From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage
Corresponding Author: Wei Chen
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 98
Abstract
Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g−1 at 30 mA g−1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm−2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm−2 at 25 °C and 5.32 mAh cm−2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
Highlights:
1 Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.
2 The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores.
3 The thick electrode (~ 19 mg cm−2) with a high areal capacity of 6.14 mAh cm−2 displays an ultrahigh cycling stability and an outstanding low-temperature performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
- X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
- Y. Shao, G. Zhong, Y. Lu, L. Liu, C. Zhao et al., A novel nasicon-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Mater. 23, 514–521 (2019). https://doi.org/10.1016/j.ensm.2019.04.009
- C. Zhao, F. Ding, Y. Lu, L. Chen, Y.S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020). https://doi.org/10.1002/anie.201912171
- J. Zhang, D.-W. Wang, W. Lv, L. Qin, S. Niu et al., Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges. Adv. Energy Mater. 8(26), 1801361 (2018). https://doi.org/10.1002/aenm.201801361
- J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang et al., Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10(1), 370–376 (2017). https://doi.org/10.1039/C6EE03367A
- Y. Lu, X. Rong, Y.-S. Hu, L. Chen, H. Li, Research and development of advanced battery materials in china. Energy Storage Mater. 23, 144–153 (2019). https://doi.org/10.1016/j.ensm.2019.05.019
- C. Zeng, F. Xie, X. Yang, M. Jaroniec, L. Zhang et al., Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem. Int. Ed. 57(28), 8540–8544 (2018). https://doi.org/10.1002/anie.201803511
- Y. Liu, B.V. Merinov, W.A. Goddard, Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 113(14), 3735–3739 (2016). https://doi.org/10.1073/pnas.1602473113
- H. Zhang, I. Hasa, S. Passerini, Beyond insertion for na-ion batteries: Nanostructured alloying and conversion anode materials. Adv. Energy Mater. 8(17), 1702582 (2018). https://doi.org/10.1002/aenm.201702582
- F. Xie, L. Zhang, Q. Gu, D. Chao, M. Jaroniec et al., Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 60, 591–599 (2019). https://doi.org/10.1016/j.nanoen.2019.04.008
- F. Xie, L. Zhang, C. Ye, M. Jaroniec, S.Z. Qiao, The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems. Adv. Mater. 31(38), e1800492 (2019). https://doi.org/10.1002/adma.201800492
- B. Chen, Y. Meng, F. Xie, F. He, C. He et al., 1D sub-nanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries. Adv. Mater. 30(46), e1804116 (2018). https://doi.org/10.1002/adma.201804116
- Y. Xiao, X. Zhao, X. Wang, D. Su, S. Bai et al., A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 10(25), 2000666 (2020). https://doi.org/10.1002/aenm.202000666
- Y. Xiao, D. Su, X. Wang, S. Wu, L. Zhou et al., CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries. Adv. Energy Mater. 8(22), 1800930 (2018). https://doi.org/10.1002/aenm.201800930
- D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li et al., From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8(17), 1703268 (2018). https://doi.org/10.1002/aenm.201703268
- D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147(4), 1271–1273 (2000). https://doi.org/10.1149/1.1393348
- D.A. Stevens, J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803–A811 (2001). https://doi.org/10.1149/1.1379565
- D.A. Stevens, J.R. Dahn, An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 147(12), 4428–4431 (2000). https://doi.org/10.1149/1.1394081
- S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki et al., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21(20), 3859–3867 (2011). https://doi.org/10.1002/adfm.201100854
- K. Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba et al., NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J. Power Sources 225, 137–140 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.025
- J.M. Stratford, P.K. Allan, O. Pecher, P.A. Chater, C.P. Grey, Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 52(84), 12430–12433 (2016). https://doi.org/10.1039/C6CC06990H
- Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
- S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao et al., Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017). https://doi.org/10.1002/aenm.201700403
- J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004–11015 (2013). https://doi.org/10.1021/nn404640c
- E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart et al., High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8(7), 7115–7129 (2014). https://doi.org/10.1021/nn502045y
- S. Alvin, H.S. Cahyadi, J. Hwang, W. Chang, S.K. Kwak et al., Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10(20), 2000283 (2020). https://doi.org/10.1002/aenm.202000283
- C. Bommier, T.W. Surta, M. Dolgos, X. Ji, New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15(9), 5888–5892 (2015). https://doi.org/10.1021/acs.nanolett.5b01969
- Z. Li, L. Ma, T.W. Surta, C. Bommier, Z. Jian et al., High capacity of hard carbon anode in Na-ion batteries unlocked by pox doping. ACS Energy Lett. 1(2), 395–401 (2016). https://doi.org/10.1021/acsenergylett.6b00172
- Z. Li, C. Bommier, Z.S. Chong, Z. Jian, T.W. Surta et al., Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 7(18), 1602894 (2017). https://doi.org/10.1002/aenm.201602894
- B. Zhang, C.M. Ghimbeu, C. Laberty, C. Vix-Guterl, J.-M. Tarascon, Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 6(1), 1501588 (2016). https://doi.org/10.1002/aenm.201501588
- Q. Meng, Y. Lu, F. Ding, Q. Zhang, L. Chen et al., Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 4(11), 2608–2612 (2019). https://doi.org/10.1021/acsenergylett.9b01900
- Y. Li, Y. Lu, Q. Meng, A.C.S. Jensen, Q. Zhang et al., Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9(48), 1902852 (2019). https://doi.org/10.1002/aenm.201902852
- Y. Lu, C. Zhao, X. Qi, Y. Qi, H. Li et al., Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv. Energy Mater. 8(27), 1800108 (2018). https://doi.org/10.1002/aenm.201800108
- C. Zhao, Q. Wang, Y. Lu, B. Li, L. Chen et al., High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. Sci. Bulletin 63(17), 1125–1129 (2018). https://doi.org/10.1016/j.scib.2018.07.018
- Y. Li, Y.-S. Hu, H. Li, L. Chen, X. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 4(1), 96–104 (2016). https://doi.org/10.1039/C5TA08601A
- Y. Li, L. Mu, Y.-S. Hu, H. Li, L. Chen et al., Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2, 139–145 (2016). https://doi.org/10.1016/j.ensm.2015.10.003
- J. Choi, M.E. Lee, S. Lee, H.-J. Jin, Y.S. Yun, Pyroprotein-derived hard carbon fibers exhibiting exceptionally high plateau capacities for sodium ion batteries. ACS Appl. Energy Mater. 2(2), 1185–1191 (2019). https://doi.org/10.1021/acsaem.8b01734
- Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J. Mater. Chem. A 7(27), 16028–16045 (2019). https://doi.org/10.1039/C9TA04436A
- J. Yang, S. Xiao, X. Cui, W. Dai, X. Lian et al., Inorganic-anion-modulated synthesis of 2D nonlayered aluminum-based metal-organic frameworks as carbon precursor for capacitive sodium ion storage. Energy Storage Mater. 26, 391–399 (2020). https://doi.org/10.1016/j.ensm.2019.11.010
- B. Yang, J. Chen, S. Lei, R. Guo, H. Li et al., Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8(10), 1702409 (2018). https://doi.org/10.1002/aenm.201702409
- Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang et al., Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
- Z. Ju, S. Zhang, Z. Xing, Q. Zhuang, Y. Qiang et al., Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Interfaces 8(32), 20682–20690 (2016). https://doi.org/10.1021/acsami.6b04763
- Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou et al., Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 30(29), e1802035 (2018). https://doi.org/10.1002/adma.201802035
- Y. Lu, J. Liang, Y. Hu, Y. Liu, K. Chen et al., Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: insights into capacitive contribution mechanism. Adv. Energy Mater. 10(7), 1903312 (2020). https://doi.org/10.1002/aenm.201903312
- C. Bommier, X. Ji, P.A. Greaney, Electrochemical properties and theoretical capacity for sodium storage in hard carbon: insights from first principles calculations. Chem. Mater. 31(3), 658–677 (2018). https://doi.org/10.1021/acs.chemmater.8b01390
- M.D. Levi, N. Levy, S. Sigalov, G. Salitra, D. Aurbach et al., Electrochemical quartz crystal microbalance (eqcm) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132(38), 13220–13222 (2010). https://doi.org/10.1021/ja104391g
- J.M. Griffin, A.C. Forse, W.Y. Tsai, P.L. Taberna, P. Simon et al., In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14(8), 812–819 (2015). https://doi.org/10.1038/nmat4318
- S.-W. Zhang, W. Lv, C. Luo, C.-H. You, J. Zhang et al., Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater. 3, 18–23 (2016). https://doi.org/10.1016/j.ensm.2015.12.004
- A. Karatrantos, Q. Cai, Effects of pore size and surface charge on Na ion storage in carbon nanopores. Phys. Chem. Chem. Phys. 18(44), 30761–30769 (2016). https://doi.org/10.1039/C6CP04611H
- X. Zhang, S. Yang, X. Shan, S. Li, S. Tang, Insights into the effect of the interlayer spacings of bilayer graphene on the desolvation of H(+), Li(+), Na(+), and K(+) ions with water as a solvent: a first-principles study. Phys. Chem. Chem. Phys. 21(42), 23697–23704 (2019). https://doi.org/10.1039/C9CP02922B
- J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Desolvation of ions in sub-nanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 120(18), 3440–3443 (2008). https://doi.org/10.1002/anie.200704894
- H. Zhang, G. Cao, Y. Yang, Z. Gu, Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60°C. Carbon 46(1), 30–34 (2008). https://doi.org/10.1016/j.carbon.2007.10.023
- H. Huang, S. Chen, X. Gao, W. Chen, A.T.S. Wee, Structural and electronic properties of PTCDA thin films on epitaxial graphene. ACS Nano 3(11), 3431–3436 (2009). https://doi.org/10.1021/nn9008615
- K.J. Chen, D.G. Madden, T. Pham, K.A. Forrest, A. Kumar et al., Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2. Angew. Chem. Int. Ed. 55(35), 10268–10272 (2016). https://doi.org/10.1002/anie.201603934
- N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu et al., Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9(32), 1901351 (2019). https://doi.org/10.1002/aenm.201901351
- Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996). https://doi.org/10.1016/0008-6223(96)00177-7
- Z. Jian, C. Bommier, L. Luo, Z. Li, W. Wang et al., Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 29(5), 2314–2320 (2017). https://doi.org/10.1021/acs.chemmater.6b05474
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- K. Fang, D. Liu, X. Xiang, X. Zhu, H. Tang et al., Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design. Nano Energy 69, 104451 (2020). https://doi.org/10.1016/j.nanoen.2020.104451
- C. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet et al., Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018). https://doi.org/10.1016/j.nanoen.2017.12.013
- W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter et al., Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces 7(4), 2626–2631 (2015). https://doi.org/10.1021/am507679x
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- C. Yang, F. Lv, K. Dong, F. Lai, K. Zhao et al., Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30(27), 1800036 (2018). https://doi.org/10.1002/adma.201800036
- C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin et al., Carbon-coated ultrathin metallic V5Se8 nanosheet for high-energy-density and robust potassium storage. Energy Storage Mater. 35, 1–11 (2021). https://doi.org/10.1016/j.ensm.2020.11.005
- X. Yao, Y. Ke, W. Ren, X. Wang, F. Xiong et al., Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 9(6), 1803260 (2018). https://doi.org/10.1002/aenm.201803260
- R. Alcántara, P. Lavela, G.F. Ortiz, J.L. Tirado, Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid-State Lett. 8(4), A222–A225 (2005). https://doi.org/10.1149/1.1870612
References
H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
Y. Shao, G. Zhong, Y. Lu, L. Liu, C. Zhao et al., A novel nasicon-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Mater. 23, 514–521 (2019). https://doi.org/10.1016/j.ensm.2019.04.009
C. Zhao, F. Ding, Y. Lu, L. Chen, Y.S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020). https://doi.org/10.1002/anie.201912171
J. Zhang, D.-W. Wang, W. Lv, L. Qin, S. Niu et al., Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges. Adv. Energy Mater. 8(26), 1801361 (2018). https://doi.org/10.1002/aenm.201801361
J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang et al., Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10(1), 370–376 (2017). https://doi.org/10.1039/C6EE03367A
Y. Lu, X. Rong, Y.-S. Hu, L. Chen, H. Li, Research and development of advanced battery materials in china. Energy Storage Mater. 23, 144–153 (2019). https://doi.org/10.1016/j.ensm.2019.05.019
C. Zeng, F. Xie, X. Yang, M. Jaroniec, L. Zhang et al., Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem. Int. Ed. 57(28), 8540–8544 (2018). https://doi.org/10.1002/anie.201803511
Y. Liu, B.V. Merinov, W.A. Goddard, Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 113(14), 3735–3739 (2016). https://doi.org/10.1073/pnas.1602473113
H. Zhang, I. Hasa, S. Passerini, Beyond insertion for na-ion batteries: Nanostructured alloying and conversion anode materials. Adv. Energy Mater. 8(17), 1702582 (2018). https://doi.org/10.1002/aenm.201702582
F. Xie, L. Zhang, Q. Gu, D. Chao, M. Jaroniec et al., Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 60, 591–599 (2019). https://doi.org/10.1016/j.nanoen.2019.04.008
F. Xie, L. Zhang, C. Ye, M. Jaroniec, S.Z. Qiao, The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems. Adv. Mater. 31(38), e1800492 (2019). https://doi.org/10.1002/adma.201800492
B. Chen, Y. Meng, F. Xie, F. He, C. He et al., 1D sub-nanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries. Adv. Mater. 30(46), e1804116 (2018). https://doi.org/10.1002/adma.201804116
Y. Xiao, X. Zhao, X. Wang, D. Su, S. Bai et al., A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 10(25), 2000666 (2020). https://doi.org/10.1002/aenm.202000666
Y. Xiao, D. Su, X. Wang, S. Wu, L. Zhou et al., CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries. Adv. Energy Mater. 8(22), 1800930 (2018). https://doi.org/10.1002/aenm.201800930
D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li et al., From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8(17), 1703268 (2018). https://doi.org/10.1002/aenm.201703268
D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147(4), 1271–1273 (2000). https://doi.org/10.1149/1.1393348
D.A. Stevens, J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803–A811 (2001). https://doi.org/10.1149/1.1379565
D.A. Stevens, J.R. Dahn, An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 147(12), 4428–4431 (2000). https://doi.org/10.1149/1.1394081
S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki et al., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21(20), 3859–3867 (2011). https://doi.org/10.1002/adfm.201100854
K. Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba et al., NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J. Power Sources 225, 137–140 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.025
J.M. Stratford, P.K. Allan, O. Pecher, P.A. Chater, C.P. Grey, Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 52(84), 12430–12433 (2016). https://doi.org/10.1039/C6CC06990H
Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao et al., Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017). https://doi.org/10.1002/aenm.201700403
J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004–11015 (2013). https://doi.org/10.1021/nn404640c
E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart et al., High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8(7), 7115–7129 (2014). https://doi.org/10.1021/nn502045y
S. Alvin, H.S. Cahyadi, J. Hwang, W. Chang, S.K. Kwak et al., Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10(20), 2000283 (2020). https://doi.org/10.1002/aenm.202000283
C. Bommier, T.W. Surta, M. Dolgos, X. Ji, New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15(9), 5888–5892 (2015). https://doi.org/10.1021/acs.nanolett.5b01969
Z. Li, L. Ma, T.W. Surta, C. Bommier, Z. Jian et al., High capacity of hard carbon anode in Na-ion batteries unlocked by pox doping. ACS Energy Lett. 1(2), 395–401 (2016). https://doi.org/10.1021/acsenergylett.6b00172
Z. Li, C. Bommier, Z.S. Chong, Z. Jian, T.W. Surta et al., Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 7(18), 1602894 (2017). https://doi.org/10.1002/aenm.201602894
B. Zhang, C.M. Ghimbeu, C. Laberty, C. Vix-Guterl, J.-M. Tarascon, Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 6(1), 1501588 (2016). https://doi.org/10.1002/aenm.201501588
Q. Meng, Y. Lu, F. Ding, Q. Zhang, L. Chen et al., Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 4(11), 2608–2612 (2019). https://doi.org/10.1021/acsenergylett.9b01900
Y. Li, Y. Lu, Q. Meng, A.C.S. Jensen, Q. Zhang et al., Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9(48), 1902852 (2019). https://doi.org/10.1002/aenm.201902852
Y. Lu, C. Zhao, X. Qi, Y. Qi, H. Li et al., Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv. Energy Mater. 8(27), 1800108 (2018). https://doi.org/10.1002/aenm.201800108
C. Zhao, Q. Wang, Y. Lu, B. Li, L. Chen et al., High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. Sci. Bulletin 63(17), 1125–1129 (2018). https://doi.org/10.1016/j.scib.2018.07.018
Y. Li, Y.-S. Hu, H. Li, L. Chen, X. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 4(1), 96–104 (2016). https://doi.org/10.1039/C5TA08601A
Y. Li, L. Mu, Y.-S. Hu, H. Li, L. Chen et al., Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2, 139–145 (2016). https://doi.org/10.1016/j.ensm.2015.10.003
J. Choi, M.E. Lee, S. Lee, H.-J. Jin, Y.S. Yun, Pyroprotein-derived hard carbon fibers exhibiting exceptionally high plateau capacities for sodium ion batteries. ACS Appl. Energy Mater. 2(2), 1185–1191 (2019). https://doi.org/10.1021/acsaem.8b01734
Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J. Mater. Chem. A 7(27), 16028–16045 (2019). https://doi.org/10.1039/C9TA04436A
J. Yang, S. Xiao, X. Cui, W. Dai, X. Lian et al., Inorganic-anion-modulated synthesis of 2D nonlayered aluminum-based metal-organic frameworks as carbon precursor for capacitive sodium ion storage. Energy Storage Mater. 26, 391–399 (2020). https://doi.org/10.1016/j.ensm.2019.11.010
B. Yang, J. Chen, S. Lei, R. Guo, H. Li et al., Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8(10), 1702409 (2018). https://doi.org/10.1002/aenm.201702409
Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang et al., Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
Z. Ju, S. Zhang, Z. Xing, Q. Zhuang, Y. Qiang et al., Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Interfaces 8(32), 20682–20690 (2016). https://doi.org/10.1021/acsami.6b04763
Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou et al., Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 30(29), e1802035 (2018). https://doi.org/10.1002/adma.201802035
Y. Lu, J. Liang, Y. Hu, Y. Liu, K. Chen et al., Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: insights into capacitive contribution mechanism. Adv. Energy Mater. 10(7), 1903312 (2020). https://doi.org/10.1002/aenm.201903312
C. Bommier, X. Ji, P.A. Greaney, Electrochemical properties and theoretical capacity for sodium storage in hard carbon: insights from first principles calculations. Chem. Mater. 31(3), 658–677 (2018). https://doi.org/10.1021/acs.chemmater.8b01390
M.D. Levi, N. Levy, S. Sigalov, G. Salitra, D. Aurbach et al., Electrochemical quartz crystal microbalance (eqcm) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132(38), 13220–13222 (2010). https://doi.org/10.1021/ja104391g
J.M. Griffin, A.C. Forse, W.Y. Tsai, P.L. Taberna, P. Simon et al., In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14(8), 812–819 (2015). https://doi.org/10.1038/nmat4318
S.-W. Zhang, W. Lv, C. Luo, C.-H. You, J. Zhang et al., Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater. 3, 18–23 (2016). https://doi.org/10.1016/j.ensm.2015.12.004
A. Karatrantos, Q. Cai, Effects of pore size and surface charge on Na ion storage in carbon nanopores. Phys. Chem. Chem. Phys. 18(44), 30761–30769 (2016). https://doi.org/10.1039/C6CP04611H
X. Zhang, S. Yang, X. Shan, S. Li, S. Tang, Insights into the effect of the interlayer spacings of bilayer graphene on the desolvation of H(+), Li(+), Na(+), and K(+) ions with water as a solvent: a first-principles study. Phys. Chem. Chem. Phys. 21(42), 23697–23704 (2019). https://doi.org/10.1039/C9CP02922B
J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Desolvation of ions in sub-nanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 120(18), 3440–3443 (2008). https://doi.org/10.1002/anie.200704894
H. Zhang, G. Cao, Y. Yang, Z. Gu, Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60°C. Carbon 46(1), 30–34 (2008). https://doi.org/10.1016/j.carbon.2007.10.023
H. Huang, S. Chen, X. Gao, W. Chen, A.T.S. Wee, Structural and electronic properties of PTCDA thin films on epitaxial graphene. ACS Nano 3(11), 3431–3436 (2009). https://doi.org/10.1021/nn9008615
K.J. Chen, D.G. Madden, T. Pham, K.A. Forrest, A. Kumar et al., Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2. Angew. Chem. Int. Ed. 55(35), 10268–10272 (2016). https://doi.org/10.1002/anie.201603934
N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu et al., Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9(32), 1901351 (2019). https://doi.org/10.1002/aenm.201901351
Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996). https://doi.org/10.1016/0008-6223(96)00177-7
Z. Jian, C. Bommier, L. Luo, Z. Li, W. Wang et al., Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 29(5), 2314–2320 (2017). https://doi.org/10.1021/acs.chemmater.6b05474
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
K. Fang, D. Liu, X. Xiang, X. Zhu, H. Tang et al., Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design. Nano Energy 69, 104451 (2020). https://doi.org/10.1016/j.nanoen.2020.104451
C. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet et al., Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018). https://doi.org/10.1016/j.nanoen.2017.12.013
W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter et al., Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces 7(4), 2626–2631 (2015). https://doi.org/10.1021/am507679x
B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
C. Yang, F. Lv, K. Dong, F. Lai, K. Zhao et al., Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism. Adv. Mater. 30(27), 1800036 (2018). https://doi.org/10.1002/adma.201800036
C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin et al., Carbon-coated ultrathin metallic V5Se8 nanosheet for high-energy-density and robust potassium storage. Energy Storage Mater. 35, 1–11 (2021). https://doi.org/10.1016/j.ensm.2020.11.005
X. Yao, Y. Ke, W. Ren, X. Wang, F. Xiong et al., Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 9(6), 1803260 (2018). https://doi.org/10.1002/aenm.201803260
R. Alcántara, P. Lavela, G.F. Ortiz, J.L. Tirado, Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid-State Lett. 8(4), A222–A225 (2005). https://doi.org/10.1149/1.1870612