Hierarchical Porous RGO/PEDOT/PANI Hybrid for Planar/Linear Supercapacitor with Outstanding Flexibility and Stability
Corresponding Author: Lei Wang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 17
Abstract
Many hybrid electrodes for supercapacitors (SCs) are a reckless combination without proper structural design that keeps them from fulfilling their potential. Herein, we design a reduced graphene oxide/poly(3,4-ethylenedioxythiophene)/polyaniline (RGO/PEDOT/PANI) hybrid with hierarchical and porous structure for high-performance SCs, where components fully harness their advantages, forming an interconnected and conductive framework with substantial reactive sites.Thus, this hybrid achieves a high capacitance of 535 F g−1 along with good rate capability and cyclability. The planar SC based on this hybrid deliver an energy density of 26.89 Wh kg−1 at a power density of 800 W kg−1. The linear SC developed via modifying a cotton yarn with the hybrid exhibits good flexibility and structural stability, which operates normally after arbitrary deformations. This work provides a beneficial reference for developing SCs.
Highlights:
1 Hierarchical porous reduced graphene oxide/poly(3,4-ethylenedioxythiophene)/polyaniline hybrid was designed.
2 The hybrid achieves a high capacitance of 535 F g−1 along with a good rate capability and cyclability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- Y. Huang, M. Zhu, Y. Huang, H. Li, Z. Pei, Q. Xue, Z. Liao, Z. Wang, C. Zhi, A modularization approach for linear-shaped functional supercapacitors. J. Mater. Chem. A 4(12), 4580–4586 (2016). https://doi.org/10.1039/C6TA00753H
- A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). https://doi.org/10.1038/nmat1368
- S. Luo, L. Xie, F. Han, W. Wei, Y. Huang et al., Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery. Adv. Funct. Mater. 29, 1901336 (2019). https://doi.org/10.1002/adfm.201901336
- Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A
- Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22, 422–438 (2016). https://doi.org/10.1016/j.nanoen.2016.02.047
- M. Chaudhary, A.K. Nayak, R. Muhammad, D. Pradhan, P. Mohanty, Nitrogen-enriched nanoporous polytriazine for high-performance supercapacitor application. ACS Sustain. Chem. Eng. 6(5), 5895–5902 (2018). https://doi.org/10.1021/acssuschemeng.7b04254
- J. Chen, C. Du, Y. Zhang, W. Wei, L. Wan, M. Xie, Z. Tian, Constructing porous organic polymer with hydroxyquinoline as electrochemical-active unit for high-performance supercapacitor. Polymer 162(24), 43–49 (2019). https://doi.org/10.1016/j.polymer.2018.12.030
- H.V. Doan, H.A. Hamzah, P.K. Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
- Y. Huang, W. Chen, H. Li, M. Zhu, F. Liu et al., Graphene stirrer with designed movements: Targeting on environmental remediation and supercapacitor applications. Green Energy Environ. 3(1), 86–96 (2018). https://doi.org/10.1016/j.gee.2017.10.004
- M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei et al., Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6(21), 1600969 (2016). https://doi.org/10.1002/aenm.201600969
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16089 (2017). https://doi.org/10.1038/natrevmats.2016.98
- E. Martínez-Periñán, M.P. Down, C. Gibaja, E. Lorenzo, F. Zamora, C.E. Banks, Antimonene: a novel 2D nanomaterial for supercapacitor applications. Adv. Energy Mater. 8(11), 1702606 (2018). https://doi.org/10.1002/aenm.201702606
- C. Hao, B. Yang, F. Wen, J. Xiang, L. Li et al., Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28(16), 3194–3201 (2016). https://doi.org/10.1002/adma.201505730
- J. Chang, S. Adhikari, T.H. Lee, B. Li, F. Yao, D.T. Pham, V.T. Le, Y.H. Lee, Leaf vein-inspired nanochanneled graphene film for highly efficient micro-supercapacitors. Adv. Energy Mater. 5(9), 1500003 (2015). https://doi.org/10.1002/aenm.201500003
- S. Luo, J. Zhao, J. Zou, Z. He, C. Xu et al., Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces 10(4), 3538–3548 (2018). https://doi.org/10.1021/acsami.7b15458
- M. Xie, Z. Xu, S. Duan, Z. Tian, Y. Zhang et al., Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 11(1), 216–224 (2018). https://doi.org/10.1007/s12274-017-1621-4
- D. Jiang, H. Liang, W. Yang, Y. Liu, X. Cao et al., Screen-printable films of graphene/CoS2/Ni3S4 composites for the fabrication of flexible and arbitrary-shaped all-solid-state hybrid supercapacitors. Carbon 146, 557–567 (2019). https://doi.org/10.1016/j.carbon.2019.02.045
- Y. Huang, M. Zhu, W. Meng, Y. Fu, Z. Wang, Y. Huang, Z. Pei, C. Zhi, Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015). https://doi.org/10.1039/C5RA02868J
- H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources 190(2), 578–586 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.052
- Y. Wang, X. Yang, L. Qiu, D. Li, Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ. Sci. 6(2), 477–481 (2013). https://doi.org/10.1039/c2ee24018a
- Z. Mandić, M.K. Roković, T. Pokupčić, Polyaniline as cathodic material for electrochemical energy sources: the role of morphology. Electrochim. Acta 54(10), 2941–2950 (2009). https://doi.org/10.1016/j.electacta.2008.11.002
- J. Li, Y. Ren, Z. Ren, S. Wang, Y. Qiu, J. Yu, Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors. J. Mater. Chem. A 3, 23307–23315 (2015). https://doi.org/10.1039/C5TA05381A
- J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010). https://doi.org/10.1039/B917705A
- N.S. Murthy, H. Minor, General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers. Polymer 31(6), 996–1002 (1990). https://doi.org/10.1016/0032-3861(90)90243-R
- K.E. Aasmundtveit, E.J. Samuelsen, L.A.A. Pettersson, O. Inganäs, T. Johansson, R. Feidenhans’, Structure of thin films of poly(3,4-ethylenedioxythiophene). Synth. Met. 101(1–3), 561–564 (1999). https://doi.org/10.1016/S0379-6779(98)00315-4
- N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng, Y.-R. Jo, B.-J. Kim, K. Lee, Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26(14), 2268–2272 (2014). https://doi.org/10.1002/adma.201304611
- A.J. Heeger, Semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev. Mod. Phys. 1(4–5), 247–267 (2001). https://doi.org/10.1016/S1567-1739(01)00053-0
- Q. Yao, Q. Wang, L. Wang, Y. Wang, J. Sun et al., The synergic regulation of conductivity and Seebeck coefficient in pure polyaniline by chemically changing the ordered degree of molecular chains. J. Mater. Chem. A 2, 2634–2640 (2014). https://doi.org/10.1039/C3TA14008C
- F. Ely, A. Matsumoto, B. Zoetebier, V.S. Peressinotto, M.K. Hirata, D.A. de Sousa, R. Maciel, Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices. Org. Electron. 15(5), 1062–1070 (2014). https://doi.org/10.1016/j.orgel.2014.02.022
- X. Zhao, H. Lin, J. Li, L. Xin, C. Liu, J. Li, Low-cost preparation of a conductive and catalytic graphene film from chemical reduction with AlI3. Carbon 50(10), 3497–3502 (2012). https://doi.org/10.1016/j.carbon.2012.03.017
- T. Yu, P. Zhu, Y. Xiong, H. Chen, S. Kang, H. Luo, S. Guan, Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors. Electrochim. Acta 222(20), 12–19 (2016). https://doi.org/10.1016/j.electacta.2016.11.033
- Y. Zou, Z. Zhang, W. Zhong, W. Yang, Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. A 6, 9245–9256 (2018). https://doi.org/10.1039/C8TA01366G
- A. Schaarschmidt, A.A. Farah, A. Aby, A.S. Helmy, Influence of nonadiabatic annealing on the morphology and molecular structure of PEDOT-PSS films. J. Phys. Chem. B 113(28), 9352–9355 (2009). https://doi.org/10.1021/jp904147v
- A.A. Farah, S.A. Rutledge, A. Schaarschmidt, R. Lai, J.P. Freedman, A.S. Helmy, Conductivity enhancement of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) films post-spincasting. J. Appl. Phys. 112(11), 113709 (2012). https://doi.org/10.1063/1.4768265
- K. Dagci, M. Alanyalioglu, Preparation of free-standing and flexible graphene/Ag nanoparticles/poly(pyronin Y) hybrid paper electrode for amperometric determination of nitrite. ACS Appl. Mater. Interfaces 8(4), 2713–2722 (2016). https://doi.org/10.1021/acsami.5b10973
- M. Alanyalıoğlu, J.J. Segura, J. Oró-Solè, N. Casañ-Pastor, The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1), 142–152 (2012). https://doi.org/10.1016/j.carbon.2011.07.064
- D. Liu, H. Wang, P. Du, W. Wei, Q. Wang, P. Liu, Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochim. Acta 259(1), 161–169 (2018). https://doi.org/10.1016/j.electacta.2017.10.165
- X. Li, C. Zhang, S. Xin, Z. Yang, Y. Li, D. Zhang, P. Yao, Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8(33), 21373–21380 (2016). https://doi.org/10.1021/acsami.6b06762
- P.C. Mahakul, K. Sa, B. Das, B.V.R.S. Subramaniam, S. Saha et al., Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J. Mater. Sci. 52(10), 5696–5707 (2017). https://doi.org/10.1007/s10853-017-0806-2
- D. Li, Y. Li, Y. Feng, W. Hu, W. Feng, Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J. Mater. Chem. A 3, 2135–2143 (2015). https://doi.org/10.1039/C4TA05643D
- J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9), 5019–5026 (2010). https://doi.org/10.1021/nn1006539
- E. Jin Bae, Y. Hun Kang, K.-S. Jang, S. Yun Cho, Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci. Rep. 6, 18805 (2016). https://doi.org/10.1038/srep18805
- H. Yan, H. Okuzaki, Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synth. Met. 159(21–22), 2225–2228 (2009). https://doi.org/10.1016/j.synthmet.2009.07.032
- H. Ling, J. Lu, S. Phua, H. Liu, L. Liu et al., One-pot sequential electrochemical deposition of multilayer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties. J. Mater. Chem. A 2, 2708–2717 (2014). https://doi.org/10.1039/C3TA14781A
- M.G. Hosseini, E. Shahryari, A novel high-performance supercapacitor based on chitosan/graphene oxide-MWCNT/polyaniline. J. Colloid Interface Sci. 496, 371–381 (2017). https://doi.org/10.1016/j.jcis.2017.02.027
- Y. Li, X. Li, R. Zhao, C. Wang, F. Qiu et al., Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation. Mater. Sci. Eng. C 72, 106–112 (2017). https://doi.org/10.1016/j.msec.2016.11.052
- F. Liu, S. Luo, D. Liu, W. Chen, Y. Huang, L. Dong, L. Wang, Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl. Mater. Interfaces 9(39), 33791–33801 (2017). https://doi.org/10.1021/acsami.7b08382
- S.L. Lim, K.L. Tan, In situ XPS study of the interactions of evaporated copper atoms with neutral and protonated polyaniline films. Langmuir 14(18), 5305–5313 (1998). https://doi.org/10.1021/la980205+
- W. Wang, J. Yan, J. Liu, D. Ou, Q. Qin et al., Self-healing polyaniline-graphene oxides based electrodes with enhanced cycling stability. Electrochim. Acta 282(20), 835–844 (2018). https://doi.org/10.1016/j.electacta.2018.06.121
- L. Chen, L. Chen, Q. Ai, D. Li, P. Si et al., Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chem. Eng. J. 334, 184–190 (2018). https://doi.org/10.1016/j.cej.2017.10.038
- P. Asen, S. Shahrokhian, A.I. Zad, Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application. J. Electroanal. Chem. 823, 505–516 (2018). https://doi.org/10.1016/j.jelechem.2018.06.048
- K. Jin, W. Zhang, Y. Wang, X. Guo, Z. Chen et al., In–situ hybridization of polyaniline nanofibers on functionalized reduced graphene oxide films for high-performance supercapacitor. Electrochim. Acta 285(20), 221–229 (2018). https://doi.org/10.1016/j.electacta.2018.07.220
- A. Viswanathan, A.N. Shetty, Facile in situ single step chemical synthesis of reduced graphene oxide-copper oxide-polyaniline nanocomposite and its electrochemical performance for supercapacitor application. Electrochim. Acta 257(10), 483–493 (2017). https://doi.org/10.1016/j.electacta.2017.10.099
- W. Zhao, Y. Li, S. Wu, D. Wang, X. Zhao et al., Highly stable carbon nanotube/polyaniline porous network for multifunctional applications. ACS Appl. Mater. Interfaces 8(49), 34027–34033 (2016). https://doi.org/10.1021/acsami.6b11984
- F. Miao, C. Shao, X. Li, N. Lu, K. Wang, X. Zhang, Y. Liu, Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy 95, 233–241 (2016). https://doi.org/10.1016/j.energy.2015.12.013
- F. Miao, C. Shao, X. Li, K. Wang, N. Lu, Y. Liu, Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. J. Power Sources 329, 516–524 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.111
- B. Sydulu Singu, P. Srinivasan, K.R. Yoon, Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials. J. Solid State Electrochem. 20(12), 3447–3457 (2016). https://doi.org/10.1007/s10008-016-3309-1
- K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, S. Bi, Development of a 3D graphene aerogel and 3D porous graphene/MnO2@polyaniline hybrid film for all-solid-state flexible asymmetric supercapacitors. Sustain. Energy Fuels 2, 280–293 (2018). https://doi.org/10.1039/C7SE00433H
- Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010). https://doi.org/10.1021/nn101754k
- T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A 82(4), 599–606 (2006). https://doi.org/10.1007/s00339-005-3401-3
- D. Antiohos, K. Pingmuang, M.S. Romano, S. Beirne, T. Romeo et al., Manganosite–microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications. Electrochim. Acta 101(1), 99–108 (2013). https://doi.org/10.1016/j.electacta.2012.10.007
- Q.T. Qu, Y. Shi, S. Tian, Y.H. Chen, Y.P. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J. Power Sources 194(2), 1222–1225 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.068
- Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013). https://doi.org/10.1002/adma.201300132
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
- Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24(42), 5713–5718 (2012). https://doi.org/10.1002/adma.201202930
- L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
- J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
- P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu et al., Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014). https://doi.org/10.1002/aenm.201300759
- J. Ren, W. Bai, G. Guan, Y. Zhang, H. Peng, Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 25(41), 5965–5970 (2013). https://doi.org/10.1002/adma.201302498
References
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
Y. Huang, M. Zhu, Y. Huang, H. Li, Z. Pei, Q. Xue, Z. Liao, Z. Wang, C. Zhi, A modularization approach for linear-shaped functional supercapacitors. J. Mater. Chem. A 4(12), 4580–4586 (2016). https://doi.org/10.1039/C6TA00753H
A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). https://doi.org/10.1038/nmat1368
S. Luo, L. Xie, F. Han, W. Wei, Y. Huang et al., Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery. Adv. Funct. Mater. 29, 1901336 (2019). https://doi.org/10.1002/adfm.201901336
Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A
Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22, 422–438 (2016). https://doi.org/10.1016/j.nanoen.2016.02.047
M. Chaudhary, A.K. Nayak, R. Muhammad, D. Pradhan, P. Mohanty, Nitrogen-enriched nanoporous polytriazine for high-performance supercapacitor application. ACS Sustain. Chem. Eng. 6(5), 5895–5902 (2018). https://doi.org/10.1021/acssuschemeng.7b04254
J. Chen, C. Du, Y. Zhang, W. Wei, L. Wan, M. Xie, Z. Tian, Constructing porous organic polymer with hydroxyquinoline as electrochemical-active unit for high-performance supercapacitor. Polymer 162(24), 43–49 (2019). https://doi.org/10.1016/j.polymer.2018.12.030
H.V. Doan, H.A. Hamzah, P.K. Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
Y. Huang, W. Chen, H. Li, M. Zhu, F. Liu et al., Graphene stirrer with designed movements: Targeting on environmental remediation and supercapacitor applications. Green Energy Environ. 3(1), 86–96 (2018). https://doi.org/10.1016/j.gee.2017.10.004
M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei et al., Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6(21), 1600969 (2016). https://doi.org/10.1002/aenm.201600969
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16089 (2017). https://doi.org/10.1038/natrevmats.2016.98
E. Martínez-Periñán, M.P. Down, C. Gibaja, E. Lorenzo, F. Zamora, C.E. Banks, Antimonene: a novel 2D nanomaterial for supercapacitor applications. Adv. Energy Mater. 8(11), 1702606 (2018). https://doi.org/10.1002/aenm.201702606
C. Hao, B. Yang, F. Wen, J. Xiang, L. Li et al., Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28(16), 3194–3201 (2016). https://doi.org/10.1002/adma.201505730
J. Chang, S. Adhikari, T.H. Lee, B. Li, F. Yao, D.T. Pham, V.T. Le, Y.H. Lee, Leaf vein-inspired nanochanneled graphene film for highly efficient micro-supercapacitors. Adv. Energy Mater. 5(9), 1500003 (2015). https://doi.org/10.1002/aenm.201500003
S. Luo, J. Zhao, J. Zou, Z. He, C. Xu et al., Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces 10(4), 3538–3548 (2018). https://doi.org/10.1021/acsami.7b15458
M. Xie, Z. Xu, S. Duan, Z. Tian, Y. Zhang et al., Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 11(1), 216–224 (2018). https://doi.org/10.1007/s12274-017-1621-4
D. Jiang, H. Liang, W. Yang, Y. Liu, X. Cao et al., Screen-printable films of graphene/CoS2/Ni3S4 composites for the fabrication of flexible and arbitrary-shaped all-solid-state hybrid supercapacitors. Carbon 146, 557–567 (2019). https://doi.org/10.1016/j.carbon.2019.02.045
Y. Huang, M. Zhu, W. Meng, Y. Fu, Z. Wang, Y. Huang, Z. Pei, C. Zhi, Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015). https://doi.org/10.1039/C5RA02868J
H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources 190(2), 578–586 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.052
Y. Wang, X. Yang, L. Qiu, D. Li, Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ. Sci. 6(2), 477–481 (2013). https://doi.org/10.1039/c2ee24018a
Z. Mandić, M.K. Roković, T. Pokupčić, Polyaniline as cathodic material for electrochemical energy sources: the role of morphology. Electrochim. Acta 54(10), 2941–2950 (2009). https://doi.org/10.1016/j.electacta.2008.11.002
J. Li, Y. Ren, Z. Ren, S. Wang, Y. Qiu, J. Yu, Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors. J. Mater. Chem. A 3, 23307–23315 (2015). https://doi.org/10.1039/C5TA05381A
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010). https://doi.org/10.1039/B917705A
N.S. Murthy, H. Minor, General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers. Polymer 31(6), 996–1002 (1990). https://doi.org/10.1016/0032-3861(90)90243-R
K.E. Aasmundtveit, E.J. Samuelsen, L.A.A. Pettersson, O. Inganäs, T. Johansson, R. Feidenhans’, Structure of thin films of poly(3,4-ethylenedioxythiophene). Synth. Met. 101(1–3), 561–564 (1999). https://doi.org/10.1016/S0379-6779(98)00315-4
N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng, Y.-R. Jo, B.-J. Kim, K. Lee, Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26(14), 2268–2272 (2014). https://doi.org/10.1002/adma.201304611
A.J. Heeger, Semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev. Mod. Phys. 1(4–5), 247–267 (2001). https://doi.org/10.1016/S1567-1739(01)00053-0
Q. Yao, Q. Wang, L. Wang, Y. Wang, J. Sun et al., The synergic regulation of conductivity and Seebeck coefficient in pure polyaniline by chemically changing the ordered degree of molecular chains. J. Mater. Chem. A 2, 2634–2640 (2014). https://doi.org/10.1039/C3TA14008C
F. Ely, A. Matsumoto, B. Zoetebier, V.S. Peressinotto, M.K. Hirata, D.A. de Sousa, R. Maciel, Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices. Org. Electron. 15(5), 1062–1070 (2014). https://doi.org/10.1016/j.orgel.2014.02.022
X. Zhao, H. Lin, J. Li, L. Xin, C. Liu, J. Li, Low-cost preparation of a conductive and catalytic graphene film from chemical reduction with AlI3. Carbon 50(10), 3497–3502 (2012). https://doi.org/10.1016/j.carbon.2012.03.017
T. Yu, P. Zhu, Y. Xiong, H. Chen, S. Kang, H. Luo, S. Guan, Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors. Electrochim. Acta 222(20), 12–19 (2016). https://doi.org/10.1016/j.electacta.2016.11.033
Y. Zou, Z. Zhang, W. Zhong, W. Yang, Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. A 6, 9245–9256 (2018). https://doi.org/10.1039/C8TA01366G
A. Schaarschmidt, A.A. Farah, A. Aby, A.S. Helmy, Influence of nonadiabatic annealing on the morphology and molecular structure of PEDOT-PSS films. J. Phys. Chem. B 113(28), 9352–9355 (2009). https://doi.org/10.1021/jp904147v
A.A. Farah, S.A. Rutledge, A. Schaarschmidt, R. Lai, J.P. Freedman, A.S. Helmy, Conductivity enhancement of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) films post-spincasting. J. Appl. Phys. 112(11), 113709 (2012). https://doi.org/10.1063/1.4768265
K. Dagci, M. Alanyalioglu, Preparation of free-standing and flexible graphene/Ag nanoparticles/poly(pyronin Y) hybrid paper electrode for amperometric determination of nitrite. ACS Appl. Mater. Interfaces 8(4), 2713–2722 (2016). https://doi.org/10.1021/acsami.5b10973
M. Alanyalıoğlu, J.J. Segura, J. Oró-Solè, N. Casañ-Pastor, The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1), 142–152 (2012). https://doi.org/10.1016/j.carbon.2011.07.064
D. Liu, H. Wang, P. Du, W. Wei, Q. Wang, P. Liu, Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochim. Acta 259(1), 161–169 (2018). https://doi.org/10.1016/j.electacta.2017.10.165
X. Li, C. Zhang, S. Xin, Z. Yang, Y. Li, D. Zhang, P. Yao, Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8(33), 21373–21380 (2016). https://doi.org/10.1021/acsami.6b06762
P.C. Mahakul, K. Sa, B. Das, B.V.R.S. Subramaniam, S. Saha et al., Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J. Mater. Sci. 52(10), 5696–5707 (2017). https://doi.org/10.1007/s10853-017-0806-2
D. Li, Y. Li, Y. Feng, W. Hu, W. Feng, Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J. Mater. Chem. A 3, 2135–2143 (2015). https://doi.org/10.1039/C4TA05643D
J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9), 5019–5026 (2010). https://doi.org/10.1021/nn1006539
E. Jin Bae, Y. Hun Kang, K.-S. Jang, S. Yun Cho, Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci. Rep. 6, 18805 (2016). https://doi.org/10.1038/srep18805
H. Yan, H. Okuzaki, Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synth. Met. 159(21–22), 2225–2228 (2009). https://doi.org/10.1016/j.synthmet.2009.07.032
H. Ling, J. Lu, S. Phua, H. Liu, L. Liu et al., One-pot sequential electrochemical deposition of multilayer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties. J. Mater. Chem. A 2, 2708–2717 (2014). https://doi.org/10.1039/C3TA14781A
M.G. Hosseini, E. Shahryari, A novel high-performance supercapacitor based on chitosan/graphene oxide-MWCNT/polyaniline. J. Colloid Interface Sci. 496, 371–381 (2017). https://doi.org/10.1016/j.jcis.2017.02.027
Y. Li, X. Li, R. Zhao, C. Wang, F. Qiu et al., Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation. Mater. Sci. Eng. C 72, 106–112 (2017). https://doi.org/10.1016/j.msec.2016.11.052
F. Liu, S. Luo, D. Liu, W. Chen, Y. Huang, L. Dong, L. Wang, Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl. Mater. Interfaces 9(39), 33791–33801 (2017). https://doi.org/10.1021/acsami.7b08382
S.L. Lim, K.L. Tan, In situ XPS study of the interactions of evaporated copper atoms with neutral and protonated polyaniline films. Langmuir 14(18), 5305–5313 (1998). https://doi.org/10.1021/la980205+
W. Wang, J. Yan, J. Liu, D. Ou, Q. Qin et al., Self-healing polyaniline-graphene oxides based electrodes with enhanced cycling stability. Electrochim. Acta 282(20), 835–844 (2018). https://doi.org/10.1016/j.electacta.2018.06.121
L. Chen, L. Chen, Q. Ai, D. Li, P. Si et al., Flexible all-solid-state supercapacitors based on freestanding, binder-free carbon nanofibers@polypyrrole@graphene film. Chem. Eng. J. 334, 184–190 (2018). https://doi.org/10.1016/j.cej.2017.10.038
P. Asen, S. Shahrokhian, A.I. Zad, Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application. J. Electroanal. Chem. 823, 505–516 (2018). https://doi.org/10.1016/j.jelechem.2018.06.048
K. Jin, W. Zhang, Y. Wang, X. Guo, Z. Chen et al., In–situ hybridization of polyaniline nanofibers on functionalized reduced graphene oxide films for high-performance supercapacitor. Electrochim. Acta 285(20), 221–229 (2018). https://doi.org/10.1016/j.electacta.2018.07.220
A. Viswanathan, A.N. Shetty, Facile in situ single step chemical synthesis of reduced graphene oxide-copper oxide-polyaniline nanocomposite and its electrochemical performance for supercapacitor application. Electrochim. Acta 257(10), 483–493 (2017). https://doi.org/10.1016/j.electacta.2017.10.099
W. Zhao, Y. Li, S. Wu, D. Wang, X. Zhao et al., Highly stable carbon nanotube/polyaniline porous network for multifunctional applications. ACS Appl. Mater. Interfaces 8(49), 34027–34033 (2016). https://doi.org/10.1021/acsami.6b11984
F. Miao, C. Shao, X. Li, N. Lu, K. Wang, X. Zhang, Y. Liu, Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy 95, 233–241 (2016). https://doi.org/10.1016/j.energy.2015.12.013
F. Miao, C. Shao, X. Li, K. Wang, N. Lu, Y. Liu, Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. J. Power Sources 329, 516–524 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.111
B. Sydulu Singu, P. Srinivasan, K.R. Yoon, Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials. J. Solid State Electrochem. 20(12), 3447–3457 (2016). https://doi.org/10.1007/s10008-016-3309-1
K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, S. Bi, Development of a 3D graphene aerogel and 3D porous graphene/MnO2@polyaniline hybrid film for all-solid-state flexible asymmetric supercapacitors. Sustain. Energy Fuels 2, 280–293 (2018). https://doi.org/10.1039/C7SE00433H
Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010). https://doi.org/10.1021/nn101754k
T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A 82(4), 599–606 (2006). https://doi.org/10.1007/s00339-005-3401-3
D. Antiohos, K. Pingmuang, M.S. Romano, S. Beirne, T. Romeo et al., Manganosite–microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications. Electrochim. Acta 101(1), 99–108 (2013). https://doi.org/10.1016/j.electacta.2012.10.007
Q.T. Qu, Y. Shi, S. Tian, Y.H. Chen, Y.P. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J. Power Sources 194(2), 1222–1225 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.068
Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013). https://doi.org/10.1002/adma.201300132
X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24(42), 5713–5718 (2012). https://doi.org/10.1002/adma.201202930
L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu et al., Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014). https://doi.org/10.1002/aenm.201300759
J. Ren, W. Bai, G. Guan, Y. Zhang, H. Peng, Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 25(41), 5965–5970 (2013). https://doi.org/10.1002/adma.201302498