllable synthesis of MnO2/PPy composites with core-shell structures for supercapacitors. Chem. Eng. J. 405, 127059 (2021). https://doi.org/10.1016/j.cej.2020.127059
S. Ma, W. Li, J. Cao, X. Wang, Y. Xie et al., Flexible planar microsupercapacitors based on polypyrrole nanotubes. ACS Appl. Energy Mater. 4(9), 8857–8865 (2021). https://doi.org/10.1021/acsaem.1c00962
Y. Han, L. Dai, Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys. 220(3), 1800355 (2019). https://doi.org/10.1002/macp.201800355
X. Ma, X. Hong, L. He, L. Xu, Y. Zhang et al., High energy density micro-supercapacitor based on a three-dimensional bicontinuous porous carbon with interconnected hierarchical pores. ACS Appl. Mater. Interfaces 11(1), 948–956 (2018). https://doi.org/10.1021/acsami.8b18853
W. Yang, L. He, X. Tian, M. Yan, H. Yuan et al., Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small 13(26), 1700639 (2017). https://doi.org/10.1002/smll.201700639
L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13, 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
Y. Zhao, B. Zhang, B. Yao, Y. Qiu, Z. Peng et al., Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 3(4), 1196–1210 (2020). https://doi.org/10.1016/j.matt.2020.08.024
Z. He, W. Chen, B. Liang, C. Liu, L. Yang et al., Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl. Mater. Interfaces 10(15), 12816–12823 (2018). https://doi.org/10.1021/acsami.8b01050