Super-Tough and Environmentally Stable Aramid. Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency
Corresponding Author: Zhong‑Zhen Yu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 111
Abstract
Although electrically conductive and hydrophilic MXene sheets are promising for multifunctional fibers and electronic textiles, it is still a challenge to simultaneously enhance both conductivity and mechanical properties of MXene fibers because of the high rigidity of MXene sheets and insufficient inter-sheet interactions. Herein, we demonstrate a core–shell wet-spinning methodology for fabricating highly conductive, super-tough, ultra-strong, and environmentally stable Ti3C2Tx MXene-based core–shell fibers with conductive MXene cores and tough aramid nanofiber (ANF) shells. The highly orientated and low-defect structure endows the ANF@MXene core–shell fiber with super-toughness of ~ 48.1 MJ m−3, high strength of ~ 502.9 MPa, and high conductivity of ~ 3.0 × 105 S m−1. The super-tough and conductive ANF@MXene fibers can be woven into textiles, exhibiting an excellent electromagnetic interference (EMI) shielding efficiency of 83.4 dB at a small thickness of 213 μm. Importantly, the protection of the ANF shells provides the fibers with satisfactory cyclic stability under dynamic stretching and bending, and excellent resistance to acid, alkali, seawater, cryogenic and high temperatures, and fire. The oxidation resistance of the fibers is demonstrated by their well-maintained EMI shielding performances. The multifunctional core–shell fibers would be highly promising in the fields of EMI shielding textiles, wearable electronics and aerospace.
Highlights:
1 Super-tough and ultra-strong ANF@MXene fibers are wet-spun by a coaxial technique.
2 High toughness of ~ 48.1 MJ m−3 and strength of ~ 502.9 MPa are achieved.
3 The fibers exhibit superb chemical stability under extreme environmental conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Weng, J. Yang, Y. Zhang, Y. Li, S. Yang et al., A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32(5), 1902301 (2019). https://doi.org/10.1002/adma.201902301
- A.H.C. Hart, R. Koizumi, J. Hamel, P.S. Owuor, Y. Ito et al., Velcro-inspired SiC fuzzy fibers for aerospace applications. ACS Appl. Mater. Interfaces 9(15), 13742–13750 (2017). https://doi.org/10.1021/acsami.7b01378
- M. Zu, Q. Li, G. Wang, J.H. Byun, T.W. Chou, Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 23(7), 789–793 (2013). https://doi.org/10.1002/adfm.201202174
- B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), 1902664 (2019). https://doi.org/10.1002/adma.201902664
- S. Qin, K.A.S. Usman, D. Hegh, S. Seyedin, Y. Gogotsi et al., Development and applications of MXene-based functional fibers. ACS Appl. Mater. Interfaces 13(31), 36655–36669 (2021). https://doi.org/10.1021/acsami.1c08985
- W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13(6), 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5(42), 22113–22119 (2017). https://doi.org/10.1039/c7ta07999k
- J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
- S. Seyedin, E.R.S. Yanza, J.M. Razal, Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J. Mater. Chem. A 5(46), 24076–24082 (2017). https://doi.org/10.1039/c7ta08355f
- A. Levitt, J. Zhang, G. Dion, Y. Gogotsi, J.M. Razal, MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 30(47), 2000739 (2020). https://doi.org/10.1002/adfm.202000739
- W.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019). https://doi.org/10.1002/adfm.201905898
- J. Zhang, S. Seyedin, S. Qin, Z. Wang, S. Moradi et al., Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 15(8), 1804732 (2019). https://doi.org/10.1002/smll.201804732
- A. Levitt, S. Seyedin, J. Zhang, X. Wang, J.M. Razal et al., Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small 16(26), 2002158 (2020). https://doi.org/10.1002/smll.202002158
- W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
- S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia et al., Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 15(4), 7821–7832 (2021). https://doi.org/10.1021/acsnano.1c02271
- X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
- X. Chen, J. Jiang, G. Yang, C. Li, Y. Li, Bioinspired wood-like coaxial fibers based on MXene@graphene oxide with superior mechanical and electrical properties. Nanoscale 12(41), 21325–21333 (2020). https://doi.org/10.1039/d0nr04928j
- L.X. Liu, W. Chen, H.B. Zhang, Y. Zhang, P. Tang et al., Tough and electrically conductive Ti3C2Tx MXene–based core–shell fibers for high–performance electromagnetic interference shielding and heating application. Chem. Eng. J. 430, 133074 (2021). https://doi.org/10.1016/j.cej.2021.133074
- L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu et al., Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011). https://doi.org/10.1021/nn2014003
- C. Qiu, K. Zhu, X. Zhou, L. Luo, J. Zeng et al., Influences of coagulation conditions on the structure and properties of regenerated cellulose filaments via wet-spinning in LiOH/urea solvent. ACS Sustain. Chem. Eng. 6(3), 4056–4067 (2018). https://doi.org/10.1021/acssuschemeng.7b04429
- P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
- B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13(7), 7886–7897 (2019). https://doi.org/10.1021/acsnano.9b02258
- H. Shin, W. Eom, K.H. Lee, W. Jeong, D.J. Kang et al., Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano 15(2), 3320–3329 (2021). https://doi.org/10.1021/acsnano.0c10255
- G. Xin, W. Zhu, Y. Deng, J. Cheng, L.T. Zhang et al., Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 14(2), 168–175 (2019). https://doi.org/10.1038/s41565-018-0330-9
- S. Chen, W. Ma, Y. Cheng, Z. Weng, B. Sun et al., Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 15, 642–653 (2015). https://doi.org/10.1016/j.nanoen.2015.05.004
- Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28(30), 6449–6456 (2016). https://doi.org/10.1002/adma.201506426
- W. Cao, L. Yang, X. Qi, Y. Hou, J. Zhu et al., Carbon nanotube wires sheathed by aramid nanofibers. Adv. Funct. Mater. 27(34), 1701061 (2017). https://doi.org/10.1002/adfm.201701061
- T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
- S. Wan, Q. Cheng, Fatigue-resistant bioinspired graphene-based nanocomposites. Adv. Funct. Mater. 27(43), 1703459 (2017). https://doi.org/10.1002/adfm.201703459
- C. Cao, Z. Lin, X. Liu, Y. Jia, E. Saiz et al., Strong reduced graphene oxide coated bombyx mori silk. Adv. Funct. Mater. 31(34), 2102923 (2021). https://doi.org/10.1002/adfm.202102923
- N. He, S. Patil, J. Qu, J. Liao, F. Zhao et al., Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors. ACS Appl. Energy Mater. 3(3), 2949–2958 (2020). https://doi.org/10.1021/acsaem.0c00024
- B. Cheng, P. Wu, Scalable fabrication of kevlar/ Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
- Q. Liu, A. Zhao, X. He, Q. Li, J. Sun et al., Full-temperature all-solid-state Ti3C2Tx/aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility. Adv. Funct. Mater. 31(22), 2010944 (2021). https://doi.org/10.1002/adfm.202010944
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
- L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
- Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen et al., Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10(7), 6624–6635 (2018). https://doi.org/10.1021/acsami.7b18677
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
- L. Lyu, J. Liu, H. Liu, C. Liu, Y. Lu et al., An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng. Sci. 2, 26–42 (2018). https://doi.org/10.30919/es8d615
- Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
- H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4(3), 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
- N. Wu, W. Du, Q. Hu, S. Vupputuri, Q. Jiang, Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 13, 11–23 (2020). https://doi.org/10.30919/es8d1149
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2019). https://doi.org/10.1002/aelm.201901094
- H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30(5), 1906996 (2019). https://doi.org/10.1002/adfm.201906996
References
W. Weng, J. Yang, Y. Zhang, Y. Li, S. Yang et al., A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32(5), 1902301 (2019). https://doi.org/10.1002/adma.201902301
A.H.C. Hart, R. Koizumi, J. Hamel, P.S. Owuor, Y. Ito et al., Velcro-inspired SiC fuzzy fibers for aerospace applications. ACS Appl. Mater. Interfaces 9(15), 13742–13750 (2017). https://doi.org/10.1021/acsami.7b01378
M. Zu, Q. Li, G. Wang, J.H. Byun, T.W. Chou, Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 23(7), 789–793 (2013). https://doi.org/10.1002/adfm.201202174
B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers: expectations, advances, and prospects. Adv. Mater. 32(5), 1902664 (2019). https://doi.org/10.1002/adma.201902664
S. Qin, K.A.S. Usman, D. Hegh, S. Seyedin, Y. Gogotsi et al., Development and applications of MXene-based functional fibers. ACS Appl. Mater. Interfaces 13(31), 36655–36669 (2021). https://doi.org/10.1021/acsami.1c08985
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim et al., Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano 13(6), 6835–6844 (2019). https://doi.org/10.1021/acsnano.9b01602
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5(42), 22113–22119 (2017). https://doi.org/10.1039/c7ta07999k
J. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
S. Seyedin, E.R.S. Yanza, J.M. Razal, Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J. Mater. Chem. A 5(46), 24076–24082 (2017). https://doi.org/10.1039/c7ta08355f
A. Levitt, J. Zhang, G. Dion, Y. Gogotsi, J.M. Razal, MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 30(47), 2000739 (2020). https://doi.org/10.1002/adfm.202000739
W.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019). https://doi.org/10.1002/adfm.201905898
J. Zhang, S. Seyedin, S. Qin, Z. Wang, S. Moradi et al., Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 15(8), 1804732 (2019). https://doi.org/10.1002/smll.201804732
A. Levitt, S. Seyedin, J. Zhang, X. Wang, J.M. Razal et al., Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small 16(26), 2002158 (2020). https://doi.org/10.1002/smll.202002158
W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia et al., Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 15(4), 7821–7832 (2021). https://doi.org/10.1021/acsnano.1c02271
X. Zhao, A. Vashisth, E. Prehn, W. Sun, S.A. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
X. Chen, J. Jiang, G. Yang, C. Li, Y. Li, Bioinspired wood-like coaxial fibers based on MXene@graphene oxide with superior mechanical and electrical properties. Nanoscale 12(41), 21325–21333 (2020). https://doi.org/10.1039/d0nr04928j
L.X. Liu, W. Chen, H.B. Zhang, Y. Zhang, P. Tang et al., Tough and electrically conductive Ti3C2Tx MXene–based core–shell fibers for high–performance electromagnetic interference shielding and heating application. Chem. Eng. J. 430, 133074 (2021). https://doi.org/10.1016/j.cej.2021.133074
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu et al., Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011). https://doi.org/10.1021/nn2014003
C. Qiu, K. Zhu, X. Zhou, L. Luo, J. Zeng et al., Influences of coagulation conditions on the structure and properties of regenerated cellulose filaments via wet-spinning in LiOH/urea solvent. ACS Sustain. Chem. Eng. 6(3), 4056–4067 (2018). https://doi.org/10.1021/acssuschemeng.7b04429
P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13(7), 7886–7897 (2019). https://doi.org/10.1021/acsnano.9b02258
H. Shin, W. Eom, K.H. Lee, W. Jeong, D.J. Kang et al., Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano 15(2), 3320–3329 (2021). https://doi.org/10.1021/acsnano.0c10255
G. Xin, W. Zhu, Y. Deng, J. Cheng, L.T. Zhang et al., Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 14(2), 168–175 (2019). https://doi.org/10.1038/s41565-018-0330-9
S. Chen, W. Ma, Y. Cheng, Z. Weng, B. Sun et al., Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 15, 642–653 (2015). https://doi.org/10.1016/j.nanoen.2015.05.004
Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28(30), 6449–6456 (2016). https://doi.org/10.1002/adma.201506426
W. Cao, L. Yang, X. Qi, Y. Hou, J. Zhu et al., Carbon nanotube wires sheathed by aramid nanofibers. Adv. Funct. Mater. 27(34), 1701061 (2017). https://doi.org/10.1002/adfm.201701061
T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
S. Wan, Q. Cheng, Fatigue-resistant bioinspired graphene-based nanocomposites. Adv. Funct. Mater. 27(43), 1703459 (2017). https://doi.org/10.1002/adfm.201703459
C. Cao, Z. Lin, X. Liu, Y. Jia, E. Saiz et al., Strong reduced graphene oxide coated bombyx mori silk. Adv. Funct. Mater. 31(34), 2102923 (2021). https://doi.org/10.1002/adfm.202102923
N. He, S. Patil, J. Qu, J. Liao, F. Zhao et al., Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors. ACS Appl. Energy Mater. 3(3), 2949–2958 (2020). https://doi.org/10.1021/acsaem.0c00024
B. Cheng, P. Wu, Scalable fabrication of kevlar/ Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
Q. Liu, A. Zhao, X. He, Q. Li, J. Sun et al., Full-temperature all-solid-state Ti3C2Tx/aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility. Adv. Funct. Mater. 31(22), 2010944 (2021). https://doi.org/10.1002/adfm.202010944
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen et al., Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10(7), 6624–6635 (2018). https://doi.org/10.1021/acsami.7b18677
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
L. Lyu, J. Liu, H. Liu, C. Liu, Y. Lu et al., An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng. Sci. 2, 26–42 (2018). https://doi.org/10.30919/es8d615
Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4(3), 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
N. Wu, W. Du, Q. Hu, S. Vupputuri, Q. Jiang, Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 13, 11–23 (2020). https://doi.org/10.30919/es8d1149
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2019). https://doi.org/10.1002/aelm.201901094
H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30(5), 1906996 (2019). https://doi.org/10.1002/adfm.201906996