Critical Bimetallic Phosphide Layer Enables Fast Electron Transfer and Extra Energy Supply for Flexible Quasi-Solid-State Zinc Batteries
Corresponding Author: Liang He
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 266
Abstract
Nickel-based cathodes in aqueous nickel-zinc batteries typically suffer from sluggish reaction kinetics and limited energy density. In situ introduction of metal phosphides and rational construction of heterostructures can effectively promote electron/ion transport. However, the complex evolution of phosphidation and intractable phosphidizing degree greatly affect the composition of active phase, active sites, charge transfer rate, and ion adsorption strength of cathodes. Herein, the critical bimetallic phosphide layer (CBPL) is constructed on the NiCo-layered double hydroxide (NiCo-LDH) skeleton by a controllable anion-exchange strategy, yielding a novel nanohybrid cathode (NiCo-P1.0, 1.0 representing the mass ratio of Na2H2PO2 to NiCo-LDH). The high-conductivity CBPL with the inner NiCo-LDH forms extensive heterostructures, effectively regulating the electronic structure via charge transfer, thereby improving electrical conductivity. Remarkably, the CBPL exhibits unexpected electrochemical activity and synergizes with NiCo-LDH for electrode reactions, ultimately delivering extra energy. Benefiting from the bifunctional CBPL, NiCo-P1.0 delivers an optimal capacity of 286.64 mAh g−1 at 1C (1C = 289 mAh g−1) and superb rate performance (a capacity retention of 72.22% at 40C). The assembled NiCo-P1.0//Zn battery achieves ultrahigh energy/power density (503.62 Wh kg−1/18.62 kW kg−1, based on the mass loading of active material on the cathode), and the flexible quasi-solid-state pouch cell validates its practicality. This work demonstrates the superiority of bifunctional CBPL for surface modification, providing an effective and scalable compositing strategy in achieving high-performance cathodes for aqueous batteries.
Highlights:
1 The critical bimetallic phosphide layer (CBPL) exhibits high electrical conductivity and forms heterostructures with NiCo-layered double hydroxide (NiCo-LDH), improving the electrical conductivity of the hybrid cathode (NiCo-P1.0).
2 CBPL facilitates OH⁻ adsorption and synergizes with NiCo-LDH in electrode reactions, delivering extra energy.
3 NiCo-P1.0 cathode delivers 286.64 mAh g⁻¹ at 1C with a retention of 72.22% at 40C. The assembled NiCo-P1.0//Zn battery achieves energy density/power density (503.62 Wh kg−1/18.62 kW kg−1). The flexible quasi-solid-state pouch cell maintains stable output after deformation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
- J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/D3CS00771E
- X. Liao, Z. Zhu, Y. Liao, K. Fu, Y. Duan et al., Cation adsorption engineering enables dual stabilizations for fast-charging Zn─I2 batteries. Adv. Energy Mater. 14(47), 2402306 (2024). https://doi.org/10.1002/aenm.202402306
- Y. Zhu, P. Guan, R. Zhu, S. Zhang, Z. Feng et al., Recent advances in flexible alkaline zinc-based batteries: materials, structures, and perspectives. J. Energy Chem. 87, 61–88 (2023). https://doi.org/10.1016/j.jechem.2023.08.024
- D. Zhang, Y.-J. Hua, X.-M. Fu, C.-Y. Cheng, D.-M. Kong et al., Hierarchical flower array NiCoOOH@CoLa-LDH nanosheets for high-performance supercapacitor and alkaline Zn battery. Adv. Funct. Mater. 35(5), 2414686 (2025). https://doi.org/10.1002/adfm.202414686
- W. Xie, K. Zhu, H. Yang, W. Yang, Advancements in achieving high reversibility of zinc anode for alkaline zinc-based batteries. Adv. Mater. 36(5), 2306154 (2024). https://doi.org/10.1002/adma.202306154
- L. Zhou, F. Yang, S. Zeng, X. Gao, X. Liu et al., Zincophilic Cu sites induce dendrite-free Zn anodes for robust alkaline/neutral aqueous batteries. Adv. Funct. Mater. 32(15), 2110829 (2022). https://doi.org/10.1002/adfm.202110829
- J. Wu, C. Yuan, T. Li, Z. Yuan, H. Zhang et al., Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of Turing membrane. J. Am. Chem. Soc. 143(33), 13135–13144 (2021). https://doi.org/10.1021/jacs.1c04317
- H. Zhou, S. Gu, Y. Lu, G. Zhang, B. Li et al., Stabilizing Ni2+ in hollow nano MOF/polymetallic phosphides composites for enhanced electrochemical performance in 3D-printed micro-supercapacitors. Adv. Mater. 36(29), 2401856 (2024). https://doi.org/10.1002/adma.202401856
- D. Xu, W. Xu, D. Zheng, C. Xu, X. Lu, Regulating the 3d-orbital occupancy on Ni sites enables high-rate and durable Ni(OH)2 cathode for alkaline Zn batteries. J. Colloid Interface Sci. 679, 686–693 (2025). https://doi.org/10.1016/j.jcis.2024.10.003
- L. Lv, Z. Zhu, X. Liao, L. Wu, Y. Duan et al., Deeply reconstructed hierarchical Ni–Co microwire for flexible Ni–Zn microbattery with excellent comprehensive performance. Small 19(36), 2301913 (2023). https://doi.org/10.1002/smll.202301913
- Z. Zhu, R. Kan, P. Wu, Y. Ma, Z. Wang et al., A durable Ni–Zn microbattery with ultrahigh-rate capability enabled by in situ reconstructed nanoporous nickel with epitaxial phase. Small 17(42), 2103136 (2021). https://doi.org/10.1002/smll.202103136
- G. You, Z. Zhu, Y. Duan, L. Lv, X. Liao et al., Alkaline Ni-Zn microbattery based on 3D hierarchical porous Ni microcathode with high-rate performance. Micromachines 14(5), 927 (2023). https://doi.org/10.3390/mi14050927
- D. Cai, Y. Wang, B. Fei, C.L. Cheng, C. Zhang et al., Engineering of MoSe2 decorated Ni/Co selenide complex hollow arrayed structures with dense heterointerfaces for high-performance aqueous alkaline Zn batteries. Chem. Eng. J. 450, 138341 (2022). https://doi.org/10.1016/j.cej.2022.138341
- M. Cui, X. Bai, J. Zhu, C. Han, Y. Huang et al., Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid Zn batteries. Energy Storage Mater. 36, 427–434 (2021). https://doi.org/10.1016/j.ensm.2021.01.015
- X. Deng, Z. Wan, Y. Zhang, H. Xing, X. Wang et al., A novelly hierarchical LDHs−Based cathode with reduced deprotonation barrier toward High−Performance alkaline energy storage. Adv. Funct. Mater. 35(8), 2415614 (2025). https://doi.org/10.1002/adfm.202415614
- W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 W h kg−1 and 506 W h L−1. Energy Environ. Sci. 13(11), 4157–4167 (2020). https://doi.org/10.1039/D0EE01221A
- S. Yang, C. Li, Y. Wang, S. Chen, M. Cui et al., Suppressing surface passivation of bimetallic phosphide by sulfur for long-life alkaline aqueous zinc batteries. Energy Storage Mater. 33, 230–238 (2020). https://doi.org/10.1016/j.ensm.2020.08.005
- B. Li, Y. Shi, K. Huang, M. Zhao, J. Qiu et al., Cobalt-doped nickel phosphite for high performance of electrochemical energy storage. Small 14(13), 1703811 (2018). https://doi.org/10.1002/smll.201703811
- X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook et al., Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28(20), 1800036 (2018). https://doi.org/10.1002/adfm.201800036
- H. Wang, M. Liang, M. Li, Y. Qu, Z. Miao, Surface-amorphized nickel sulfide with boosted electrochemical performance for aqueous energy storage. Battery Energy 3(1), 20230035 (2024). https://doi.org/10.1002/bte2.20230035
- Y. Duan, G. You, Z. Zhu, L. Lv, X. Liao et al., Reconstructed NiCo alloy enables high-rate Ni-Zn microbattery with high capacity. Coatings 13(3), 603 (2023). https://doi.org/10.3390/coatings13030603
- T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun et al., Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29(7), 1604167 (2017). https://doi.org/10.1002/adma.201604167
- C. Jing, X. Song, K. Li, Y. Zhang, X. Liu et al., Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects. J. Mater. Chem. A 8(4), 1697–1708 (2020). https://doi.org/10.1039/C9TA12192G
- C. Li, X. Li, H. Wang, P. Huo, Y. Yan et al., Selective phosphidation of NiGa-Layered double hydroxide for hybrid supercapacitors. Chem. Eng. J. 420, 129784 (2021). https://doi.org/10.1016/j.cej.2021.129784
- H. Jia, M. Wang, M. Feng, G. Li, L. Li et al., Synergistic enhancement of supercapacitor performance: modish designation of BPQD modified NiCo-LDH/NiCo2S4 hybrid nanotube arrays with improved conductivity and OH–adsorption. Chem. Eng. J. 484, 149591 (2024). https://doi.org/10.1016/j.cej.2024.149591
- X. Gao, Y. Zhao, K. Dai, J. Wang, B. Zhang et al., NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem. Eng. J. 384, 123373 (2020). https://doi.org/10.1016/j.cej.2019.123373
- C. Deng, X. Hong, G. Wang, W. Dong, B. Liang, Research advance of NiCoP-based materials for high-performance supercapacitors. J. Energy Storage 58, 106379 (2023). https://doi.org/10.1016/j.est.2022.106379
- W. Li, J. Chen, F. Xie, H. Zhu, L. Sun et al., NiCoP firmly anchored on Mn-treated carbon cloth enabling enhanced supercapacitor performance. J. Energy Storage 104, 114492 (2024). https://doi.org/10.1016/j.est.2024.114492
- X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 201701530 (2017). https://doi.org/10.1002/smll.201701530
- W. Song, J. Wu, G. Wang, S. Tang, G. Chen et al., Rich-mixed-valence NixCo3−xPy porous nanowires interwelded junction-free 3D network architectures for ultrahigh areal energy density supercapacitors. Adv. Funct. Mater. 28(46), 1804620 (2018). https://doi.org/10.1002/adfm.201804620
- X. Peng, H. Chai, Y. Cao, Y. Wang, H. Dong et al., Facile synthesis of cost-effective Ni3(PO4)2·8H2O microstructures as a supercapattery electrode material. Mater. Today Energy 7, 129–135 (2018). https://doi.org/10.1016/j.mtener.2017.12.004
- B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko et al., Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J. Mater. Chem. A 3(43), 21553–21561 (2015). https://doi.org/10.1039/C5TA04737D
- Y. Zeng, Y. Wang, G. Huang, C. Chen, L. Huang et al., Porous CoP nanosheets converted from layered double hydroxides with superior electrochemical activity for hydrogen evolution reactions at wide pH ranges. Chem. Commun. 54(12), 1465–1468 (2018). https://doi.org/10.1039/C7CC08838H
- S. Hou, X. Xu, M. Wang, Y. Xu, T. Lu et al., Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J. Mater. Chem. A 5(36), 19054–19061 (2017). https://doi.org/10.1039/c7ta04720g
- J. Lu, S. Chen, Y. Zhuo, X. Mao, D. Liu et al., Greatly boosting seawater hydrogen evolution by surface amorphization and morphology engineering on MoO2/Ni3(PO4)2. Adv. Funct. Mater. 33(51), 2308191 (2023). https://doi.org/10.1002/adfm.202308191
- Q. Liu, C. Chen, J. Zheng, L. Wang, Z. Yang et al., 3D hierarchical Ni(PO3)2 nanosheet arrays with superior electrochemical capacitance behavior. J. Mater. Chem. A 5(4), 1421–1427 (2017). https://doi.org/10.1039/c6ta09528c
- Z. Liu, B. Li, Y. Feng, D. Jia, C. Li et al., Ni(PO3)2/CNTs hybrid architecture via phthalocyanine modulated self-assemblies for efficient hydrogen evolution reaction. Appl. Surf. Sci. 571, 151384 (2022). https://doi.org/10.1016/j.apsusc.2021.151384
- F. Chen, B. Zhao, M. Sun, C. Liu, Y. Shi et al., Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Res. 15(12), 10134–10141 (2022). https://doi.org/10.1007/s12274-022-4489-x
- Y. Wu, H. Wang, S. Ji, B.G. Pollet, X. Wang et al., Engineered porous Ni2P-nanop/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 13(8), 2098–2105 (2020). https://doi.org/10.1007/s12274-020-2816-7
- Y. Liao, Y. Chen, L. Li, S. Luo, Y. Qing et al., Ultrafine homologous Ni2P–Co2P heterostructures via space-confined topological transformation for superior urea electrolysis. Adv. Funct. Mater. 33(42), 2303300 (2023). https://doi.org/10.1002/adfm.202303300
- P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel et al., Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. ACS Catal. 7(1), 103–109 (2017). https://doi.org/10.1021/acscatal.6b02666
- X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han et al., A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv. Mater. 34(15), e2109450 (2022). https://doi.org/10.1002/adma.202109450
- X. Xu, Y. Deng, M. Gu, B. Sun, Z. Liang et al., Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst. Appl. Surf. Sci. 470, 591–595 (2019). https://doi.org/10.1016/j.apsusc.2018.11.127
- W. Liang, M. Wang, C. Ma, J. Wang, C. Zhao et al., NiCo-LDH hollow nanocage oxygen evolution reaction promotes luminol electrochemiluminescence. Small 20(11), e2306473 (2024). https://doi.org/10.1002/smll.202306473
- Z. Wang, P. Zhang, X. Zhao, Y. Song, H. Zhang et al., Optimizing electronic synergy between Pt nanop and co single atom to accelerate the electrocatalytic hydrogen evolution activity. Catal. Lett. 154(12), 6351–6358 (2024). https://doi.org/10.1007/s10562-024-04802-y
- X. Wang, W. Zhang, X. Wang, X. Li, X. Sui et al., Heterostructure engineering of NiO foam/In2S3 film for high-performance ethylene glycol gas sensors. Sens. Actuat. B Chem. 392, 134110 (2023). https://doi.org/10.1016/j.snb.2023.134110
- A.N. Mansour, Characterization of NiO by XPS. Surf. Sci. Spectra 3(3), 231–238 (1994). https://doi.org/10.1116/1.1247751
- S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, R.K. Selvan, Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800555
- R. Luo, Y. Li, L. Xing, N. Wang, R. Zhong et al., A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Appl. Catal. B Environ. 311, 121357 (2022). https://doi.org/10.1016/j.apcatb.2022.121357
- Z. Liu, G. Wang, X. Zhu, Y. Wang, Y. Zou et al., Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction. Angew. Chem. Int. Ed. 59(12), 4736–4742 (2020). https://doi.org/10.1002/anie.201914245
- M. Hassel, H.-J. Freund, High resolution XPS study of a thin CoO(111) film grown on Co(0001). Surf. Sci. Spectra 4(3), 273–278 (1996). https://doi.org/10.1116/1.1247797
- J. Peng, W. Zhang, S. Wang, Y. Huang, J.-Z. Wang et al., The emerging electrochemical activation tactic for aqueous energy storage: fundamentals, applications, and future. Adv. Funct. Mater. 32(17), 2111720 (2022). https://doi.org/10.1002/adfm.202111720
- Y. Duan, B. Li, K. Yang, Z. Gong, X. Peng et al., Ultrahigh energy and power density in Ni-Zn aqueous battery via superoxide-activated three-electron transfer. Nanomicro Lett. 17(1), 79 (2024). https://doi.org/10.1007/s40820-024-01586-z
- Z. Li, S. Ning, J. Xu, J. Zhu, Z. Yuan et al., In situ electrochemical activation of Co(OH)2@Ni(OH)2 heterostructures for efficient ethanol electrooxidation reforming and innovative zinc–ethanol–air batteries. Energy Environ. Sci. 15(12), 5300–5312 (2022). https://doi.org/10.1039/D2EE01816K
- Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei et al., Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 35(48), 2307003 (2023). https://doi.org/10.1002/adma.202307003
- T. Chen, H. Xu, S. Li, J. Zhang, Z. Tan et al., Tailoring the electrochemical responses of MOF-74 via dual-defect engineering for superior energy storage. Adv. Mater. 36(31), 2402234 (2024). https://doi.org/10.1002/adma.202402234
- L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanops. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
- H. Chen, Z. Shen, Z. Pan, Z. Kou, X. Liu et al., Hierarchical micro-nano sheet arrays of nickel–cobalt double hydroxides for high-rate Ni–Zn batteries. Adv. Sci. 6(8), 1802002 (2019). https://doi.org/10.1002/advs.201802002
- M. Wu, J. Wang, Z. Liu, X. Liu, J. Duan et al., Engineering Co-P alloy foil to a well-designed integrated electrode toward high-performance electrochemical energy storage. Adv. Mater. 35(7), 2209924 (2023). https://doi.org/10.1002/adma.202209924
- K. Ji, J. Han, A. Hirata, T. Fujita, Y. Shen et al., Lithium intercalation into bilayer graphene. Nat. Commun. 10, 275 (2019). https://doi.org/10.1038/s41467-018-07942-z
- J. Meng, Y. Song, Z. Qin, Z. Wang, X. Mu et al., Cobalt–nickel double hydroxide toward mild aqueous zinc-ion batteries. Adv. Funct. Mater. 32(33), 2204026 (2022). https://doi.org/10.1002/adfm.202204026
- S. Surendran, S. Shanmugapriya, S. Shanmugam, L. Vasylechko, R.K. Selvan, Interweaved nickel phosphide sponge as an electrode for flexible supercapattery and water splitting applications. ACS Appl. Energy Mater. 1(1), 78–92 (2018). https://doi.org/10.1021/acsaem.7b00006
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 415–418 (2017). https://doi.org/10.1126/science.aak9991
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba4098
- A.J. Tkalych, K. Yu, E.A. Carter, Structural and electronic features of β-Ni(OH)2 and β-NiOOH from first principles. J. Phys. Chem. C 119(43), 24315–24322 (2015). https://doi.org/10.1021/acs.jpcc.5b08481
- R. Wang, Y. Han, Z. Wang, J. Jiang, Y. Tong et al., Nickel@Nickel oxide core–shell electrode with significantly boosted reactivity for ultrahigh-energy and stable aqueous Ni–Zn battery. Adv. Funct. Mater. 28(29), 1802157 (2018). https://doi.org/10.1002/adfm.201802157
- K. Wang, X. Fan, S. Chen, J. Deng, L. Zhang et al., 3D co-doping α-Ni(OH)2 nanosheets for ultrastable, high-rate Ni-Zn battery. Small 19(8), e2206287 (2023). https://doi.org/10.1002/smll.202206287
- O. Guiader, P. Bernard, Understanding of Ni(OH)2/NiOOH irreversible phase transformations: Ni2O3H impact on alkaline batteries. J. Electrochem. Soc. 165(2), A396–A406 (2018). https://doi.org/10.1149/2.0061803jes
- I.T. Bello, H. Raza, A.T. Michael, M. Muneeswara, N. Tewari et al., Charging ahead: the evolution and reliability of nickel-zinc battery solutions. EcoMat 7(1), e12505 (2025). https://doi.org/10.1002/eom2.12505
- Z. Zhu, R. Zhang, J. Lin, K. Zhang, N. Li et al., Ni, Zn-codoped MgCo2O4 electrodes for aqueous asymmetric supercapacitor and rechargeable Zn battery. J. Power. Sources 437, 226941 (2019). https://doi.org/10.1016/j.jpowsour.2019.226941
- C. Han, T. Zhang, J. Li, B. Li, Z. Lin, Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy 77, 105165 (2020). https://doi.org/10.1016/j.nanoen.2020.105165
- L. Zhou, S. Zeng, D. Zheng, Y. Zeng, F. Wang et al., NiMoO4 nanowires supported on Ni/C nanosheets as high-performance cathode for stable aqueous rechargeable nickel-zinc battery. Chem. Eng. J. 400, 125832 (2020). https://doi.org/10.1016/j.cej.2020.125832
- J. Ye, X. Zhai, L. Chen, W. Guo, T. Gu et al., Oxygen vacancies enriched nickel cobalt based nanoflower cathodes: Mechanism and application of the enhanced energy storage. J. Energy Chem. 62, 252–261 (2021). https://doi.org/10.1016/j.jechem.2021.03.030
- Y. Zhang, Y. Liu, Z. Liu, X. Wu, Y. Wen et al., MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. J. Energy Chem. 64, 23–32 (2022). https://doi.org/10.1016/j.jechem.2021.04.046
- T. Chen, X. Zhu, X. Chen, Q. Zhang, Y. Li et al., VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries. J. Power. Sour. 477, 228652 (2020). https://doi.org/10.1016/j.jpowsour.2020.228652
- W. Deng, Z. Li, Y. Ye, Z. Zhou, Y. Li et al., Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv. Energy Mater. 11(31), 2003639 (2021). https://doi.org/10.1002/aenm.202003639
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/C6TA08736A
- K. Lu, B. Song, J. Zhang, H. Ma, A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. J. Power. Sour. 321, 257–263 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.003
- X. Xiao, L. Zhang, W. Xin, M. Yang, Y. Geng et al., Self-assembled layer of organic phosphonic acid enables highly stable MnO2 cathode for aqueous znic batteries. Small 20(24), e2309271 (2024). https://doi.org/10.1002/smll.202309271
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- J. Ding, Z. Du, L. Gu, B. Li, L. Wang et al., Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30(26), e1800762 (2018). https://doi.org/10.1002/adma.201800762
- C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12(7), 2273–2285 (2019). https://doi.org/10.1039/c9ee00956f
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9(1), 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
- V. Renman, D.O. Ojwang, M. Valvo, C.P. Gómez, T. Gustafsson et al., Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction. J. Power. Sour. 369, 146–153 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.079
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
- M. Huang, Y. Mai, L. Zhao, X. Liang, Z. Fang et al., Tuning the kinetics of zinc ion in MoS2 by polyaniline intercalation. Electrochim. Acta 388, 138624 (2021). https://doi.org/10.1016/j.electacta.2021.138624
- Z. Zhang, W. Li, R. Wang, H. Li, J. Yan et al., Crystal water assisting MoS2 nanoflowers for reversible zinc storage. J. Alloys Compd. 872, 159599 (2021). https://doi.org/10.1016/j.jallcom.2021.159599
- C. Cai, Z. Tao, Y. Zhu, Y. Tan, A. Wang et al., A nano interlayer spacing and rich defect 1T-MoS2 as cathode for superior performance aqueous zinc-ion batteries. Nanoscale Adv. 3(13), 3780–3787 (2021). https://doi.org/10.1039/D1NA00166C
- T. Jiao, Q. Yang, S. Wu, Z. Wang, D. Chen et al., Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. J. Mater. Chem. A 7(27), 16330–16338 (2019). https://doi.org/10.1039/C9TA04798K
- J. Liu, W. Peng, Y. Li, F. Zhang, X. Fan, A VS2@N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries. J. Mater. Chem. C 9(19), 6308–6315 (2021). https://doi.org/10.1039/D1TC00531F
References
Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/D3CS00771E
X. Liao, Z. Zhu, Y. Liao, K. Fu, Y. Duan et al., Cation adsorption engineering enables dual stabilizations for fast-charging Zn─I2 batteries. Adv. Energy Mater. 14(47), 2402306 (2024). https://doi.org/10.1002/aenm.202402306
Y. Zhu, P. Guan, R. Zhu, S. Zhang, Z. Feng et al., Recent advances in flexible alkaline zinc-based batteries: materials, structures, and perspectives. J. Energy Chem. 87, 61–88 (2023). https://doi.org/10.1016/j.jechem.2023.08.024
D. Zhang, Y.-J. Hua, X.-M. Fu, C.-Y. Cheng, D.-M. Kong et al., Hierarchical flower array NiCoOOH@CoLa-LDH nanosheets for high-performance supercapacitor and alkaline Zn battery. Adv. Funct. Mater. 35(5), 2414686 (2025). https://doi.org/10.1002/adfm.202414686
W. Xie, K. Zhu, H. Yang, W. Yang, Advancements in achieving high reversibility of zinc anode for alkaline zinc-based batteries. Adv. Mater. 36(5), 2306154 (2024). https://doi.org/10.1002/adma.202306154
L. Zhou, F. Yang, S. Zeng, X. Gao, X. Liu et al., Zincophilic Cu sites induce dendrite-free Zn anodes for robust alkaline/neutral aqueous batteries. Adv. Funct. Mater. 32(15), 2110829 (2022). https://doi.org/10.1002/adfm.202110829
J. Wu, C. Yuan, T. Li, Z. Yuan, H. Zhang et al., Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of Turing membrane. J. Am. Chem. Soc. 143(33), 13135–13144 (2021). https://doi.org/10.1021/jacs.1c04317
H. Zhou, S. Gu, Y. Lu, G. Zhang, B. Li et al., Stabilizing Ni2+ in hollow nano MOF/polymetallic phosphides composites for enhanced electrochemical performance in 3D-printed micro-supercapacitors. Adv. Mater. 36(29), 2401856 (2024). https://doi.org/10.1002/adma.202401856
D. Xu, W. Xu, D. Zheng, C. Xu, X. Lu, Regulating the 3d-orbital occupancy on Ni sites enables high-rate and durable Ni(OH)2 cathode for alkaline Zn batteries. J. Colloid Interface Sci. 679, 686–693 (2025). https://doi.org/10.1016/j.jcis.2024.10.003
L. Lv, Z. Zhu, X. Liao, L. Wu, Y. Duan et al., Deeply reconstructed hierarchical Ni–Co microwire for flexible Ni–Zn microbattery with excellent comprehensive performance. Small 19(36), 2301913 (2023). https://doi.org/10.1002/smll.202301913
Z. Zhu, R. Kan, P. Wu, Y. Ma, Z. Wang et al., A durable Ni–Zn microbattery with ultrahigh-rate capability enabled by in situ reconstructed nanoporous nickel with epitaxial phase. Small 17(42), 2103136 (2021). https://doi.org/10.1002/smll.202103136
G. You, Z. Zhu, Y. Duan, L. Lv, X. Liao et al., Alkaline Ni-Zn microbattery based on 3D hierarchical porous Ni microcathode with high-rate performance. Micromachines 14(5), 927 (2023). https://doi.org/10.3390/mi14050927
D. Cai, Y. Wang, B. Fei, C.L. Cheng, C. Zhang et al., Engineering of MoSe2 decorated Ni/Co selenide complex hollow arrayed structures with dense heterointerfaces for high-performance aqueous alkaline Zn batteries. Chem. Eng. J. 450, 138341 (2022). https://doi.org/10.1016/j.cej.2022.138341
M. Cui, X. Bai, J. Zhu, C. Han, Y. Huang et al., Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid Zn batteries. Energy Storage Mater. 36, 427–434 (2021). https://doi.org/10.1016/j.ensm.2021.01.015
X. Deng, Z. Wan, Y. Zhang, H. Xing, X. Wang et al., A novelly hierarchical LDHs−Based cathode with reduced deprotonation barrier toward High−Performance alkaline energy storage. Adv. Funct. Mater. 35(8), 2415614 (2025). https://doi.org/10.1002/adfm.202415614
W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 W h kg−1 and 506 W h L−1. Energy Environ. Sci. 13(11), 4157–4167 (2020). https://doi.org/10.1039/D0EE01221A
S. Yang, C. Li, Y. Wang, S. Chen, M. Cui et al., Suppressing surface passivation of bimetallic phosphide by sulfur for long-life alkaline aqueous zinc batteries. Energy Storage Mater. 33, 230–238 (2020). https://doi.org/10.1016/j.ensm.2020.08.005
B. Li, Y. Shi, K. Huang, M. Zhao, J. Qiu et al., Cobalt-doped nickel phosphite for high performance of electrochemical energy storage. Small 14(13), 1703811 (2018). https://doi.org/10.1002/smll.201703811
X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook et al., Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28(20), 1800036 (2018). https://doi.org/10.1002/adfm.201800036
H. Wang, M. Liang, M. Li, Y. Qu, Z. Miao, Surface-amorphized nickel sulfide with boosted electrochemical performance for aqueous energy storage. Battery Energy 3(1), 20230035 (2024). https://doi.org/10.1002/bte2.20230035
Y. Duan, G. You, Z. Zhu, L. Lv, X. Liao et al., Reconstructed NiCo alloy enables high-rate Ni-Zn microbattery with high capacity. Coatings 13(3), 603 (2023). https://doi.org/10.3390/coatings13030603
T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun et al., Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29(7), 1604167 (2017). https://doi.org/10.1002/adma.201604167
C. Jing, X. Song, K. Li, Y. Zhang, X. Liu et al., Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects. J. Mater. Chem. A 8(4), 1697–1708 (2020). https://doi.org/10.1039/C9TA12192G
C. Li, X. Li, H. Wang, P. Huo, Y. Yan et al., Selective phosphidation of NiGa-Layered double hydroxide for hybrid supercapacitors. Chem. Eng. J. 420, 129784 (2021). https://doi.org/10.1016/j.cej.2021.129784
H. Jia, M. Wang, M. Feng, G. Li, L. Li et al., Synergistic enhancement of supercapacitor performance: modish designation of BPQD modified NiCo-LDH/NiCo2S4 hybrid nanotube arrays with improved conductivity and OH–adsorption. Chem. Eng. J. 484, 149591 (2024). https://doi.org/10.1016/j.cej.2024.149591
X. Gao, Y. Zhao, K. Dai, J. Wang, B. Zhang et al., NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem. Eng. J. 384, 123373 (2020). https://doi.org/10.1016/j.cej.2019.123373
C. Deng, X. Hong, G. Wang, W. Dong, B. Liang, Research advance of NiCoP-based materials for high-performance supercapacitors. J. Energy Storage 58, 106379 (2023). https://doi.org/10.1016/j.est.2022.106379
W. Li, J. Chen, F. Xie, H. Zhu, L. Sun et al., NiCoP firmly anchored on Mn-treated carbon cloth enabling enhanced supercapacitor performance. J. Energy Storage 104, 114492 (2024). https://doi.org/10.1016/j.est.2024.114492
X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 201701530 (2017). https://doi.org/10.1002/smll.201701530
W. Song, J. Wu, G. Wang, S. Tang, G. Chen et al., Rich-mixed-valence NixCo3−xPy porous nanowires interwelded junction-free 3D network architectures for ultrahigh areal energy density supercapacitors. Adv. Funct. Mater. 28(46), 1804620 (2018). https://doi.org/10.1002/adfm.201804620
X. Peng, H. Chai, Y. Cao, Y. Wang, H. Dong et al., Facile synthesis of cost-effective Ni3(PO4)2·8H2O microstructures as a supercapattery electrode material. Mater. Today Energy 7, 129–135 (2018). https://doi.org/10.1016/j.mtener.2017.12.004
B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko et al., Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J. Mater. Chem. A 3(43), 21553–21561 (2015). https://doi.org/10.1039/C5TA04737D
Y. Zeng, Y. Wang, G. Huang, C. Chen, L. Huang et al., Porous CoP nanosheets converted from layered double hydroxides with superior electrochemical activity for hydrogen evolution reactions at wide pH ranges. Chem. Commun. 54(12), 1465–1468 (2018). https://doi.org/10.1039/C7CC08838H
S. Hou, X. Xu, M. Wang, Y. Xu, T. Lu et al., Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J. Mater. Chem. A 5(36), 19054–19061 (2017). https://doi.org/10.1039/c7ta04720g
J. Lu, S. Chen, Y. Zhuo, X. Mao, D. Liu et al., Greatly boosting seawater hydrogen evolution by surface amorphization and morphology engineering on MoO2/Ni3(PO4)2. Adv. Funct. Mater. 33(51), 2308191 (2023). https://doi.org/10.1002/adfm.202308191
Q. Liu, C. Chen, J. Zheng, L. Wang, Z. Yang et al., 3D hierarchical Ni(PO3)2 nanosheet arrays with superior electrochemical capacitance behavior. J. Mater. Chem. A 5(4), 1421–1427 (2017). https://doi.org/10.1039/c6ta09528c
Z. Liu, B. Li, Y. Feng, D. Jia, C. Li et al., Ni(PO3)2/CNTs hybrid architecture via phthalocyanine modulated self-assemblies for efficient hydrogen evolution reaction. Appl. Surf. Sci. 571, 151384 (2022). https://doi.org/10.1016/j.apsusc.2021.151384
F. Chen, B. Zhao, M. Sun, C. Liu, Y. Shi et al., Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Res. 15(12), 10134–10141 (2022). https://doi.org/10.1007/s12274-022-4489-x
Y. Wu, H. Wang, S. Ji, B.G. Pollet, X. Wang et al., Engineered porous Ni2P-nanop/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 13(8), 2098–2105 (2020). https://doi.org/10.1007/s12274-020-2816-7
Y. Liao, Y. Chen, L. Li, S. Luo, Y. Qing et al., Ultrafine homologous Ni2P–Co2P heterostructures via space-confined topological transformation for superior urea electrolysis. Adv. Funct. Mater. 33(42), 2303300 (2023). https://doi.org/10.1002/adfm.202303300
P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel et al., Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. ACS Catal. 7(1), 103–109 (2017). https://doi.org/10.1021/acscatal.6b02666
X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han et al., A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv. Mater. 34(15), e2109450 (2022). https://doi.org/10.1002/adma.202109450
X. Xu, Y. Deng, M. Gu, B. Sun, Z. Liang et al., Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst. Appl. Surf. Sci. 470, 591–595 (2019). https://doi.org/10.1016/j.apsusc.2018.11.127
W. Liang, M. Wang, C. Ma, J. Wang, C. Zhao et al., NiCo-LDH hollow nanocage oxygen evolution reaction promotes luminol electrochemiluminescence. Small 20(11), e2306473 (2024). https://doi.org/10.1002/smll.202306473
Z. Wang, P. Zhang, X. Zhao, Y. Song, H. Zhang et al., Optimizing electronic synergy between Pt nanop and co single atom to accelerate the electrocatalytic hydrogen evolution activity. Catal. Lett. 154(12), 6351–6358 (2024). https://doi.org/10.1007/s10562-024-04802-y
X. Wang, W. Zhang, X. Wang, X. Li, X. Sui et al., Heterostructure engineering of NiO foam/In2S3 film for high-performance ethylene glycol gas sensors. Sens. Actuat. B Chem. 392, 134110 (2023). https://doi.org/10.1016/j.snb.2023.134110
A.N. Mansour, Characterization of NiO by XPS. Surf. Sci. Spectra 3(3), 231–238 (1994). https://doi.org/10.1116/1.1247751
S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, R.K. Selvan, Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800555
R. Luo, Y. Li, L. Xing, N. Wang, R. Zhong et al., A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Appl. Catal. B Environ. 311, 121357 (2022). https://doi.org/10.1016/j.apcatb.2022.121357
Z. Liu, G. Wang, X. Zhu, Y. Wang, Y. Zou et al., Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction. Angew. Chem. Int. Ed. 59(12), 4736–4742 (2020). https://doi.org/10.1002/anie.201914245
M. Hassel, H.-J. Freund, High resolution XPS study of a thin CoO(111) film grown on Co(0001). Surf. Sci. Spectra 4(3), 273–278 (1996). https://doi.org/10.1116/1.1247797
J. Peng, W. Zhang, S. Wang, Y. Huang, J.-Z. Wang et al., The emerging electrochemical activation tactic for aqueous energy storage: fundamentals, applications, and future. Adv. Funct. Mater. 32(17), 2111720 (2022). https://doi.org/10.1002/adfm.202111720
Y. Duan, B. Li, K. Yang, Z. Gong, X. Peng et al., Ultrahigh energy and power density in Ni-Zn aqueous battery via superoxide-activated three-electron transfer. Nanomicro Lett. 17(1), 79 (2024). https://doi.org/10.1007/s40820-024-01586-z
Z. Li, S. Ning, J. Xu, J. Zhu, Z. Yuan et al., In situ electrochemical activation of Co(OH)2@Ni(OH)2 heterostructures for efficient ethanol electrooxidation reforming and innovative zinc–ethanol–air batteries. Energy Environ. Sci. 15(12), 5300–5312 (2022). https://doi.org/10.1039/D2EE01816K
Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei et al., Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 35(48), 2307003 (2023). https://doi.org/10.1002/adma.202307003
T. Chen, H. Xu, S. Li, J. Zhang, Z. Tan et al., Tailoring the electrochemical responses of MOF-74 via dual-defect engineering for superior energy storage. Adv. Mater. 36(31), 2402234 (2024). https://doi.org/10.1002/adma.202402234
L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanops. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
H. Chen, Z. Shen, Z. Pan, Z. Kou, X. Liu et al., Hierarchical micro-nano sheet arrays of nickel–cobalt double hydroxides for high-rate Ni–Zn batteries. Adv. Sci. 6(8), 1802002 (2019). https://doi.org/10.1002/advs.201802002
M. Wu, J. Wang, Z. Liu, X. Liu, J. Duan et al., Engineering Co-P alloy foil to a well-designed integrated electrode toward high-performance electrochemical energy storage. Adv. Mater. 35(7), 2209924 (2023). https://doi.org/10.1002/adma.202209924
K. Ji, J. Han, A. Hirata, T. Fujita, Y. Shen et al., Lithium intercalation into bilayer graphene. Nat. Commun. 10, 275 (2019). https://doi.org/10.1038/s41467-018-07942-z
J. Meng, Y. Song, Z. Qin, Z. Wang, X. Mu et al., Cobalt–nickel double hydroxide toward mild aqueous zinc-ion batteries. Adv. Funct. Mater. 32(33), 2204026 (2022). https://doi.org/10.1002/adfm.202204026
S. Surendran, S. Shanmugapriya, S. Shanmugam, L. Vasylechko, R.K. Selvan, Interweaved nickel phosphide sponge as an electrode for flexible supercapattery and water splitting applications. ACS Appl. Energy Mater. 1(1), 78–92 (2018). https://doi.org/10.1021/acsaem.7b00006
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 415–418 (2017). https://doi.org/10.1126/science.aak9991
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba4098
A.J. Tkalych, K. Yu, E.A. Carter, Structural and electronic features of β-Ni(OH)2 and β-NiOOH from first principles. J. Phys. Chem. C 119(43), 24315–24322 (2015). https://doi.org/10.1021/acs.jpcc.5b08481
R. Wang, Y. Han, Z. Wang, J. Jiang, Y. Tong et al., Nickel@Nickel oxide core–shell electrode with significantly boosted reactivity for ultrahigh-energy and stable aqueous Ni–Zn battery. Adv. Funct. Mater. 28(29), 1802157 (2018). https://doi.org/10.1002/adfm.201802157
K. Wang, X. Fan, S. Chen, J. Deng, L. Zhang et al., 3D co-doping α-Ni(OH)2 nanosheets for ultrastable, high-rate Ni-Zn battery. Small 19(8), e2206287 (2023). https://doi.org/10.1002/smll.202206287
O. Guiader, P. Bernard, Understanding of Ni(OH)2/NiOOH irreversible phase transformations: Ni2O3H impact on alkaline batteries. J. Electrochem. Soc. 165(2), A396–A406 (2018). https://doi.org/10.1149/2.0061803jes
I.T. Bello, H. Raza, A.T. Michael, M. Muneeswara, N. Tewari et al., Charging ahead: the evolution and reliability of nickel-zinc battery solutions. EcoMat 7(1), e12505 (2025). https://doi.org/10.1002/eom2.12505
Z. Zhu, R. Zhang, J. Lin, K. Zhang, N. Li et al., Ni, Zn-codoped MgCo2O4 electrodes for aqueous asymmetric supercapacitor and rechargeable Zn battery. J. Power. Sources 437, 226941 (2019). https://doi.org/10.1016/j.jpowsour.2019.226941
C. Han, T. Zhang, J. Li, B. Li, Z. Lin, Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy 77, 105165 (2020). https://doi.org/10.1016/j.nanoen.2020.105165
L. Zhou, S. Zeng, D. Zheng, Y. Zeng, F. Wang et al., NiMoO4 nanowires supported on Ni/C nanosheets as high-performance cathode for stable aqueous rechargeable nickel-zinc battery. Chem. Eng. J. 400, 125832 (2020). https://doi.org/10.1016/j.cej.2020.125832
J. Ye, X. Zhai, L. Chen, W. Guo, T. Gu et al., Oxygen vacancies enriched nickel cobalt based nanoflower cathodes: Mechanism and application of the enhanced energy storage. J. Energy Chem. 62, 252–261 (2021). https://doi.org/10.1016/j.jechem.2021.03.030
Y. Zhang, Y. Liu, Z. Liu, X. Wu, Y. Wen et al., MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. J. Energy Chem. 64, 23–32 (2022). https://doi.org/10.1016/j.jechem.2021.04.046
T. Chen, X. Zhu, X. Chen, Q. Zhang, Y. Li et al., VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries. J. Power. Sour. 477, 228652 (2020). https://doi.org/10.1016/j.jpowsour.2020.228652
W. Deng, Z. Li, Y. Ye, Z. Zhou, Y. Li et al., Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv. Energy Mater. 11(31), 2003639 (2021). https://doi.org/10.1002/aenm.202003639
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/C6TA08736A
K. Lu, B. Song, J. Zhang, H. Ma, A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. J. Power. Sour. 321, 257–263 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.003
X. Xiao, L. Zhang, W. Xin, M. Yang, Y. Geng et al., Self-assembled layer of organic phosphonic acid enables highly stable MnO2 cathode for aqueous znic batteries. Small 20(24), e2309271 (2024). https://doi.org/10.1002/smll.202309271
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
J. Ding, Z. Du, L. Gu, B. Li, L. Wang et al., Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30(26), e1800762 (2018). https://doi.org/10.1002/adma.201800762
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12(7), 2273–2285 (2019). https://doi.org/10.1039/c9ee00956f
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9(1), 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
V. Renman, D.O. Ojwang, M. Valvo, C.P. Gómez, T. Gustafsson et al., Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction. J. Power. Sour. 369, 146–153 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.079
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
M. Huang, Y. Mai, L. Zhao, X. Liang, Z. Fang et al., Tuning the kinetics of zinc ion in MoS2 by polyaniline intercalation. Electrochim. Acta 388, 138624 (2021). https://doi.org/10.1016/j.electacta.2021.138624
Z. Zhang, W. Li, R. Wang, H. Li, J. Yan et al., Crystal water assisting MoS2 nanoflowers for reversible zinc storage. J. Alloys Compd. 872, 159599 (2021). https://doi.org/10.1016/j.jallcom.2021.159599
C. Cai, Z. Tao, Y. Zhu, Y. Tan, A. Wang et al., A nano interlayer spacing and rich defect 1T-MoS2 as cathode for superior performance aqueous zinc-ion batteries. Nanoscale Adv. 3(13), 3780–3787 (2021). https://doi.org/10.1039/D1NA00166C
T. Jiao, Q. Yang, S. Wu, Z. Wang, D. Chen et al., Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. J. Mater. Chem. A 7(27), 16330–16338 (2019). https://doi.org/10.1039/C9TA04798K
J. Liu, W. Peng, Y. Li, F. Zhang, X. Fan, A VS2@N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries. J. Mater. Chem. C 9(19), 6308–6315 (2021). https://doi.org/10.1039/D1TC00531F