Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor
Corresponding Author: Lin Han
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 264
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) allow for atomic-scale manipulation, challenging the conventional limitations of semiconductor materials. This capability may overcome the short-channel effect, sparking significant advancements in electronic devices that utilize 2D TMDs. Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance. This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor. It delves into the impacts of miniaturization, including the reduction of channel length, gate length, source/drain contact length, and dielectric thickness on transistor operation and performance. In addition, this review provides a detailed analysis of performance parameters such as source/drain contact resistance, subthreshold swing, hysteresis loop, carrier mobility, on/off ratio, and the development of p-type and single logic transistors. This review details the two logical expressions of the single 2D-TMD logic transistor, including current and voltage. It also emphasizes the role of 2D TMD-based transistors as memory devices, focusing on enhancing memory operation speed, endurance, data retention, and extinction ratio, as well as reducing energy consumption in memory devices functioning as artificial synapses. This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices. This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications. It underscores the anticipated challenges, opportunities, and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
Highlights:
1 The review provides a comprehensive summary of performance limits of the single two-dimensional transition metal dichalcogenide (2D-TMD) transistor.
2 The review details the two logical expressions of the single 2D-TMD logic transistor, including current and voltage.
3 The review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Wei, Z. Han, X. Zhong, Q. Xiao, T. Liu et al., Two dimensional semiconducting materials for ultimately scaled transistors. iScience 25, 105160 (2022). https://doi.org/10.1016/j.isci.2022.105160
- C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
- K.P. O’Brien, C.H. Naylor, C. Dorow, K. Maxey, A.V. Penumatcha et al., Process integration and future outlook of 2D transistors. Nat. Commun. 14, 6400 (2023). https://doi.org/10.1038/s41467-023-41779-5
- W. Li, H. Shen, H. Qiu, Y. Shi, X. Wang, Two-dimensional semiconductor transistors and integrated circuits for advanced technology nodes. Natl. Sci. Rev. 11, nwae001 (2024). https://doi.org/10.1093/nsr/nwae001
- L. Yin, R. Cheng, J. Ding, J. Jiang, Y. Hou et al., Two-dimensional semiconductors and transistors for future integrated circuits. ACS Nano 18, 7739–7768 (2024). https://doi.org/10.1021/acsnano.3c10900
- A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16, 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
- M.Y. Li, S.K. Su, H.S.P. Wong, L.J. Li, How 2D semiconductors could extend Moore’s law. Nature 567(7747), 169–170 (2019). https://doi.org/10.1038/d41586-019-00793-8
- Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z
- K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282
- J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
- A.T. Hoang, L. Hu, B.J. Kim, T.T.N. Van, K.D. Park et al., Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023). https://doi.org/10.1038/s41565-023-01460-w
- A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
- J. Hu, M. Dong, Recent advances in two-dimensional nanomaterials for sustainable wearable electronic devices. J. Nanobiotechnol. 22, 63 (2024). https://doi.org/10.1186/s12951-023-02274-7
- A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
- Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
- L. Liu, T. Zhai, Wafer-scale vertical van der Waals heterostructures. InfoMat 3, 3–21 (2021). https://doi.org/10.1002/inf2.12164
- S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
- S. Zeng, Z. Tang, C. Liu, P. Zhou, Electronics based on two-dimensional materials: status and outlook. Nano Res. 14, 1752–1767 (2021). https://doi.org/10.1007/s12274-020-2945-z
- J.-P. Colinge, Multiple-gate soi MOSFETs. Solid State Electron. 48, 897–905 (2004). https://doi.org/10.1016/j.sse.2003.12.020
- J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). https://doi.org/10.1126/science.1182383
- S. Zeng, C. Liu, P. Zhou, Transistor engineering based on 2D materials in the post-silicon era. Nat. Rev. Electr. Eng. 1, 335–348 (2024). https://doi.org/10.1038/s44287-024-00045-6
- A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
- X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12, 5953 (2021). https://doi.org/10.1038/s41467-021-26230-x
- M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
- G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998). https://doi.org/10.1109/JPROC.1998.658762
- M. Mitchell Waldrop, The chips are down for Moore’s law. Nature 530, 144–147 (2016). https://doi.org/10.1038/530144a
- J. Zhang, F. Gao, P. Hu, A vertical transistor with a sub-1-nm channel. Nat. Electron. 4, 325 (2021). https://doi.org/10.1038/s41928-021-00583-z
- F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
- X. Li, Y. Wei, Z. Wang, Y. Kong, Y. Su et al., One-dimensional semimetal contacts to two-dimensional semiconductors. Nat. Commun. 14, 111 (2023). https://doi.org/10.1038/s41467-022-35760-x
- J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
- W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
- X. Wang, C. Zhu, Y. Deng, R. Duan, J. Chen et al., Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021). https://doi.org/10.1038/s41467-021-21320-2
- H. Quan, D. Meng, X. Ma, C. Qiu, Eliminating ferroelectric hysteresis in all-two-dimensional gate-stack negative-capacitance transistors. ACS Appl. Mater. Interfaces 15, 45076–45082 (2023). https://doi.org/10.1021/acsami.3c06161
- Y. Chen, D. Lu, L. Kong, Q. Tao, L. Ma et al., Mobility enhancement of strained MoS2 transistor on flat substrate. ACS Nano 17, 14954–14962 (2023). https://doi.org/10.1021/acsnano.3c03626
- C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
- M.I. Beddiar, X. Zhang, B. Liu, Z. Zhang, Y. Zhang, Ambipolar-to-unipolar conversion in ultrathin 2D semiconductors. Small Struct. 3, 2200125 (2022). https://doi.org/10.1002/sstr.202200125
- H. Chen, X. Xue, C. Liu, J. Fang, Z. Wang et al., Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4, 399–404 (2021). https://doi.org/10.1038/s41928-021-00591-z
- L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021). https://doi.org/10.1038/s41565-021-00921-4
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro, Neto 2D materials and van der Waals heterostructures. Science 353, 9439 (2016). https://doi.org/10.1126/science.aac9439
- Y. Wu, W. Deng, X. Wang, W. Yu, Z. Chen et al., Progress in bioinspired photodetectors design for visual information processing. Adv. Funct. Mater. 33, 2302899 (2023). https://doi.org/10.1002/adfm.202302899
- B. Zhao, Z. Wan, Y. Liu, J. Xu, X. Yang et al., High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021). https://doi.org/10.1038/s41586-021-03338-0
- Y. Xiao, M. Zhou, M. Zeng, L. Fu, Atomic-scale structural modification of 2D materials. Adv. Sci. 6, 1801501 (2019). https://doi.org/10.1002/advs.201801501
- X. Han, M. Niu, Y. Luo, R. Li, J. Dan et al., Atomically engineering metal vacancies in monolayer transition metal dichalcogenides. Nat. Synth. 3, 586–594 (2024). https://doi.org/10.1038/s44160-024-00501-z
- J.A. Robinson, B. Schuler, Engineering and probing atomic quantum defects in 2D semiconductors: a perspective. Appl. Phys. Lett. 119, 140501 (2021). https://doi.org/10.1063/5.0065185
- J. Li, S. Wang, L. Li, Z. Wei, Q. Wang et al., Chemical vapor deposition of 4 inch wafer-scale monolayer MoSe2. Small Sci. 2, 2200062 (2022). https://doi.org/10.1002/smsc.202200062
- K.S. Novoselov, A.H. Castro, Neto two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012). https://doi.org/10.1088/0031-8949/2012/t146/014006
- X. Sui, Z. Zhang, K. Liu, Controllable growth of two-dimensional quantum materials. Sci. China Phys. Mech. Astron. 66, 117502 (2023). https://doi.org/10.1007/s11433-022-1989-9
- S. Ding, C. Liu, Z. Li, Z. Lu, Q. Tao et al., Ag-assisted dry exfoliation of large-scale and continuous 2D monolayers. ACS Nano 18, 1195–1203 (2024). https://doi.org/10.1021/acsnano.3c11573
- M. Yang, Z. Ye, M.A. Iqbal, H. Liang, Y.J. Zeng, Progress on two-dimensional binary oxide materials. Nanoscale 14, 9576–9608 (2022). https://doi.org/10.1039/d2nr01076c
- R.H. Dennard, F.H. Gaensslen, H.-N. Yu, V.L. Rideout, E. Bassous et al., Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuits 9, 256–268 (1974). https://doi.org/10.1109/JSSC.1974.1050511
- H.S.P. Wong, D.J. Frank, P.M. Solomon, C.H.J. Wann, J.J. Welser, Nanoscale CMOS. Proc. IEEE 87(4), 537–570 (1999). https://doi.org/10.1109/5.752515
- Y. Taur, T. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, 2009)
- J.P. Colinge, Multi-gate soi MOSFETs. Microelectron. Eng. 84, 2071–2076 (2007). https://doi.org/10.1016/j.mee.2007.04.038
- Y. Taur, CMOS design near the limit of scaling. IBM J. Res. Dev. 46, 213–222 (2002). https://doi.org/10.1147/rd.462.0213
- V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018). https://doi.org/10.1038/nature25747
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/physrevlett.105.136805
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- C. Sheng, X. Dong, Y. Zhu, X. Wang, X. Chen et al., Two-dimensional semiconductors: from device processing to circuit integration. Adv. Funct. Mater. 33, 2304778 (2023). https://doi.org/10.1002/adfm.202304778
- M. Bohr, in The evolution of scaling from the homogeneous era to the heterogeneous era, 2011 International Electron Devices Meeting. Washington, DC, USA. IEEE, (2011), pp. 1.1.1–1.1.6.
- C. Wagner, N. Harned, Lithography gets extreme. Nat. Photonics 4, 24–26 (2010). https://doi.org/10.1038/nphoton.2009.251
- A. Nourbakhsh, A. Zubair, R.N. Sajjad, K.G. Amir Tavakkoli, W. Chen et al., MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 16, 7798–7806 (2016). https://doi.org/10.1021/acs.nanolett.6b03999
- J. Park, H. Jung, W. Kwon, G. Choi, J. Chang et al., Investigation of optimal architecture of MoS2 channel field-effect transistors on a sub-2 nm process node. ACS Appl. Electron. Mater. 5, 2239–2248 (2023). https://doi.org/10.1021/acsaelm.3c00096
- J. Jiang, M.H. Doan, L. Sun, H. Kim, H. Yu et al., Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 7, 1902964 (2019). https://doi.org/10.1002/advs.201902964
- L. Ma, Q. Tao, Y. Chen, Z. Lu, L. Liu et al., Realizing on/off ratios over 104 for sub-2 nm vertical transistors. Nano Lett. 23, 8303–8309 (2023). https://doi.org/10.1021/acs.nanolett.3c02518
- Z. Xie, G. Li, S. Xia, C. Liu, S. Zhang et al., Ultimate limit in optoelectronic performances of monolayer WSe2 sloping-channel transistors. Nano Lett. 23, 6664–6672 (2023). https://doi.org/10.1021/acs.nanolett.3c01866
- S. Namgung, S.J. Koester, S.-H. Oh, Ultraflat sub-10 nanometer gap electrodes for two-dimensional optoelectronic devices. ACS Nano 15, 5276–5283 (2021). https://doi.org/10.1021/acsnano.0c10759
- P. Wang, C. Jia, Y. Huang, X. Duan, Van der Waals heterostructures by design: from 1D and 2D to 3D. Matter 4, 552–581 (2021). https://doi.org/10.1016/j.matt.2020.12.015
- S.-K. Su, C.-P. Chuu, M.-Y. Li, C.-C. Cheng, H.-S.P. Wong et al., Layered semiconducting 2D materials for future transistor applications. Small Struct. 2, 2000103 (2021). https://doi.org/10.1002/sstr.202000103
- L. Liu, Y. Chen, L. Chen, B. Xie, G. Li et al., Ultrashort vertical-channel MoS2 transistor using a self-aligned contact. Nat. Commun. 15, 165 (2024). https://doi.org/10.1038/s41467-023-44519-x
- L. Liu, L. Kong, Q. Li, C. He, L. Ren et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4, 342–347 (2021). https://doi.org/10.1038/s41928-021-00566-0
- Z. Xiao, L. Liu, Y. Chen, Z. Lu, X. Yang et al., High-density vertical transistors with pitch size down to 20 nm. Adv. Sci. 10, 2302760 (2023). https://doi.org/10.1002/advs.202302760
- M. Yu, C. Tan, Y. Yin, J. Tang, X. Gao et al., Integrated 2D multi-fin field-effect transistors. Nat. Commun. 15, 3622 (2024). https://doi.org/10.1038/s41467-024-47974-2
- M.-L. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu et al., A FinFET with one atomic layer channel. Nat. Commun. 11, 1205 (2020). https://doi.org/10.1038/s41467-020-15096-0
- Z. Sun, C.-S. Pang, P. Wu, T.Y.T. Hung, M.-Y. Li et al., Statistical assessment of high-performance scaled double-gate transistors from monolayer WS2. ACS Nano 16, 14942–14950 (2022). https://doi.org/10.1021/acsnano.2c05902
- H. Wan, W. Li, X. Ma, Y. Mu, G. Xie et al., 3 nm channel MoS2 transistors by electromigration of metal interconnection. ACS Appl. Electron. Mater. 5, 247–254 (2023). https://doi.org/10.1021/acsaelm.2c01306
- X. Xiao, M. Chen, J. Zhang, T. Zhang, L. Zhang et al., Sub-10 nm monolayer MoS2 transistors using single-walled carbon nanotubes as an evaporating mask. ACS Appl. Mater. Interfaces 11, 11612–11617 (2019). https://doi.org/10.1021/acsami.8b21437
- A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011). https://doi.org/10.1038/nature10679
- A. Allain, J. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015). https://doi.org/10.1038/nmat4452
- Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee et al., Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
- J. Yu, H. Wang, F. Zhuge, Z. Chen, M. Hu et al., Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat. Commun. 14, 5662 (2023). https://doi.org/10.1038/s41467-023-41363-x
- "Frontmatter". Michael Alder: Das Haus als Typ, edited by Ulrike Zophoniasson-Baierl, Berlin, Boston: Birkhäuser, 2006, pp. i–vii. https://doi.org/10.1007/978-3-7643-7844-8_fm
- M.S. Elrabaa, I.S. Abu-Khater, M.I. Elmasry. in Low-Power VLSI design. ed.by M.S. Elrabaa, I.S. Abu-Khater, M.I. Elmasry, (Springer US; Boston, MA, 1997), pp. 1–5.
- R.D. Schrimpf, D.M. Fleetwood, in Radiation effects and soft errors in integrated circuits and electronic devices, vol. 34, (World Scientific Publishing, 2004), p. 348 (2004)
- A.E. Atamuratov, K.S. Saparov, A. Yusupov, J.C. Chedjou, Combined influence of gate oxide and back oxide materials on self-heating and DIBL effect in 2D MOS2-based MOSFETs. Appl. Sci. 13, 6131 (2023). https://doi.org/10.3390/app13106131
- Q. Zhang, C. Liu, P. Zhou, 2D materials readiness for the transistor performance breakthrough. iScience 26, 106673 (2023). https://doi.org/10.1016/j.isci.2023.106673
- G. Iannaccone, F. Bonaccorso, L. Colombo, G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13, 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6
- S. Barraud, B. Previtali, C. Vizioz, J.M. Hartmann, J. Sturm et al., in 7-levels-stacked nanosheet GAA transistors for high performance computing, 2020 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. (IEEE, 2020), pp. 1–2.
- G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001). https://doi.org/10.1063/1.1361065
- Y. Li, C. Qi, X. Zhou, L. Xu, Q. Li et al., Monolayer WSi2N4: a promising channel material for sub-5-nm-gate homogeneous CMOS devices. Phys. Rev. Applied 20, 064044 (2023). https://doi.org/10.1103/physrevapplied.20.064044
- S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016). https://doi.org/10.1126/science.aah4698
- Q. Zhang, X.-F. Wang, S.-H. Shen, Q. Lu, X. Liu et al., Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron. 2, 164–170 (2019). https://doi.org/10.1038/s41928-019-0233-2
- A. Afzalian, Ab initio perspective of ultra-scaled CMOS from 2D-material fundamentals to dynamically doped transistors. npj 2D Mater. Appl. 5, 5 (2021). https://doi.org/10.1038/s41699-020-00181-1
- H. Zhang, B. Shi, L. Xu, J. Yan, W. Zhao et al., Sub-5 nm monolayer MoS2 transistors toward low-power devices. ACS Appl. Electron. Mater. 3, 1560–1571 (2021). https://doi.org/10.1021/acsaelm.0c00840
- Y. Pan, J. Li, W. Wang, T. Ye, H. Yin et al., Novel 10-nm gate length MoS2 transistor fabricated on Si fin substrate. IEEE J. Electron Devices Soc. 7, 483–488 (2019). https://doi.org/10.1109/jeds.2019.2910271
- V. Vashishtha, L.T. Clark, Comparing bulk-Si FinFET and gate-all-around FETs for the 5 nm technology node. Microelectron. J. 107, 104942 (2021). https://doi.org/10.1016/j.mejo.2020.104942
- Y. Shen, Z. Dong, Y. Sun, H. Guo, F. Wu et al., The trend of 2D transistors toward integrated circuits: scaling down and new mechanisms. Adv. Mater. 34, 2270329 (2022). https://doi.org/10.1002/adma.202270329
- G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/nnano.2014.207
- J. Miao, X. Zhang, Y. Tian, Y. Zhao, Recent progress in contact engineering of field-effect transistor based on two-dimensional materials. Nanomaterials 12, 3845 (2022). https://doi.org/10.3390/nano12213845
- M.V. Fischetti, S.E. Laux, Monte carlo study of electron transport in silicon inversion layers. Phys. Rev. B Condens. Matter 48, 2244–2274 (1993). https://doi.org/10.1103/physrevb.48.2244
- Y. Zhang, Sub-1-nm-node beyond-silicon materials and devices: Pathways, opportunities and challenges. Natl. Sci. Open 2, 20230032 (2023). https://doi.org/10.1360/nso/20230032
- X. Zhang, H. Zhao, X. Wei, Y. Zhang, Z. Zhang et al., Two-dimensional transition metal dichalcogenides for post-silicon electronics. Natl. Sci. Open 2, 20230015 (2023). https://doi.org/10.1360/nso/20230015
- B. Doris, I. Meikei, T. Kanarsky, Z. Ying, R.A. Roy et al., in Extreme scaling with ultra-thin Si channel MOSFETs, Digest International Electron Devices Meeting, pp. 267–270 (2002).
- X. Liu, M.S. Choi, E. Hwang, W.J. Yoo, J. Sun, Fermi level pinning dependent 2D semiconductor devices: challenges and prospects. Adv. Mater. 34, e2108425 (2022). https://doi.org/10.1002/adma.202108425
- S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler et al., A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Devices 51, 1790–1797 (2004). https://doi.org/10.1109/ted.2004.836648
- C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier et al., in A 22nm high performance and low-power cmos technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density mim capacitors. 2012 Symposium on VLSI Technology (VLSIT), pp. 131–132. (2012)
- J.P. Colinge, in Silicon-on-Insulator Technology: Materials to VLSI (Kluwer Academic Publishers, 2004).
- T.F. Schranghamer, N.U. Sakib, M.U.K. Sadaf, S. Subbulakshmi Radhakrishnan, R. Pendurthi et al., Ultrascaled contacts to monolayer MoS2 field effect transistors. Nano Lett. 23, 3426–3434 (2023). https://doi.org/10.1021/acs.nanolett.3c00466
- A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing, S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021). https://doi.org/10.1038/s41467-020-20732-w
- H.-S. Kim, J. Jeong, G.-H. Kwon, H. Kwon, M. Baik et al., Improvement of electrical performance using PtSe2/PtTe2 edge contact synthesized by molecular beam epitaxy. Appl. Surf. Sci. 585, 152507 (2022). https://doi.org/10.1016/j.apsusc.2022.152507
- Z. Cheng, Y. Yu, S. Singh, K. Price, S.G. Noyce et al., Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19, 5077–5085 (2019). https://doi.org/10.1021/acs.nanolett.9b01355
- A. Jain, Á. Szabó, M. Parzefall, E. Bonvin, T. Taniguchi et al., One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19, 6914–6923 (2019). https://doi.org/10.1021/acs.nanolett.9b02166
- S. Lee, H. Choi, I. Moon, H. Shin, K. Watanabe et al., Contact resistivity in edge-contacted graphene field effect transistors. Adv. Electron. Mater. 8, 2101169 (2022). https://doi.org/10.1002/aelm.202101169
- L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). https://doi.org/10.1126/science.1244358
- C. Kim, S. Issarapanacheewin, I. Moon, K.Y. Lee, C. Ra et al., High-electric-field-induced phase transition and electrical breakdown of MoTe2. Adv. Electron. Mater. 6, 1900964 (2020). https://doi.org/10.1002/aelm.201900964
- G. Pasquale, E. Lopriore, Z. Sun, K. Čerņevičs, F. Tagarelli et al., Electrical detection of the flat-band dispersion in van der Waals field-effect structures. Nat. Nanotechnol. 18, 1416–1422 (2023). https://doi.org/10.1038/s41565-023-01489-x
- M.S. Choi, N. Ali, T.D. Ngo, H. Choi, B. Oh et al., Recent progress in 1D contacts for 2D-material-based devices. Adv. Mater. 34, 2202408 (2022). https://doi.org/10.1002/adma.202202408
- M. Lundstrom, Fundamentals of carrier transport. Meas. Sci. Technol. 13, 230 (2002). https://doi.org/10.1088/0957-0233/13/2/703
- W. Cao, H. Bu, M. Vinet, M. Cao, S. Takagi et al., The future transistors. Nature 620, 501–515 (2023). https://doi.org/10.1038/s41586-023-06145-x
- S. Yang, K. Liu, Y. Xu, L. Liu, H. Li et al., Gate dielectrics integration for 2D electronics: challenges, advances, and outlook. Adv. Mater. 35, 2207901 (2023). https://doi.org/10.1002/adma.202207901
- L. Chang, K.J. Yang, Y.-C. Yeo, I. Polishchuk, T.-J. King et al., Direct-tunneling gate leakage current in double-gate and ultrathin body MOSFETs. IEEE Trans. Electron Devices 49, 2288–2295 (2002). https://doi.org/10.1109/TED.2002.807446
- Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices. (Cambridge University Press, New York, NY). https://doi.org/10.5555/1795474
- S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee et al., High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012). https://doi.org/10.1038/ncomms2018
- D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9
- C. Liu, H. Chen, X. Hou, H. Zhang, J. Han et al., Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019). https://doi.org/10.1038/s41565-019-0462-6
- X. Huang, C. Liu, S. Zeng, Z. Tang, S. Wang et al., Ultrathin multibridge channel transistor enabled by van der Waals assembly. Adv. Mater. 33, 2102201 (2021). https://doi.org/10.1002/adma.202102201
- M.V. Fischetti, S.E. Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996). https://doi.org/10.1063/1.363052
- N. Peimyoo, M.D. Barnes, J.D. Mehew, A. De Sanctis, I. Amit et al., Laser-writable high-k dielectric for van der Waals nanoelectronics. Sci. Adv. 5, eaau0906 (2019). https://doi.org/10.1126/sciadv.aau0906
- Y. Xu, T. Liu, K. Liu, Y. Zhao, L. Liu et al., Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023). https://doi.org/10.1038/s41563-023-01626-w
- C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan et al., Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023). https://doi.org/10.1038/s41563-023-01502-7
- J. Chen, Z. Liu, X. Dong, Z. Gao, Y. Lin et al., Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric. Nat. Commun. 14, 4406 (2023). https://doi.org/10.1038/s41467-023-40123-1
- W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019). https://doi.org/10.1038/s41928-019-0334-y
- Y. Zhang, J. Yu, R. Zhu, M. Wang, C. Tan et al., A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 5, 643–649 (2022). https://doi.org/10.1038/s41928-022-00824-9
- Q. Yang, J. Hu, Y.-W. Fang, Y. Jia, R. Yang et al., Ferroelectricity in layered bismuth oxide down to 1 nanometer. Science 379, 1218–1224 (2023). https://doi.org/10.1126/science.abm5134
- S. Amy, Ferroelectricity and multiferroicity down to the atomic thickness. Nat. Nanotechnol. 18, 829–830 (2023). https://doi.org/10.1038/s41565-023-01494-0
- Y. Wang, L. Tao, R. Guzman, Q. Luo, W. Zhou et al., A stable rhombohedral phase in ferroelectric Hf(Zr)1+x O2 capacitor with ultralow coercive field. Science 381, 558–563 (2023). https://doi.org/10.1126/science.adf6137
- L. Li, W. Dang, X. Zhu, H. Lan, Y. Ding et al., Ultrathin van der Waals lanthanum oxychloride dielectric for 2D field-effect transistors. Adv. Mater. (2023). https://doi.org/10.1002/adma.202309296
- S.S. Cheema, N. Shanker, S.-L. Hsu, Y. Rho, C.-H. Hsu et al., Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022). https://doi.org/10.1126/science.abm8642
- S.S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu et al., Publisher correction: enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 581, 478–482 (2020). https://doi.org/10.1038/s41586-020-2297-6
- S.S. Cheema, N. Shanker, S.-L. Hsu, J. Schaadt, N.M. Ellis et al., Giant energy storage and power density negative capacitance superlattices. Nature 629, 803–809 (2024). https://doi.org/10.1038/s41586-024-07365-5
- S.S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu et al., Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022). https://doi.org/10.1038/s41586-022-04425-6
- S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nat. Electron. 7, 216–224 (2024). https://doi.org/10.1038/s41928-024-01129-9
- Y.Y. Illarionov, T. Knobloch, T. Grasser, Native high-k oxides for 2D transistors. Nat. Electron. 3, 442–443 (2020). https://doi.org/10.1038/s41928-020-0464-2
- K. Meng, Z. Li, P. Chen, X. Ma, J. Huang et al., Superionic fluoride gate dielectrics with low diffusion barrier for two-dimensional electronics. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01675-5
- M. Irfan, H. Mustafa, A. Sattar, U. Ahsan, F. Alvi et al., Top-gate engineering of field-effect transistors based on single layers of MoS2 and graphene. J. Phys. Chem. Solids 184, 111710 (2024). https://doi.org/10.1016/j.jpcs.2023.111710
- X. Wang, Q. Feng, S. Xu, J. Shang, Y. Zhao et al., Passivation of transition metal dichalcogenides monolayers with a surface-confined atomically thick sulfur layer. Small Struct. 3, 2100224 (2022). https://doi.org/10.1002/sstr.202100224
- X. Xiong, M. Huang, B. Hu, X. Li, F. Liu et al., A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat. Electron. 3, 106–112 (2020). https://doi.org/10.1038/s41928-019-0364-5
- J.D. Wood, S.A. Wells, D. Jariwala, K.-S. Chen, E. Cho et al., Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014). https://doi.org/10.1021/nl5032293
- D. Liu, X. Chen, Y. Yan, Z. Zhang, Z. Jin et al., Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat. Commun. 10, 1188 (2019). https://doi.org/10.1038/s41467-019-09016-0
- D. Fan, W. Li, H. Qiu, Y. Xu, S. Gao et al., Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nat. Electron. 6, 879–887 (2023). https://doi.org/10.1038/s41928-023-01052-5
- X. Li, H. Long, J. Zhong, F. Ding, W. Li et al., Two-dimensional metallic alloy contacts with composition-tunable work functions. Nat. Electron. 6, 842–851 (2023). https://doi.org/10.1038/s41928-023-01050-7
- S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, 2005), pp.285–311
- W. Yan, C. Manish, Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022). https://doi.org/10.1038/s42254-021-00389-0
- Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
- P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
- D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018). https://doi.org/10.1039/c7cs00828g
- S. Das, A. Sebastian, E. Pop, C.J. McClellan, A.D. Franklin et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021). https://doi.org/10.1038/s41928-021-00670-1
- Y. Wang, J.C. Kim, Y. Li, K.Y. Ma, S. Hong et al., P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022). https://doi.org/10.1038/s41586-022-05134-w
- X. Wen, W. Lei, X. Li, B. Di, Y. Zhou et al., ZrTe2 compound Dirac semimetal contacts for high-performance MoS2 transistors. Nano Lett. 23, 8419–8425 (2023). https://doi.org/10.1021/acs.nanolett.3c01554
- Y. Manzanares-Negro, J. Quan, M. Rassekh, M. Moaied, X. Li et al., Low resistance electrical contacts to few-layered MoS2 by local pressurization. 2D Mater. 10, 021003 (2023). https://doi.org/10.1088/2053-1583/acc1f4
- S. Xu, Z. Huang, J. Guan, Y. Hu, Nanoforming of transferred metal contacts for enhanced two-dimensional field effect transistors. Nano Res. 17, 3210–3216 (2024). https://doi.org/10.1007/s12274-023-6040-0
- J. Xiao, K. Chen, X. Zhang, X. Liu, H. Yu et al., Approaching ohmic contacts for ideal monolayer MoS2 transistors through sulfur-vacancy engineering. Small Methods 7, e2300611 (2023). https://doi.org/10.1002/smtd.202300611
- P.-H. Ho, R.-H. Cheng, P.-H. Pao, S.-A. Chou, Y.-H. Huang et al., High-performance two-dimensional electronics with a noncontact remote doping method. ACS Nano 17, 12208–12215 (2023). https://doi.org/10.1021/acsnano.3c00522
- M.G. Stanford, P.R. Pudasaini, E.T. Gallmeier, N. Cross, L. Liang et al., High conduction hopping behavior induced in transition metal dichalcogenides by percolating defect networks: toward atomically thin circuits. Adv. Funct. Mater. 27, 1702829 (2017). https://doi.org/10.1002/adfm.201702829
- L. Gao, Z. Chen, C. Chen, X. Zhang, Z. Zhang et al., Silicon-processes-compatible contact engineering for two-dimensional materials integrated circuits. Nano Res. 16, 12471–12490 (2023). https://doi.org/10.1007/s12274-023-6167-z
- Y.-C. Lin, Y. Chen, Y. Huang, The growth and applications of silicides for nanoscale devices. Nanoscale 4, 1412–1421 (2012). https://doi.org/10.1039/C1NR10847F
- V. Narula, M. Agarwal, Doping engineering to enhance the performance of a rectangular core shell double gate junctionless field effect transistor. Semicond. Sci. Technol. 35, 075003 (2020). https://doi.org/10.1088/1361-6641/ab8536
- H. Yu, M. Schaekers, J.-L. Everaert, N. Horiguchi, K. De Meyer et al., A snapshot review on metal–semiconductor contact exploration for 7-nm CMOS technology and beyond. MRS Adv. 7, 1369–1379 (2022). https://doi.org/10.1557/s43580-022-00404-1
- J. Meng, C. Lee, Z. Li, Adjustment methods of Schottky barrier height in one- and two-dimensional semiconductor devices. Sci. Bull. 69, 1342–1352 (2024). https://doi.org/10.1016/j.scib.2024.03.003
- J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023). https://doi.org/10.1038/s41586-023-05819-w
- H.J. Chuang, B. Chamlagain, M. Koehler, M.M. Perera, J. Yan et al., Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016). https://doi.org/10.1021/acs.nanolett.5b05066
- S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok et al., Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015). https://doi.org/10.1126/science.aab3175
- D. Liu, Z. Liu, J. Zhu, M. Zhang, Hydrogen-bonding enables two-dimensional metal/semiconductor tunable contacts approaching the quantum limit and the modified Schottky-Mott limit simultaneously. Mater. Horiz. 10, 5621–5632 (2023). https://doi.org/10.1039/d3mh00736g
- X. Wang, Y. Hu, S.Y. Kim, R. Addou, K. Cho et al., Origins of Fermi level pinning for Ni and Ag metal contacts on tungsten dichalcogenides. ACS Nano 17, 20353–20365 (2023). https://doi.org/10.1021/acsnano.3c06494
- S. Song, A. Yoon, S. Jang, J. Lynch, J. Yang et al., Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes. Nat. Commun. 14, 4747 (2023). https://doi.org/10.1038/s41467-023-40448-x
- B. Liu, X. Yue, C. Sheng, J. Chen, C. Tang et al., High-performance contact-doped WSe2 transistors using TaSe2 electrodes. ACS Appl. Mater. Interfaces 16, 19247–19253 (2024). https://doi.org/10.1021/acsami.4c01605
- Z. Cao, L. Zhu, K. Yao, Low-power transistors with ideal p-type ohmic contacts based on VS2/WSe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 16, 19158–19166 (2024). https://doi.org/10.1021/acsami.4c00640
- D.S. Schneider, L. Lucchesi, E. Reato, Z. Wang, A. Piacentini et al., CVD graphene contacts for lateral heterostructure MoS2 field effect transistors. npj 2D Mater. Appl. 8, 35 (2024). https://doi.org/10.1038/s41699-024-00471-y
- B. Wei, Y. Li, T. Yun, Y. Li, T. Gui et al., Triply degenerate semimetal PtBi2 as van der Waals contact interlayer in two-dimensional transistor. Mater. Futures 3, 025302 (2024). https://doi.org/10.1088/2752-5724/ad47cf
- S. Bang, S. Lee, A. Rai, N.T. Duong, I. Kawk et al., Contact engineering of layered MoS2 via chemically dipping treatments. Adv. Funct. Mater. 30, 2000250 (2020). https://doi.org/10.1002/adfm.202000250
- X. Wang, A. Chen, X. Wu, J. Zhang, J. Dong et al., Synthesis and modulation of low-dimensional transition metal chalcogenide materials via atomic substitution. Nano-Micro Lett. 16, 163 (2024). https://doi.org/10.1007/s40820-024-01378-5
- G. Kwon, Y.-H. Choi, H. Lee, H.-S. Kim, J. Jeong et al., Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 5, 241–247 (2022). https://doi.org/10.1038/s41928-022-00746-6
- H. Yoon, S. Lee, J. Seo, I. Sohn, S. Jun et al., Investigation on contact properties of 2D van der Waals semimetallic 1T-TiS2/MoS2 heterojunctions. ACS Appl. Mater. Interfaces 16, 12095–12105 (2024). https://doi.org/10.1021/acsami.3c18982
- L. Ma, Y. Wang, Y. Liu, Van der Waals contact for two-dimensional transition metal dichalcogenides. Chem. Rev. 124, 2583–2616 (2024). https://doi.org/10.1021/acs.chemrev.3c00697
- Z. Zhou, J.-F. Lin, Z. Zeng, X. Ma, L. Liang et al., Engineering van der Waals contacts by interlayer dipoles. Nano Lett. 24, 4408–4414 (2024). https://doi.org/10.1021/acs.nanolett.4c00056
- G. Liu, Z. Tian, Z. Yang, Z. Xue, M. Zhang et al., Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 5, 275–280 (2022). https://doi.org/10.1038/s41928-022-00764-4
- D. Qi, P. Li, H. Ou, D. Wu, W. Lian et al., Graphene-enhanced metal transfer printing for strong van der Waals contacts between 3D metals and 2D semiconductors. Adv. Funct. Mater. 33, 2301704 (2023). https://doi.org/10.1002/adfm.202301704
- L. Kong, R. Wu, Y. Chen, Y. Huangfu, L. Liu et al., Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 14, 1014 (2023). https://doi.org/10.1038/s41467-023-36715-6
- M. Hong, X. Zhang, Y. Geng, Y. Wang, X. Wei et al., Universal transfer of full-class metal electrodes for barrier-free two-dimensional semiconductor contacts. InfoMat 6, e12491 (2024). https://doi.org/10.1002/inf2.12491
- A. Mondal, C. Biswas, S. Park, W. Cha, S.-H. Kang et al., Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat. Nanotechnol. 19, 34–43 (2024). https://doi.org/10.1038/s41565-023-01497-x
- J. Zhou, G. Zhang, W. Wang, Q. Chen, W. Zhao et al., Phase-engineered synthesis of atomically thin te single crystals with high on-state currents. Nat. Commun. 15, 1435 (2024). https://doi.org/10.1038/s41467-024-45940-6
- M. Liu, J. Gou, Z. Liu, Z. Chen, Y. Ye et al., Phase-selective in-plane heteroepitaxial growth of H-phase CrSe2. Nat. Commun. 15, 1765 (2024). https://doi.org/10.1038/s41467-024-46087-0
- R. Feng, W. Wang, C. Bao, Z. Zhang, F. Wang et al., Selective control of phases and electronic structures of monolayer TaTe2. Adv. Mater. 36, e2302297 (2024). https://doi.org/10.1002/adma.202302297
- X. Liu, J. Shan, T. Cao, L. Zhu, J. Ma et al., On-device phase engineering. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01888-y
- P. Li, L. Dong, C. Li, Y. Li, J. Zhao et al., Machine learning to promote efficient screening of low-contact electrode for 2D semiconductor transistor under limited data. Adv. Mater. (2024). https://doi.org/10.1002/adma.202312887
- K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305–327 (2003). https://doi.org/10.1109/JPROC.2002.808156
- A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEEE J. Solid State Circuits 27, 473–484 (1992). https://doi.org/10.1109/4.126534
- W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952). https://doi.org/10.1103/physrev.87.835
- A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010). https://doi.org/10.1109/JPROC.2010.2070470
- U.E. Avci, D.H. Morris, I.A. Young, Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3, 88–95 (2015). https://doi.org/10.1109/JEDS.2015.2390591
- S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008). https://doi.org/10.1021/nl071804g
- A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You et al., Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015). https://doi.org/10.1038/nmat4148
- W. Cao, J. Kang, D. Sarkar, W. Liu, K. Banerjee, 2D semiconductor FETs—projections and design for sub-10 nm VLSI. IEEE Trans. Electron Devices 62, 3459–3469 (2015). https://doi.org/10.1109/TED.2015.2443039
- L. Chen, H. Wang, Q. Huang, R. Huang, A novel negative quantum capacitance field-effect transistor with molybdenum disulfide integrated gate stack and steep subthreshold swing for ultra-low power applications. Sci. China Inf. Sci. 66, 160406 (2023). https://doi.org/10.1007/s11432-023-3763-3
- S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7
- A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang et al., Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures. ACS Nano 14, 434–441 (2020). https://doi.org/10.1021/acsnano.9b06140
- J. Lin, X. Chen, X. Duan, Z. Yu, W. Niu et al., Ultra-steep-slope high-gain MoS2 transistors with atomic threshold-switching gate. Adv. Sci. 9, e2104439 (2022). https://doi.org/10.1002/advs.202104439
- Z. Tang, C. Liu, X. Huang, S. Zeng, L. Liu et al., A steep-slope MoS2/graphene Dirac-source field-effect transistor with a large drive current. Nano Lett. 21, 1758–1764 (2021). https://doi.org/10.1021/acs.nanolett.0c04657
- N. Abele, R. Fritschi, K. Boucart, F. Casset, P. Ancey et al., in Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor, IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. December 5–5, 2005, Washington, DC, USA. IEEE, Apr. (2006), pp. 479–481.
- Y. Wang, X. Bai, J. Chu, H. Wang, G. Rao et al., Record-low subthreshold-swing negative-capacitance 2D field-effect transistors. Adv. Mater. 32, e2005353 (2020). https://doi.org/10.1002/adma.202005353
- X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019). https://doi.org/10.1038/s41467-019-10738-4
- M. Si, C.-J. Su, C. Jiang, N.J. Conrad, H. Zhou et al., Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018). https://doi.org/10.1038/s41565-017-0010-1
- S.-G. Kim, S.-H. Kim, G.-S. Kim, H. Jeon, T. Kim et al., Steep-slope gate-connected atomic threshold switching field-effect transistor with MoS2 channel and its application to infrared detectable phototransistors. Adv. Sci. 8, 2100208 (2021). https://doi.org/10.1002/advs.202100208
- D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang et al., A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015). https://doi.org/10.1038/nature15387
- H.S. Choi, J. Lin, G. Wang, W.P.D. Wong, I.H. Park et al., Molecularly thin, two-dimensional all-organic perovskites. Science 384, 60–66 (2024). https://doi.org/10.1126/science.adk8912
- A.J. Yang, S.X. Wang, J. Xu, X.J. Loh, Q. Zhu et al., Two-dimensional layered materials meet perovskite oxides: a combination for high-performance electronic devices. ACS Nano 17, 9748–9762 (2023). https://doi.org/10.1021/acsnano.3c00429
- A.J. Yang, K. Han, K. Huang, C. Ye, W. Wen et al., Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5, 233–240 (2022). https://doi.org/10.1038/s41928-022-00753-7
- H. Liu, A. Wang, P. Zhang, C. Ma, C. Chen et al., Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor. Nat. Commun. 14, 3690 (2023). https://doi.org/10.1038/s41467-023-39361-0
- M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li et al., Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208
- H. Wang, H. Xia, Y. Liu, Y. Chen, R. Xie et al., Room-temperature low-threshold avalanche effect in stepwise van-der-Waals homojunction photodiodes. Nat. Commun. 15, 3639 (2024). https://doi.org/10.1038/s41467-024-47958-2
- Q. Hua, G. Gao, C. Jiang, J. Yu, J. Sun et al., Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics. Nat. Commun. 11, 6207 (2020). https://doi.org/10.1038/s41467-020-20051-0
- Y. Zheng, S. Ghosh, S. Das, A butterfly-inspired multisensory neuromorphic platform for integration of visual and chemical cues. Adv. Mater. 36, e2307380 (2024). https://doi.org/10.1002/adma.202307380
- Q. Yang, Z.-D. Luo, H. Duan, X. Gan, D. Zhang et al., Steep-slope vertical-transport transistors built from sub-5 nm thin van der Waals heterostructures. Nat. Commun. 15, 1138 (2024). https://doi.org/10.1038/s41467-024-45482-x
- S. Wang, J. Wang, T. Zhi, J. Xue, D. Chen et al., Cold source field-effect transistors: breaking the 60-mV/decade switching limit at room temperature. Phys. Rep. 1013, 1–33 (2023). https://doi.org/10.1016/j.physrep.2023.03.001
- Q. Wang, P. Sang, X. Ma, F. Wang, W. Wei et al., in Cold source engineering towards Sub-60mV/dec p-Type Field-effect-transistors (pFETs): materials, structures, and doping optimizations. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. (IEEE, 2020), pp. 22.4.1–22.4.4.
- Q. Wang, P. Sang, W. Wei, Y. Li, J. Chen, Functionalized MoS2 nanoribbons for intrinsic cold-source transistors: a computational study. ACS Appl. Nano Mater. 5, 1178–1184 (2022). https://doi.org/10.1021/acsanm.1c03793
- F. Liu, Switching at less than 60 mV/decade with a “cold” metal as the injection source. Phys. Rev. Appl. 13, 064037 (2020). https://doi.org/10.1103/physrevapplied.13.064037
- Q. Wang, P. Sang, F. Wang, W. Wei, J. Chen, Tunneling junction as cold source: toward steep-slope field-effect transistors based on monolayer MoS2. IEEE Trans. Electron Devices 68, 4758–4761 (2021). https://doi.org/10.1109/TED.2021.3098256
- X. Chen, S. Li, L. Zhu, J. Li, Y. Sun et al., Dual-junction field-effect transistor with ultralow subthreshold swing approaching the theoretical limit. ACS Appl. Mater. Interfaces 16, 23452–23458 (2024). https://doi.org/10.1021/acsami.3c17572
- R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). https://doi.org/10.1038/nmat2023
- Z. Ye, Y. Yuan, H. Xu, Y. Liu, J. Luo et al., Mechanism and origin of hysteresis in oxide thin-film transistor and its application on 3-D nonvolatile memory. IEEE Trans. Electron Devices 64, 438–446 (2017). https://doi.org/10.1109/TED.2016.2641476
- S. Schmidt, T. Haensch, R. Frank, H.-G. Jahnke, A.A. Robitzki, Reactive sputtered silicon nitride as an alternative passivation layer for microelectrode arrays in sensitive bioimpedimetric cell monitoring. ACS Appl. Mater. Interfaces 13, 59185–59195 (2021). https://doi.org/10.1021/acsami.1c14981
- K. Huet, F. Mazzamuto, T. Tabata, I. Toqué-Tresonne, Y. Mori, Doping of semiconductor devices by laser thermal annealing. Mater. Sci. Semicond. Process. 62, 92–102 (2017). https://doi.org/10.1016/j.mssp.2016.11.008
- T.-J. Ha, D. Kiriya, K. Chen, A. Javey, Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation. ACS Appl. Mater. Interfaces 6, 8441–8446 (2014). https://doi.org/10.1021/am5013326
- M.-H. Chiu, C. Zhang, H.-W. Shiu, C.-P. Chuu, C.-H. Chen et al., Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015). https://doi.org/10.1038/ncomms8666
- J.H. Park, A. Sanne, Y. Guo, M. Amani, K. Zhang et al., Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 3, e1701661 (2017). https://doi.org/10.1126/sciadv.1701661
- X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015). https://doi.org/10.1038/nnano.2015.70
- P. Luo, C. Liu, J. Lin, X. Duan, W. Zhang et al., Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron. 5, 849–858 (2022). https://doi.org/10.1038/s41928-022-00877-w
- C. Liu, X. Zou, Y. Lv, X. Liu, C. Ma et al., Controllable van der Waals gaps by water adsorption. Nat. Nanotechnol. 19, 448–454 (2024). https://doi.org/10.1038/s41565-023-01579-w
- W. Huang, Y. Zhang, M. Song, B. Wang, H. Hou et al., Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chin. Chem. Lett. 33, 2281–2290 (2022). https://doi.org/10.1016/j.cclet.2021.08.086
- P. Wu, Mobility overestimation in molybdenum disulfide transistors due to invasive voltage probes. Nat. Electron. 6, 836–838 (2023). https://doi.org/10.1038/s41928-023-01043-6
- R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, Integrated nanoelectronics for the future. Nat. Mater. 6, 810–812 (2007). https://doi.org/10.1038/nmat2014
- in Frontmatter and index (2002), pp. i-xiv.
- H. Wong, H. Iwai, On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng. 83, 1867–1904 (2006). https://doi.org/10.1016/j.mee.2006.01.271
- Z. Yu, Z.-Y. Ong, S. Li, J.-B. Xu, G. Zhang et al., Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 27, 1604093 (2017). https://doi.org/10.1002/adfm.201604093
- M.M. Perera, M.-W. Lin, H.-J. Chuang, B.P. Chamlagain, C. Wang et al., Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7, 4449–4458 (2013). https://doi.org/10.1021/nn401053g
- M. Yu, C. Tan, X. Gao, J. Tang, H. Peng, Chemical vapor deposition growth of high-mobility 2D semiconductor Bi2O2Se: controllability and material quality. Acta Phys. Chim. Sin. 39, 2306043 (2023). https://doi.org/10.3866/pku.Whxb202306043
- Y.Z. Kang, G.H. An, M.-G. Jeon, S.J. Shin, S.J. Kim et al., Increased mobility and reduced hysteresis of MoS2 field-effect transistors via direct surface precipitation of CsPbBr3-nanoclusters for charge transfer doping. Nano Lett. 23, 8914–8922 (2023). https://doi.org/10.1021/acs.nanolett.3c02293
- D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano et al., FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47, 2320–2325 (2000). https://doi.org/10.1109/16.887014
- L. Liang, R. Hu, L. Yu, Toward monolithic growth integration of nanowire electronics in 3D architecture: a review. Sci. China Inf. Sci. 66, 200406 (2023). https://doi.org/10.1007/s11432-023-3774-y
- P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, H.-J.L. Gossmann et al., GaAs-based metal-oxide semiconductor field-effect transistors with Al2O3 gate dielectrics grown by atomic layer deposition. J. Electron. Mater. 33, 912–915 (2004). https://doi.org/10.1007/s11664-004-0220-9
- E. Ungersboeck, V. Sverdlov, H. Kosina, S. Selberherr, in Strain engineering for CMOS devices. 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. Shanghai, China. (IEEE, 2006), pp. 124–127.
- E. Pop, Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010). https://doi.org/10.1007/s12274-010-1019-z
- X. Li, X. Shi, D. Marian, D. Soriano, T. Cusati et al., Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices. Sci. Adv. 9, eade5706 (2023). https://doi.org/10.1126/sciadv.ade5706
- C. Wang, L. Cusin, C. Ma, E. Unsal, H. Wang et al., Enhancing the carrier transport in monolayer MoS2 through interlayer coupling with 2D covalent organic frameworks. Adv. Mater. 36, e2305882 (2024). https://doi.org/10.1002/adma.202305882
- X. Liu, X. Zhou, Y. Pan, J. Yang, H. Xiang et al., Charge–ferroelectric transition in ultrathin Na0.5Bi4.5Ti4O15 flakes probed via a dual-gated full van der Waals transistor. Adv. Mater. 32, 2004813 (2020). https://doi.org/10.1002/adma.202004813
- T. Liu, S. Liu, K.-H. Tu, H. Schmidt, L. Chu et al., Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223–226 (2019). https://doi.org/10.1038/s41565-019-0361-x
- H. Zeng, Y. Wen, L. Yin, R. Cheng, H. Wang et al., Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys. 18, 53603 (2023). https://doi.org/10.1007/s11467-023-1286-2
- A. Fukui, K. Matsuyama, H. Onoe, S. Itai, H. Ikeno et al., Unusual selective monitoring of N, N-dimethylformamide in a two-dimensional material field-effect transistor. ACS Nano 17, 14981–14989 (2023). https://doi.org/10.1021/acsnano.3c03915
- T.S. Kim, G. Noh, S. Kwon, J.Y. Kim, K.P. Dhakal et al., Diffusion control on the van der Waals surface of monolayers for uniform Bi-layer MoS2 growth. Adv. Funct. Mater. 34, 2312365 (2024). https://doi.org/10.1002/adfm.202312365
- X. Pang, Y. Wang, Y. Zhu, Z. Zhang, D. Xiang et al., Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition. Nat. Commun. 15, 1613 (2024). https://doi.org/10.1038/s41467-024-46050-z
- M. Sebek, Z. Wang, N.G. West, M. Yang, D.C.J. Neo et al., Van der Waals enabled formation and integration of ultrathin high-κ dielectrics on 2D semiconductors. NPJ 2D Mater. Appl. 8, 9 (2024). https://doi.org/10.1038/s41699-024-00443-2
- J. Chen, Z. Liu, Z. Lv, Y. Hou, X. Chen et al., Controllable synthesis of transferable ultrathin Bi2Ge(Si)O5 dielectric alloys with composition-tunable high-κ properties. J. Am. Chem. Soc. (2024). https://doi.org/10.1021/jacs.4c02496
- J. Wang, L. He, Y. Zhang, H. Nong, S. Li et al., Locally strained 2D materials: preparation, properties, and applications. Adv. Mater. 36, e2314145 (2024). https://doi.org/10.1002/adma.202314145
- H.K. Ng, D. Xiang, A. Suwardi, G. Hu, K. Yang et al., Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nat. Electron. 5, 489–496 (2022). https://doi.org/10.1038/s41928-022-00777-z
- D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001). https://doi.org/10.1109/5.915374
- J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson et al., Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018). https://doi.org/10.1002/aelm.201600501
- X. Li, J. Yang, H. Sun, L. Huang, H. Li et al., Controlled synthesis and accurate doping of wafer-scale 2D semiconducting transition metal dichalcogenides. Adv. Mater. (2023). https://doi.org/10.1002/adma.202305115
- Z. Wang, H. Xia, P. Wang, X. Zhou, C. Liu et al., Controllable doping in 2D layered materials. Adv. Mater. 33, e2104942 (2021). https://doi.org/10.1002/adma.202104942
- U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, GaN-based RF power devices and amplifiers. Proc. IEEE 96, 287–305 (2008). https://doi.org/10.1109/JPROC.2007.911060
- T. Kimoto, Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 54, 040103 (2015). https://doi.org/10.7567/jjap.54.040103
- Z. Liu, Q. Zhang, X. Huang, C. Liu, P. Zhou, Contact engineering for temperature stability improvement of Bi-contacted MoS2 field effect transistors. Sci. China Inf. Sci. 67, 160402 (2024). https://doi.org/10.1007/s11432-023-3942-2
- N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8
- W. Fei, J. Trommer, M.C. Lemme, T. Mikolajick, A. Heinzig, Emerging reconfigurable electronic devices based on two-dimensional materials: a review. InfoMat 4, e12355 (2022). https://doi.org/10.1002/inf2.12355
- A. Liu, Y.-S. Kim, M.G. Kim, Y. Reo, T. Zou et al., Selenium-alloyed tellurium oxide for amorphous p-channel transistors. Nature 629, 798–802 (2024). https://doi.org/10.1038/s41586-024-07360-w
- L. Loh, Z. Zhang, M. Bosman, G. Eda, Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021). https://doi.org/10.1007/s12274-020-3013-4
- A. Bhardwaj, P. Suryanarayana, Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study. Eur. Phys. J. B 95, 59 (2022). https://doi.org/10.1140/epjb/s10051-022-00319-8
- C. Pan, C.-Y. Wang, S.-J. Liang, Y. Wang, T. Cao et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020). https://doi.org/10.1038/s41928-020-0433-9
- X. Sun, C. Zhu, J. Yi, L. Xiang, C. Ma et al., Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 5, 752–760 (2022). https://doi.org/10.1038/s41928-022-00858-z
- A. Ram, K. Maity, C. Marchand, A. Mahmoudi, A.R. Kshirsagar et al., Reconfigurable multifunctional van der Waals ferroelectric devices and logic circuits. ACS Nano 17, 21865–21877 (2023). https://doi.org/10.1021/acsnano.3c07952
- J. Chen, P. Li, J. Zhu, X.-M. Wu, R. Liu et al., Reconfigurable MoTe2 field-effect transistors and its application in compact CMOS circuits. IEEE Trans. Electron Devices 68, 4748–4753 (2021). https://doi.org/10.1109/TED.2021.3096493
- P. Wu, D. Reis, X.S. Hu, J. Appenzeller, Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 4, 45–53 (2020). https://doi.org/10.1038/s41928-020-00511-7
- S.W. Kim, J. Seo, S. Lee, D. Shen, Y. Kim et al., Nonvolatile reconfigurable logic device based on photoinduced interfacial charge trapping in van der Waals gap. ACS Appl. Mater. Interfaces 16, 22131–22138 (2024). https://doi.org/10.1021/acsami.4c01627
- J. Chen, Q. Wang, Y. Sheng, G. Cao, P. Yang et al., High-Performance WSe2 Photodetector Based on a Laser-Induced p–n Junction. ACS Appl. Mater. Interfaces 11, 43330–43336 (2019). https://doi.org/10.1021/acsami.9b13948
- F. Zhang, Y. Lu, D.S. Schulman, T. Zhang, K. Fujisawa et al., Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport. Sci. Adv. 5, eaav5003 (2019). https://doi.org/10.1126/sciadv.aav5003
- J. Chen, J. Zhu, Q. Wang, J. Wan, R. Liu, Homogeneous 2D MoTe2 CMOS inverters and p–n junctions formed by laser-irradiation-induced p-type doping. Small 16, 2001428 (2020). https://doi.org/10.1002/smll.202001428
- J. Chen, J. Zhu, P. Li, X.-M. Wu, R. Liu et al., Fabricating in-plane MoTe2 p-n homojunction photodetector using laser-induced p-type doping. IEEE Trans. Electron Devices 68, 4485–4490 (2021). https://doi.org/10.1109/TED.2021.3099082
- J. Chen, Y. Shan, Q. Wang, J. Zhu, R. Liu, P-type laser-doped WSe2/MoTe2 van der Waals heterostructure photodetector. Nanotechnology 31, 295201 (2020). https://doi.org/10.1088/1361-6528/ab87cd
- S.J. Yun, D.L. Duong, D.M. Ha, K. Singh, T.L. Phan et al., Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 7, 1903076 (2020). https://doi.org/10.1002/advs.201903076
- A. Oberoi, Y. Han, S.P. Stepanoff, A. Pannone, Y. Sun et al., Toward high-performance p-type two-dimensional field effect transistors: contact engineering, scaling, and doping. ACS Nano 17, 19709–19723 (2023). https://doi.org/10.1021/acsnano.3c03060
- X. Yan, J.H. Qian, J. Ma, A. Zhang, S.E. Liu et al., Reconfigurable mixed-kernel heterojunction transistors for personalized support vector machine classification. Nat. Electron. 6, 862–869 (2023). https://doi.org/10.1038/s41928-023-01042-7
- K.H. Kim, S. Song, B. Kim, P. Musavigharavi, N. Trainor et al., Tuning polarity in WSe2/AlScN FeFETs via contact engineering. ACS Nano 18, 4180–4188 (2024). https://doi.org/10.1021/acsnano.3c09279
- T. Kang, Z. Lu, L. Liu, M. Huang, Y. Hu et al., In situ defect engineering of controllable carrier types in WSe2 for homomaterial inverters and self-powered photodetectors. Nano Lett. 23, 11034–11042 (2023). https://doi.org/10.1021/acs.nanolett.3c03328
- J. Muñoz, Rational design of stimuli-responsive inorganic 2D materials via molecular engineering: toward molecule-programmable nanoelectronics. Adv. Mater. 36, e2305546 (2024). https://doi.org/10.1002/adma.202305546
- K. Iniewski, CMOS Processors and Memories (Springer, Netherlands, 2010)
- S. Zeng, C. Liu, X. Huang, Z. Tang, L. Liu et al., An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat. Commun. 13, 56 (2022). https://doi.org/10.1038/s41467-021-27644-3
- Z. Sheng, J. Dong, W. Hu, Y. Wang, H. Sun et al., Reconfigurable logic-in-memory computing based on a polarity-controllable two-dimensional transistor. Nano Lett. 23, 5242–5249 (2023). https://doi.org/10.1021/acs.nanolett.3c01248
- G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
- W. Sang, D. Xiang, Y. Cao, F. Tan, Z. Han et al., Highly reconfigurable logic-In-memory operations in tunable Gaussian transistors for multifunctional image processing. Adv. Funct. Mater. 34, 2307675 (2024). https://doi.org/10.1002/adfm.202307675
- J. Niu, S. Jeon, D. Kim, S. Baek, H.H. Yoo et al., Dual-logic-in-memory implementation with orthogonal polarization of van der Waals ferroelectric heterostructure. InfoMat 6, e12490 (2024). https://doi.org/10.1002/inf2.12490
- X. Gao, Q. Chen, Q. Qin, L. Li, M. Liu et al., Realization of flexible in-memory computing in a van der Waals ferroelectric heterostructure tri-gate transistor. Nano Res. 17, 1886–1892 (2024). https://doi.org/10.1007/s12274-023-5964-8
- R. Peng, Y. Wu, B. Wang, R. Shi, L. Xu et al., Programmable graded doping for reconfigurable molybdenum ditelluride devices. Nat. Electron. 6, 852–861 (2023). https://doi.org/10.1038/s41928-023-01056-1
- R. Quhe, Z. Di, J. Zhang, Y. Sun, L. Zhang et al., Asymmetric conducting route and potential redistribution determine the polarization-dependent conductivity in layered ferroelectrics. Nat. Nanotechnol. 19, 173–180 (2024). https://doi.org/10.1038/s41565-023-01539-4
- T. Zhu, K. Liu, Y. Zhang, S. Meng, M. He et al., Gate voltage- and bias voltage-tunable staggered-gap to broken-gap transition based on WSe2/Ta2NiSe5 heterostructure for multimode optoelectronic logic gate. ACS Nano 18, 11462–11473 (2024). https://doi.org/10.1021/acsnano.4c02923
- Z. Li, X. Huang, L. Xu, Z. Peng, X.-X. Yu et al., 2D van der Waals vertical heterojunction transistors for ternary neural networks. Nano Lett. 23, 11710–11718 (2023). https://doi.org/10.1021/acs.nanolett.3c03553
- S.E. Yu, H.J. Lee, M.-G. Kim, S. Im, Y.T. Lee, J-MISFET hybrid dual-gate switching device for multifunctional optoelectronic logic gate applications. ACS Nano 18, 11404–11415 (2024). https://doi.org/10.1021/acsnano.4c01450
- L. Wu, A. Wang, J. Shi, J. Yan, Z. Zhou et al., Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 16, 882–887 (2021). https://doi.org/10.1038/s41565-021-00904-5
- J. Chen, G. Dun, J. Hu, Z. Lin, Y. Wang et al., Polarized tunneling transistor for ultrafast memory. ACS Nano 17, 12374–12382 (2023). https://doi.org/10.1021/acsnano.3c01786
- J. Chen, Y.-Q. Zhu, X.-C. Zhao, Z.-H. Wang, K. Zhang et al., PZT-enabled MoS2 floating gate transistors: overcoming boltzmann tyranny and achieving ultralow energy consumption for high-accuracy neuromorphic computing. Nano Lett. 23, 10196–10204 (2023). https://doi.org/10.1021/acs.nanolett.3c02721
- H. Wang, H. Guo, R. Guzman, N. JiaziLa, K. Wu et al., Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv. Mater. (2024). https://doi.org/10.1002/adma.202311652
- Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
- C. Liu, J. Pan, Q. Yuan, C. Zhu, J. Liu et al., Highly reliable van der Waals memory boosted by a single 2D charge trap medium. Adv. Mater. 36, e2305580 (2024). https://doi.org/10.1002/adma.202305580
- H. Wang, L. Bao, R. Guzman, K. Wu, A. Wang et al., Ultrafast-programmable 2D homojunctions based on van der Waals heterostructures on a silicon substrate. Adv. Mater. 35, e2301067 (2023). https://doi.org/10.1002/adma.202301067
- L. Liu, Y. Sun, X. Huang, C. Liu, Z. Tang et al., Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor. Mater. Futures 1, 025301 (2022). https://doi.org/10.1088/2752-5724/ac7067
- X. Huang, C. Liu, Z. Tang, S. Zeng, S. Wang et al., An ultrafast bipolar flash memory for self-activated in-memory computing. Nat. Nanotechnol. 18, 486–492 (2023). https://doi.org/10.1038/s41565-023-01339-w
- H. Ning, Z. Yu, Q. Zhang, H. Wen, B. Gao et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18, 493–500 (2023). https://doi.org/10.1038/s41565-023-01343-0
- Y. Wang, Y. Zhe
References
T. Wei, Z. Han, X. Zhong, Q. Xiao, T. Liu et al., Two dimensional semiconducting materials for ultimately scaled transistors. iScience 25, 105160 (2022). https://doi.org/10.1016/j.isci.2022.105160
C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
K.P. O’Brien, C.H. Naylor, C. Dorow, K. Maxey, A.V. Penumatcha et al., Process integration and future outlook of 2D transistors. Nat. Commun. 14, 6400 (2023). https://doi.org/10.1038/s41467-023-41779-5
W. Li, H. Shen, H. Qiu, Y. Shi, X. Wang, Two-dimensional semiconductor transistors and integrated circuits for advanced technology nodes. Natl. Sci. Rev. 11, nwae001 (2024). https://doi.org/10.1093/nsr/nwae001
L. Yin, R. Cheng, J. Ding, J. Jiang, Y. Hou et al., Two-dimensional semiconductors and transistors for future integrated circuits. ACS Nano 18, 7739–7768 (2024). https://doi.org/10.1021/acsnano.3c10900
A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16, 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
M.Y. Li, S.K. Su, H.S.P. Wong, L.J. Li, How 2D semiconductors could extend Moore’s law. Nature 567(7747), 169–170 (2019). https://doi.org/10.1038/d41586-019-00793-8
Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z
K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282
J. Tang, Q. Wang, J. Tian, X. Li, N. Li et al., Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023). https://doi.org/10.1038/s41467-023-39390-9
A.T. Hoang, L. Hu, B.J. Kim, T.T.N. Van, K.D. Park et al., Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023). https://doi.org/10.1038/s41565-023-01460-w
A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
J. Hu, M. Dong, Recent advances in two-dimensional nanomaterials for sustainable wearable electronic devices. J. Nanobiotechnol. 22, 63 (2024). https://doi.org/10.1186/s12951-023-02274-7
A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
L. Liu, T. Zhai, Wafer-scale vertical van der Waals heterostructures. InfoMat 3, 3–21 (2021). https://doi.org/10.1002/inf2.12164
S. Wang, X. Liu, M. Xu, L. Liu, D. Yang et al., Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2
S. Zeng, Z. Tang, C. Liu, P. Zhou, Electronics based on two-dimensional materials: status and outlook. Nano Res. 14, 1752–1767 (2021). https://doi.org/10.1007/s12274-020-2945-z
J.-P. Colinge, Multiple-gate soi MOSFETs. Solid State Electron. 48, 897–905 (2004). https://doi.org/10.1016/j.sse.2003.12.020
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). https://doi.org/10.1126/science.1182383
S. Zeng, C. Liu, P. Zhou, Transistor engineering based on 2D materials in the post-silicon era. Nat. Rev. Electr. Eng. 1, 335–348 (2024). https://doi.org/10.1038/s44287-024-00045-6
A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim et al., 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 124, 318–419 (2024). https://doi.org/10.1021/acs.chemrev.3c00302
X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12, 5953 (2021). https://doi.org/10.1038/s41467-021-26230-x
M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998). https://doi.org/10.1109/JPROC.1998.658762
M. Mitchell Waldrop, The chips are down for Moore’s law. Nature 530, 144–147 (2016). https://doi.org/10.1038/530144a
J. Zhang, F. Gao, P. Hu, A vertical transistor with a sub-1-nm channel. Nat. Electron. 4, 325 (2021). https://doi.org/10.1038/s41928-021-00583-z
F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
X. Li, Y. Wei, Z. Wang, Y. Kong, Y. Su et al., One-dimensional semimetal contacts to two-dimensional semiconductors. Nat. Commun. 14, 111 (2023). https://doi.org/10.1038/s41467-022-35760-x
J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
X. Wang, C. Zhu, Y. Deng, R. Duan, J. Chen et al., Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021). https://doi.org/10.1038/s41467-021-21320-2
H. Quan, D. Meng, X. Ma, C. Qiu, Eliminating ferroelectric hysteresis in all-two-dimensional gate-stack negative-capacitance transistors. ACS Appl. Mater. Interfaces 15, 45076–45082 (2023). https://doi.org/10.1021/acsami.3c06161
Y. Chen, D. Lu, L. Kong, Q. Tao, L. Ma et al., Mobility enhancement of strained MoS2 transistor on flat substrate. ACS Nano 17, 14954–14962 (2023). https://doi.org/10.1021/acsnano.3c03626
C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023). https://doi.org/10.1038/s41586-023-05797-z
M.I. Beddiar, X. Zhang, B. Liu, Z. Zhang, Y. Zhang, Ambipolar-to-unipolar conversion in ultrathin 2D semiconductors. Small Struct. 3, 2200125 (2022). https://doi.org/10.1002/sstr.202200125
H. Chen, X. Xue, C. Liu, J. Fang, Z. Wang et al., Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4, 399–404 (2021). https://doi.org/10.1038/s41928-021-00591-z
L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021). https://doi.org/10.1038/s41565-021-00921-4
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro, Neto 2D materials and van der Waals heterostructures. Science 353, 9439 (2016). https://doi.org/10.1126/science.aac9439
Y. Wu, W. Deng, X. Wang, W. Yu, Z. Chen et al., Progress in bioinspired photodetectors design for visual information processing. Adv. Funct. Mater. 33, 2302899 (2023). https://doi.org/10.1002/adfm.202302899
B. Zhao, Z. Wan, Y. Liu, J. Xu, X. Yang et al., High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021). https://doi.org/10.1038/s41586-021-03338-0
Y. Xiao, M. Zhou, M. Zeng, L. Fu, Atomic-scale structural modification of 2D materials. Adv. Sci. 6, 1801501 (2019). https://doi.org/10.1002/advs.201801501
X. Han, M. Niu, Y. Luo, R. Li, J. Dan et al., Atomically engineering metal vacancies in monolayer transition metal dichalcogenides. Nat. Synth. 3, 586–594 (2024). https://doi.org/10.1038/s44160-024-00501-z
J.A. Robinson, B. Schuler, Engineering and probing atomic quantum defects in 2D semiconductors: a perspective. Appl. Phys. Lett. 119, 140501 (2021). https://doi.org/10.1063/5.0065185
J. Li, S. Wang, L. Li, Z. Wei, Q. Wang et al., Chemical vapor deposition of 4 inch wafer-scale monolayer MoSe2. Small Sci. 2, 2200062 (2022). https://doi.org/10.1002/smsc.202200062
K.S. Novoselov, A.H. Castro, Neto two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012). https://doi.org/10.1088/0031-8949/2012/t146/014006
X. Sui, Z. Zhang, K. Liu, Controllable growth of two-dimensional quantum materials. Sci. China Phys. Mech. Astron. 66, 117502 (2023). https://doi.org/10.1007/s11433-022-1989-9
S. Ding, C. Liu, Z. Li, Z. Lu, Q. Tao et al., Ag-assisted dry exfoliation of large-scale and continuous 2D monolayers. ACS Nano 18, 1195–1203 (2024). https://doi.org/10.1021/acsnano.3c11573
M. Yang, Z. Ye, M.A. Iqbal, H. Liang, Y.J. Zeng, Progress on two-dimensional binary oxide materials. Nanoscale 14, 9576–9608 (2022). https://doi.org/10.1039/d2nr01076c
R.H. Dennard, F.H. Gaensslen, H.-N. Yu, V.L. Rideout, E. Bassous et al., Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuits 9, 256–268 (1974). https://doi.org/10.1109/JSSC.1974.1050511
H.S.P. Wong, D.J. Frank, P.M. Solomon, C.H.J. Wann, J.J. Welser, Nanoscale CMOS. Proc. IEEE 87(4), 537–570 (1999). https://doi.org/10.1109/5.752515
Y. Taur, T. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, 2009)
J.P. Colinge, Multi-gate soi MOSFETs. Microelectron. Eng. 84, 2071–2076 (2007). https://doi.org/10.1016/j.mee.2007.04.038
Y. Taur, CMOS design near the limit of scaling. IBM J. Res. Dev. 46, 213–222 (2002). https://doi.org/10.1147/rd.462.0213
V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018). https://doi.org/10.1038/nature25747
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/physrevlett.105.136805
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
C. Sheng, X. Dong, Y. Zhu, X. Wang, X. Chen et al., Two-dimensional semiconductors: from device processing to circuit integration. Adv. Funct. Mater. 33, 2304778 (2023). https://doi.org/10.1002/adfm.202304778
M. Bohr, in The evolution of scaling from the homogeneous era to the heterogeneous era, 2011 International Electron Devices Meeting. Washington, DC, USA. IEEE, (2011), pp. 1.1.1–1.1.6.
C. Wagner, N. Harned, Lithography gets extreme. Nat. Photonics 4, 24–26 (2010). https://doi.org/10.1038/nphoton.2009.251
A. Nourbakhsh, A. Zubair, R.N. Sajjad, K.G. Amir Tavakkoli, W. Chen et al., MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 16, 7798–7806 (2016). https://doi.org/10.1021/acs.nanolett.6b03999
J. Park, H. Jung, W. Kwon, G. Choi, J. Chang et al., Investigation of optimal architecture of MoS2 channel field-effect transistors on a sub-2 nm process node. ACS Appl. Electron. Mater. 5, 2239–2248 (2023). https://doi.org/10.1021/acsaelm.3c00096
J. Jiang, M.H. Doan, L. Sun, H. Kim, H. Yu et al., Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 7, 1902964 (2019). https://doi.org/10.1002/advs.201902964
L. Ma, Q. Tao, Y. Chen, Z. Lu, L. Liu et al., Realizing on/off ratios over 104 for sub-2 nm vertical transistors. Nano Lett. 23, 8303–8309 (2023). https://doi.org/10.1021/acs.nanolett.3c02518
Z. Xie, G. Li, S. Xia, C. Liu, S. Zhang et al., Ultimate limit in optoelectronic performances of monolayer WSe2 sloping-channel transistors. Nano Lett. 23, 6664–6672 (2023). https://doi.org/10.1021/acs.nanolett.3c01866
S. Namgung, S.J. Koester, S.-H. Oh, Ultraflat sub-10 nanometer gap electrodes for two-dimensional optoelectronic devices. ACS Nano 15, 5276–5283 (2021). https://doi.org/10.1021/acsnano.0c10759
P. Wang, C. Jia, Y. Huang, X. Duan, Van der Waals heterostructures by design: from 1D and 2D to 3D. Matter 4, 552–581 (2021). https://doi.org/10.1016/j.matt.2020.12.015
S.-K. Su, C.-P. Chuu, M.-Y. Li, C.-C. Cheng, H.-S.P. Wong et al., Layered semiconducting 2D materials for future transistor applications. Small Struct. 2, 2000103 (2021). https://doi.org/10.1002/sstr.202000103
L. Liu, Y. Chen, L. Chen, B. Xie, G. Li et al., Ultrashort vertical-channel MoS2 transistor using a self-aligned contact. Nat. Commun. 15, 165 (2024). https://doi.org/10.1038/s41467-023-44519-x
L. Liu, L. Kong, Q. Li, C. He, L. Ren et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4, 342–347 (2021). https://doi.org/10.1038/s41928-021-00566-0
Z. Xiao, L. Liu, Y. Chen, Z. Lu, X. Yang et al., High-density vertical transistors with pitch size down to 20 nm. Adv. Sci. 10, 2302760 (2023). https://doi.org/10.1002/advs.202302760
M. Yu, C. Tan, Y. Yin, J. Tang, X. Gao et al., Integrated 2D multi-fin field-effect transistors. Nat. Commun. 15, 3622 (2024). https://doi.org/10.1038/s41467-024-47974-2
M.-L. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu et al., A FinFET with one atomic layer channel. Nat. Commun. 11, 1205 (2020). https://doi.org/10.1038/s41467-020-15096-0
Z. Sun, C.-S. Pang, P. Wu, T.Y.T. Hung, M.-Y. Li et al., Statistical assessment of high-performance scaled double-gate transistors from monolayer WS2. ACS Nano 16, 14942–14950 (2022). https://doi.org/10.1021/acsnano.2c05902
H. Wan, W. Li, X. Ma, Y. Mu, G. Xie et al., 3 nm channel MoS2 transistors by electromigration of metal interconnection. ACS Appl. Electron. Mater. 5, 247–254 (2023). https://doi.org/10.1021/acsaelm.2c01306
X. Xiao, M. Chen, J. Zhang, T. Zhang, L. Zhang et al., Sub-10 nm monolayer MoS2 transistors using single-walled carbon nanotubes as an evaporating mask. ACS Appl. Mater. Interfaces 11, 11612–11617 (2019). https://doi.org/10.1021/acsami.8b21437
A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011). https://doi.org/10.1038/nature10679
A. Allain, J. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015). https://doi.org/10.1038/nmat4452
Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee et al., Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
J. Yu, H. Wang, F. Zhuge, Z. Chen, M. Hu et al., Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts. Nat. Commun. 14, 5662 (2023). https://doi.org/10.1038/s41467-023-41363-x
"Frontmatter". Michael Alder: Das Haus als Typ, edited by Ulrike Zophoniasson-Baierl, Berlin, Boston: Birkhäuser, 2006, pp. i–vii. https://doi.org/10.1007/978-3-7643-7844-8_fm
M.S. Elrabaa, I.S. Abu-Khater, M.I. Elmasry. in Low-Power VLSI design. ed.by M.S. Elrabaa, I.S. Abu-Khater, M.I. Elmasry, (Springer US; Boston, MA, 1997), pp. 1–5.
R.D. Schrimpf, D.M. Fleetwood, in Radiation effects and soft errors in integrated circuits and electronic devices, vol. 34, (World Scientific Publishing, 2004), p. 348 (2004)
A.E. Atamuratov, K.S. Saparov, A. Yusupov, J.C. Chedjou, Combined influence of gate oxide and back oxide materials on self-heating and DIBL effect in 2D MOS2-based MOSFETs. Appl. Sci. 13, 6131 (2023). https://doi.org/10.3390/app13106131
Q. Zhang, C. Liu, P. Zhou, 2D materials readiness for the transistor performance breakthrough. iScience 26, 106673 (2023). https://doi.org/10.1016/j.isci.2023.106673
G. Iannaccone, F. Bonaccorso, L. Colombo, G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13, 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6
S. Barraud, B. Previtali, C. Vizioz, J.M. Hartmann, J. Sturm et al., in 7-levels-stacked nanosheet GAA transistors for high performance computing, 2020 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. (IEEE, 2020), pp. 1–2.
G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001). https://doi.org/10.1063/1.1361065
Y. Li, C. Qi, X. Zhou, L. Xu, Q. Li et al., Monolayer WSi2N4: a promising channel material for sub-5-nm-gate homogeneous CMOS devices. Phys. Rev. Applied 20, 064044 (2023). https://doi.org/10.1103/physrevapplied.20.064044
S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016). https://doi.org/10.1126/science.aah4698
Q. Zhang, X.-F. Wang, S.-H. Shen, Q. Lu, X. Liu et al., Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron. 2, 164–170 (2019). https://doi.org/10.1038/s41928-019-0233-2
A. Afzalian, Ab initio perspective of ultra-scaled CMOS from 2D-material fundamentals to dynamically doped transistors. npj 2D Mater. Appl. 5, 5 (2021). https://doi.org/10.1038/s41699-020-00181-1
H. Zhang, B. Shi, L. Xu, J. Yan, W. Zhao et al., Sub-5 nm monolayer MoS2 transistors toward low-power devices. ACS Appl. Electron. Mater. 3, 1560–1571 (2021). https://doi.org/10.1021/acsaelm.0c00840
Y. Pan, J. Li, W. Wang, T. Ye, H. Yin et al., Novel 10-nm gate length MoS2 transistor fabricated on Si fin substrate. IEEE J. Electron Devices Soc. 7, 483–488 (2019). https://doi.org/10.1109/jeds.2019.2910271
V. Vashishtha, L.T. Clark, Comparing bulk-Si FinFET and gate-all-around FETs for the 5 nm technology node. Microelectron. J. 107, 104942 (2021). https://doi.org/10.1016/j.mejo.2020.104942
Y. Shen, Z. Dong, Y. Sun, H. Guo, F. Wu et al., The trend of 2D transistors toward integrated circuits: scaling down and new mechanisms. Adv. Mater. 34, 2270329 (2022). https://doi.org/10.1002/adma.202270329
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/nnano.2014.207
J. Miao, X. Zhang, Y. Tian, Y. Zhao, Recent progress in contact engineering of field-effect transistor based on two-dimensional materials. Nanomaterials 12, 3845 (2022). https://doi.org/10.3390/nano12213845
M.V. Fischetti, S.E. Laux, Monte carlo study of electron transport in silicon inversion layers. Phys. Rev. B Condens. Matter 48, 2244–2274 (1993). https://doi.org/10.1103/physrevb.48.2244
Y. Zhang, Sub-1-nm-node beyond-silicon materials and devices: Pathways, opportunities and challenges. Natl. Sci. Open 2, 20230032 (2023). https://doi.org/10.1360/nso/20230032
X. Zhang, H. Zhao, X. Wei, Y. Zhang, Z. Zhang et al., Two-dimensional transition metal dichalcogenides for post-silicon electronics. Natl. Sci. Open 2, 20230015 (2023). https://doi.org/10.1360/nso/20230015
B. Doris, I. Meikei, T. Kanarsky, Z. Ying, R.A. Roy et al., in Extreme scaling with ultra-thin Si channel MOSFETs, Digest International Electron Devices Meeting, pp. 267–270 (2002).
X. Liu, M.S. Choi, E. Hwang, W.J. Yoo, J. Sun, Fermi level pinning dependent 2D semiconductor devices: challenges and prospects. Adv. Mater. 34, e2108425 (2022). https://doi.org/10.1002/adma.202108425
S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler et al., A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Devices 51, 1790–1797 (2004). https://doi.org/10.1109/ted.2004.836648
C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier et al., in A 22nm high performance and low-power cmos technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density mim capacitors. 2012 Symposium on VLSI Technology (VLSIT), pp. 131–132. (2012)
J.P. Colinge, in Silicon-on-Insulator Technology: Materials to VLSI (Kluwer Academic Publishers, 2004).
T.F. Schranghamer, N.U. Sakib, M.U.K. Sadaf, S. Subbulakshmi Radhakrishnan, R. Pendurthi et al., Ultrascaled contacts to monolayer MoS2 field effect transistors. Nano Lett. 23, 3426–3434 (2023). https://doi.org/10.1021/acs.nanolett.3c00466
A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing, S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021). https://doi.org/10.1038/s41467-020-20732-w
H.-S. Kim, J. Jeong, G.-H. Kwon, H. Kwon, M. Baik et al., Improvement of electrical performance using PtSe2/PtTe2 edge contact synthesized by molecular beam epitaxy. Appl. Surf. Sci. 585, 152507 (2022). https://doi.org/10.1016/j.apsusc.2022.152507
Z. Cheng, Y. Yu, S. Singh, K. Price, S.G. Noyce et al., Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19, 5077–5085 (2019). https://doi.org/10.1021/acs.nanolett.9b01355
A. Jain, Á. Szabó, M. Parzefall, E. Bonvin, T. Taniguchi et al., One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19, 6914–6923 (2019). https://doi.org/10.1021/acs.nanolett.9b02166
S. Lee, H. Choi, I. Moon, H. Shin, K. Watanabe et al., Contact resistivity in edge-contacted graphene field effect transistors. Adv. Electron. Mater. 8, 2101169 (2022). https://doi.org/10.1002/aelm.202101169
L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). https://doi.org/10.1126/science.1244358
C. Kim, S. Issarapanacheewin, I. Moon, K.Y. Lee, C. Ra et al., High-electric-field-induced phase transition and electrical breakdown of MoTe2. Adv. Electron. Mater. 6, 1900964 (2020). https://doi.org/10.1002/aelm.201900964
G. Pasquale, E. Lopriore, Z. Sun, K. Čerņevičs, F. Tagarelli et al., Electrical detection of the flat-band dispersion in van der Waals field-effect structures. Nat. Nanotechnol. 18, 1416–1422 (2023). https://doi.org/10.1038/s41565-023-01489-x
M.S. Choi, N. Ali, T.D. Ngo, H. Choi, B. Oh et al., Recent progress in 1D contacts for 2D-material-based devices. Adv. Mater. 34, 2202408 (2022). https://doi.org/10.1002/adma.202202408
M. Lundstrom, Fundamentals of carrier transport. Meas. Sci. Technol. 13, 230 (2002). https://doi.org/10.1088/0957-0233/13/2/703
W. Cao, H. Bu, M. Vinet, M. Cao, S. Takagi et al., The future transistors. Nature 620, 501–515 (2023). https://doi.org/10.1038/s41586-023-06145-x
S. Yang, K. Liu, Y. Xu, L. Liu, H. Li et al., Gate dielectrics integration for 2D electronics: challenges, advances, and outlook. Adv. Mater. 35, 2207901 (2023). https://doi.org/10.1002/adma.202207901
L. Chang, K.J. Yang, Y.-C. Yeo, I. Polishchuk, T.-J. King et al., Direct-tunneling gate leakage current in double-gate and ultrathin body MOSFETs. IEEE Trans. Electron Devices 49, 2288–2295 (2002). https://doi.org/10.1109/TED.2002.807446
Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices. (Cambridge University Press, New York, NY). https://doi.org/10.5555/1795474
S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee et al., High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012). https://doi.org/10.1038/ncomms2018
D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9
C. Liu, H. Chen, X. Hou, H. Zhang, J. Han et al., Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019). https://doi.org/10.1038/s41565-019-0462-6
X. Huang, C. Liu, S. Zeng, Z. Tang, S. Wang et al., Ultrathin multibridge channel transistor enabled by van der Waals assembly. Adv. Mater. 33, 2102201 (2021). https://doi.org/10.1002/adma.202102201
M.V. Fischetti, S.E. Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996). https://doi.org/10.1063/1.363052
N. Peimyoo, M.D. Barnes, J.D. Mehew, A. De Sanctis, I. Amit et al., Laser-writable high-k dielectric for van der Waals nanoelectronics. Sci. Adv. 5, eaau0906 (2019). https://doi.org/10.1126/sciadv.aau0906
Y. Xu, T. Liu, K. Liu, Y. Zhao, L. Liu et al., Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023). https://doi.org/10.1038/s41563-023-01626-w
C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan et al., Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023). https://doi.org/10.1038/s41563-023-01502-7
J. Chen, Z. Liu, X. Dong, Z. Gao, Y. Lin et al., Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric. Nat. Commun. 14, 4406 (2023). https://doi.org/10.1038/s41467-023-40123-1
W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019). https://doi.org/10.1038/s41928-019-0334-y
Y. Zhang, J. Yu, R. Zhu, M. Wang, C. Tan et al., A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 5, 643–649 (2022). https://doi.org/10.1038/s41928-022-00824-9
Q. Yang, J. Hu, Y.-W. Fang, Y. Jia, R. Yang et al., Ferroelectricity in layered bismuth oxide down to 1 nanometer. Science 379, 1218–1224 (2023). https://doi.org/10.1126/science.abm5134
S. Amy, Ferroelectricity and multiferroicity down to the atomic thickness. Nat. Nanotechnol. 18, 829–830 (2023). https://doi.org/10.1038/s41565-023-01494-0
Y. Wang, L. Tao, R. Guzman, Q. Luo, W. Zhou et al., A stable rhombohedral phase in ferroelectric Hf(Zr)1+x O2 capacitor with ultralow coercive field. Science 381, 558–563 (2023). https://doi.org/10.1126/science.adf6137
L. Li, W. Dang, X. Zhu, H. Lan, Y. Ding et al., Ultrathin van der Waals lanthanum oxychloride dielectric for 2D field-effect transistors. Adv. Mater. (2023). https://doi.org/10.1002/adma.202309296
S.S. Cheema, N. Shanker, S.-L. Hsu, Y. Rho, C.-H. Hsu et al., Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022). https://doi.org/10.1126/science.abm8642
S.S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu et al., Publisher correction: enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 581, 478–482 (2020). https://doi.org/10.1038/s41586-020-2297-6
S.S. Cheema, N. Shanker, S.-L. Hsu, J. Schaadt, N.M. Ellis et al., Giant energy storage and power density negative capacitance superlattices. Nature 629, 803–809 (2024). https://doi.org/10.1038/s41586-024-07365-5
S.S. Cheema, N. Shanker, L.-C. Wang, C.-H. Hsu, S.-L. Hsu et al., Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022). https://doi.org/10.1038/s41586-022-04425-6
S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nat. Electron. 7, 216–224 (2024). https://doi.org/10.1038/s41928-024-01129-9
Y.Y. Illarionov, T. Knobloch, T. Grasser, Native high-k oxides for 2D transistors. Nat. Electron. 3, 442–443 (2020). https://doi.org/10.1038/s41928-020-0464-2
K. Meng, Z. Li, P. Chen, X. Ma, J. Huang et al., Superionic fluoride gate dielectrics with low diffusion barrier for two-dimensional electronics. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01675-5
M. Irfan, H. Mustafa, A. Sattar, U. Ahsan, F. Alvi et al., Top-gate engineering of field-effect transistors based on single layers of MoS2 and graphene. J. Phys. Chem. Solids 184, 111710 (2024). https://doi.org/10.1016/j.jpcs.2023.111710
X. Wang, Q. Feng, S. Xu, J. Shang, Y. Zhao et al., Passivation of transition metal dichalcogenides monolayers with a surface-confined atomically thick sulfur layer. Small Struct. 3, 2100224 (2022). https://doi.org/10.1002/sstr.202100224
X. Xiong, M. Huang, B. Hu, X. Li, F. Liu et al., A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat. Electron. 3, 106–112 (2020). https://doi.org/10.1038/s41928-019-0364-5
J.D. Wood, S.A. Wells, D. Jariwala, K.-S. Chen, E. Cho et al., Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014). https://doi.org/10.1021/nl5032293
D. Liu, X. Chen, Y. Yan, Z. Zhang, Z. Jin et al., Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat. Commun. 10, 1188 (2019). https://doi.org/10.1038/s41467-019-09016-0
D. Fan, W. Li, H. Qiu, Y. Xu, S. Gao et al., Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nat. Electron. 6, 879–887 (2023). https://doi.org/10.1038/s41928-023-01052-5
X. Li, H. Long, J. Zhong, F. Ding, W. Li et al., Two-dimensional metallic alloy contacts with composition-tunable work functions. Nat. Electron. 6, 842–851 (2023). https://doi.org/10.1038/s41928-023-01050-7
S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, 2005), pp.285–311
W. Yan, C. Manish, Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022). https://doi.org/10.1038/s42254-021-00389-0
Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018). https://doi.org/10.1039/c7cs00828g
S. Das, A. Sebastian, E. Pop, C.J. McClellan, A.D. Franklin et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021). https://doi.org/10.1038/s41928-021-00670-1
Y. Wang, J.C. Kim, Y. Li, K.Y. Ma, S. Hong et al., P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022). https://doi.org/10.1038/s41586-022-05134-w
X. Wen, W. Lei, X. Li, B. Di, Y. Zhou et al., ZrTe2 compound Dirac semimetal contacts for high-performance MoS2 transistors. Nano Lett. 23, 8419–8425 (2023). https://doi.org/10.1021/acs.nanolett.3c01554
Y. Manzanares-Negro, J. Quan, M. Rassekh, M. Moaied, X. Li et al., Low resistance electrical contacts to few-layered MoS2 by local pressurization. 2D Mater. 10, 021003 (2023). https://doi.org/10.1088/2053-1583/acc1f4
S. Xu, Z. Huang, J. Guan, Y. Hu, Nanoforming of transferred metal contacts for enhanced two-dimensional field effect transistors. Nano Res. 17, 3210–3216 (2024). https://doi.org/10.1007/s12274-023-6040-0
J. Xiao, K. Chen, X. Zhang, X. Liu, H. Yu et al., Approaching ohmic contacts for ideal monolayer MoS2 transistors through sulfur-vacancy engineering. Small Methods 7, e2300611 (2023). https://doi.org/10.1002/smtd.202300611
P.-H. Ho, R.-H. Cheng, P.-H. Pao, S.-A. Chou, Y.-H. Huang et al., High-performance two-dimensional electronics with a noncontact remote doping method. ACS Nano 17, 12208–12215 (2023). https://doi.org/10.1021/acsnano.3c00522
M.G. Stanford, P.R. Pudasaini, E.T. Gallmeier, N. Cross, L. Liang et al., High conduction hopping behavior induced in transition metal dichalcogenides by percolating defect networks: toward atomically thin circuits. Adv. Funct. Mater. 27, 1702829 (2017). https://doi.org/10.1002/adfm.201702829
L. Gao, Z. Chen, C. Chen, X. Zhang, Z. Zhang et al., Silicon-processes-compatible contact engineering for two-dimensional materials integrated circuits. Nano Res. 16, 12471–12490 (2023). https://doi.org/10.1007/s12274-023-6167-z
Y.-C. Lin, Y. Chen, Y. Huang, The growth and applications of silicides for nanoscale devices. Nanoscale 4, 1412–1421 (2012). https://doi.org/10.1039/C1NR10847F
V. Narula, M. Agarwal, Doping engineering to enhance the performance of a rectangular core shell double gate junctionless field effect transistor. Semicond. Sci. Technol. 35, 075003 (2020). https://doi.org/10.1088/1361-6641/ab8536
H. Yu, M. Schaekers, J.-L. Everaert, N. Horiguchi, K. De Meyer et al., A snapshot review on metal–semiconductor contact exploration for 7-nm CMOS technology and beyond. MRS Adv. 7, 1369–1379 (2022). https://doi.org/10.1557/s43580-022-00404-1
J. Meng, C. Lee, Z. Li, Adjustment methods of Schottky barrier height in one- and two-dimensional semiconductor devices. Sci. Bull. 69, 1342–1352 (2024). https://doi.org/10.1016/j.scib.2024.03.003
J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023). https://doi.org/10.1038/s41586-023-05819-w
H.J. Chuang, B. Chamlagain, M. Koehler, M.M. Perera, J. Yan et al., Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016). https://doi.org/10.1021/acs.nanolett.5b05066
S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok et al., Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015). https://doi.org/10.1126/science.aab3175
D. Liu, Z. Liu, J. Zhu, M. Zhang, Hydrogen-bonding enables two-dimensional metal/semiconductor tunable contacts approaching the quantum limit and the modified Schottky-Mott limit simultaneously. Mater. Horiz. 10, 5621–5632 (2023). https://doi.org/10.1039/d3mh00736g
X. Wang, Y. Hu, S.Y. Kim, R. Addou, K. Cho et al., Origins of Fermi level pinning for Ni and Ag metal contacts on tungsten dichalcogenides. ACS Nano 17, 20353–20365 (2023). https://doi.org/10.1021/acsnano.3c06494
S. Song, A. Yoon, S. Jang, J. Lynch, J. Yang et al., Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes. Nat. Commun. 14, 4747 (2023). https://doi.org/10.1038/s41467-023-40448-x
B. Liu, X. Yue, C. Sheng, J. Chen, C. Tang et al., High-performance contact-doped WSe2 transistors using TaSe2 electrodes. ACS Appl. Mater. Interfaces 16, 19247–19253 (2024). https://doi.org/10.1021/acsami.4c01605
Z. Cao, L. Zhu, K. Yao, Low-power transistors with ideal p-type ohmic contacts based on VS2/WSe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 16, 19158–19166 (2024). https://doi.org/10.1021/acsami.4c00640
D.S. Schneider, L. Lucchesi, E. Reato, Z. Wang, A. Piacentini et al., CVD graphene contacts for lateral heterostructure MoS2 field effect transistors. npj 2D Mater. Appl. 8, 35 (2024). https://doi.org/10.1038/s41699-024-00471-y
B. Wei, Y. Li, T. Yun, Y. Li, T. Gui et al., Triply degenerate semimetal PtBi2 as van der Waals contact interlayer in two-dimensional transistor. Mater. Futures 3, 025302 (2024). https://doi.org/10.1088/2752-5724/ad47cf
S. Bang, S. Lee, A. Rai, N.T. Duong, I. Kawk et al., Contact engineering of layered MoS2 via chemically dipping treatments. Adv. Funct. Mater. 30, 2000250 (2020). https://doi.org/10.1002/adfm.202000250
X. Wang, A. Chen, X. Wu, J. Zhang, J. Dong et al., Synthesis and modulation of low-dimensional transition metal chalcogenide materials via atomic substitution. Nano-Micro Lett. 16, 163 (2024). https://doi.org/10.1007/s40820-024-01378-5
G. Kwon, Y.-H. Choi, H. Lee, H.-S. Kim, J. Jeong et al., Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 5, 241–247 (2022). https://doi.org/10.1038/s41928-022-00746-6
H. Yoon, S. Lee, J. Seo, I. Sohn, S. Jun et al., Investigation on contact properties of 2D van der Waals semimetallic 1T-TiS2/MoS2 heterojunctions. ACS Appl. Mater. Interfaces 16, 12095–12105 (2024). https://doi.org/10.1021/acsami.3c18982
L. Ma, Y. Wang, Y. Liu, Van der Waals contact for two-dimensional transition metal dichalcogenides. Chem. Rev. 124, 2583–2616 (2024). https://doi.org/10.1021/acs.chemrev.3c00697
Z. Zhou, J.-F. Lin, Z. Zeng, X. Ma, L. Liang et al., Engineering van der Waals contacts by interlayer dipoles. Nano Lett. 24, 4408–4414 (2024). https://doi.org/10.1021/acs.nanolett.4c00056
G. Liu, Z. Tian, Z. Yang, Z. Xue, M. Zhang et al., Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 5, 275–280 (2022). https://doi.org/10.1038/s41928-022-00764-4
D. Qi, P. Li, H. Ou, D. Wu, W. Lian et al., Graphene-enhanced metal transfer printing for strong van der Waals contacts between 3D metals and 2D semiconductors. Adv. Funct. Mater. 33, 2301704 (2023). https://doi.org/10.1002/adfm.202301704
L. Kong, R. Wu, Y. Chen, Y. Huangfu, L. Liu et al., Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 14, 1014 (2023). https://doi.org/10.1038/s41467-023-36715-6
M. Hong, X. Zhang, Y. Geng, Y. Wang, X. Wei et al., Universal transfer of full-class metal electrodes for barrier-free two-dimensional semiconductor contacts. InfoMat 6, e12491 (2024). https://doi.org/10.1002/inf2.12491
A. Mondal, C. Biswas, S. Park, W. Cha, S.-H. Kang et al., Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat. Nanotechnol. 19, 34–43 (2024). https://doi.org/10.1038/s41565-023-01497-x
J. Zhou, G. Zhang, W. Wang, Q. Chen, W. Zhao et al., Phase-engineered synthesis of atomically thin te single crystals with high on-state currents. Nat. Commun. 15, 1435 (2024). https://doi.org/10.1038/s41467-024-45940-6
M. Liu, J. Gou, Z. Liu, Z. Chen, Y. Ye et al., Phase-selective in-plane heteroepitaxial growth of H-phase CrSe2. Nat. Commun. 15, 1765 (2024). https://doi.org/10.1038/s41467-024-46087-0
R. Feng, W. Wang, C. Bao, Z. Zhang, F. Wang et al., Selective control of phases and electronic structures of monolayer TaTe2. Adv. Mater. 36, e2302297 (2024). https://doi.org/10.1002/adma.202302297
X. Liu, J. Shan, T. Cao, L. Zhu, J. Ma et al., On-device phase engineering. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01888-y
P. Li, L. Dong, C. Li, Y. Li, J. Zhao et al., Machine learning to promote efficient screening of low-contact electrode for 2D semiconductor transistor under limited data. Adv. Mater. (2024). https://doi.org/10.1002/adma.202312887
K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305–327 (2003). https://doi.org/10.1109/JPROC.2002.808156
A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEEE J. Solid State Circuits 27, 473–484 (1992). https://doi.org/10.1109/4.126534
W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952). https://doi.org/10.1103/physrev.87.835
A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010). https://doi.org/10.1109/JPROC.2010.2070470
U.E. Avci, D.H. Morris, I.A. Young, Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3, 88–95 (2015). https://doi.org/10.1109/JEDS.2015.2390591
S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008). https://doi.org/10.1021/nl071804g
A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You et al., Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015). https://doi.org/10.1038/nmat4148
W. Cao, J. Kang, D. Sarkar, W. Liu, K. Banerjee, 2D semiconductor FETs—projections and design for sub-10 nm VLSI. IEEE Trans. Electron Devices 62, 3459–3469 (2015). https://doi.org/10.1109/TED.2015.2443039
L. Chen, H. Wang, Q. Huang, R. Huang, A novel negative quantum capacitance field-effect transistor with molybdenum disulfide integrated gate stack and steep subthreshold swing for ultra-low power applications. Sci. China Inf. Sci. 66, 160406 (2023). https://doi.org/10.1007/s11432-023-3763-3
S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7
A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang et al., Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures. ACS Nano 14, 434–441 (2020). https://doi.org/10.1021/acsnano.9b06140
J. Lin, X. Chen, X. Duan, Z. Yu, W. Niu et al., Ultra-steep-slope high-gain MoS2 transistors with atomic threshold-switching gate. Adv. Sci. 9, e2104439 (2022). https://doi.org/10.1002/advs.202104439
Z. Tang, C. Liu, X. Huang, S. Zeng, L. Liu et al., A steep-slope MoS2/graphene Dirac-source field-effect transistor with a large drive current. Nano Lett. 21, 1758–1764 (2021). https://doi.org/10.1021/acs.nanolett.0c04657
N. Abele, R. Fritschi, K. Boucart, F. Casset, P. Ancey et al., in Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor, IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. December 5–5, 2005, Washington, DC, USA. IEEE, Apr. (2006), pp. 479–481.
Y. Wang, X. Bai, J. Chu, H. Wang, G. Rao et al., Record-low subthreshold-swing negative-capacitance 2D field-effect transistors. Adv. Mater. 32, e2005353 (2020). https://doi.org/10.1002/adma.202005353
X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019). https://doi.org/10.1038/s41467-019-10738-4
M. Si, C.-J. Su, C. Jiang, N.J. Conrad, H. Zhou et al., Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018). https://doi.org/10.1038/s41565-017-0010-1
S.-G. Kim, S.-H. Kim, G.-S. Kim, H. Jeon, T. Kim et al., Steep-slope gate-connected atomic threshold switching field-effect transistor with MoS2 channel and its application to infrared detectable phototransistors. Adv. Sci. 8, 2100208 (2021). https://doi.org/10.1002/advs.202100208
D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang et al., A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015). https://doi.org/10.1038/nature15387
H.S. Choi, J. Lin, G. Wang, W.P.D. Wong, I.H. Park et al., Molecularly thin, two-dimensional all-organic perovskites. Science 384, 60–66 (2024). https://doi.org/10.1126/science.adk8912
A.J. Yang, S.X. Wang, J. Xu, X.J. Loh, Q. Zhu et al., Two-dimensional layered materials meet perovskite oxides: a combination for high-performance electronic devices. ACS Nano 17, 9748–9762 (2023). https://doi.org/10.1021/acsnano.3c00429
A.J. Yang, K. Han, K. Huang, C. Ye, W. Wen et al., Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5, 233–240 (2022). https://doi.org/10.1038/s41928-022-00753-7
H. Liu, A. Wang, P. Zhang, C. Ma, C. Chen et al., Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor. Nat. Commun. 14, 3690 (2023). https://doi.org/10.1038/s41467-023-39361-0
M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li et al., Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208
H. Wang, H. Xia, Y. Liu, Y. Chen, R. Xie et al., Room-temperature low-threshold avalanche effect in stepwise van-der-Waals homojunction photodiodes. Nat. Commun. 15, 3639 (2024). https://doi.org/10.1038/s41467-024-47958-2
Q. Hua, G. Gao, C. Jiang, J. Yu, J. Sun et al., Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics. Nat. Commun. 11, 6207 (2020). https://doi.org/10.1038/s41467-020-20051-0
Y. Zheng, S. Ghosh, S. Das, A butterfly-inspired multisensory neuromorphic platform for integration of visual and chemical cues. Adv. Mater. 36, e2307380 (2024). https://doi.org/10.1002/adma.202307380
Q. Yang, Z.-D. Luo, H. Duan, X. Gan, D. Zhang et al., Steep-slope vertical-transport transistors built from sub-5 nm thin van der Waals heterostructures. Nat. Commun. 15, 1138 (2024). https://doi.org/10.1038/s41467-024-45482-x
S. Wang, J. Wang, T. Zhi, J. Xue, D. Chen et al., Cold source field-effect transistors: breaking the 60-mV/decade switching limit at room temperature. Phys. Rep. 1013, 1–33 (2023). https://doi.org/10.1016/j.physrep.2023.03.001
Q. Wang, P. Sang, X. Ma, F. Wang, W. Wei et al., in Cold source engineering towards Sub-60mV/dec p-Type Field-effect-transistors (pFETs): materials, structures, and doping optimizations. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. (IEEE, 2020), pp. 22.4.1–22.4.4.
Q. Wang, P. Sang, W. Wei, Y. Li, J. Chen, Functionalized MoS2 nanoribbons for intrinsic cold-source transistors: a computational study. ACS Appl. Nano Mater. 5, 1178–1184 (2022). https://doi.org/10.1021/acsanm.1c03793
F. Liu, Switching at less than 60 mV/decade with a “cold” metal as the injection source. Phys. Rev. Appl. 13, 064037 (2020). https://doi.org/10.1103/physrevapplied.13.064037
Q. Wang, P. Sang, F. Wang, W. Wei, J. Chen, Tunneling junction as cold source: toward steep-slope field-effect transistors based on monolayer MoS2. IEEE Trans. Electron Devices 68, 4758–4761 (2021). https://doi.org/10.1109/TED.2021.3098256
X. Chen, S. Li, L. Zhu, J. Li, Y. Sun et al., Dual-junction field-effect transistor with ultralow subthreshold swing approaching the theoretical limit. ACS Appl. Mater. Interfaces 16, 23452–23458 (2024). https://doi.org/10.1021/acsami.3c17572
R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). https://doi.org/10.1038/nmat2023
Z. Ye, Y. Yuan, H. Xu, Y. Liu, J. Luo et al., Mechanism and origin of hysteresis in oxide thin-film transistor and its application on 3-D nonvolatile memory. IEEE Trans. Electron Devices 64, 438–446 (2017). https://doi.org/10.1109/TED.2016.2641476
S. Schmidt, T. Haensch, R. Frank, H.-G. Jahnke, A.A. Robitzki, Reactive sputtered silicon nitride as an alternative passivation layer for microelectrode arrays in sensitive bioimpedimetric cell monitoring. ACS Appl. Mater. Interfaces 13, 59185–59195 (2021). https://doi.org/10.1021/acsami.1c14981
K. Huet, F. Mazzamuto, T. Tabata, I. Toqué-Tresonne, Y. Mori, Doping of semiconductor devices by laser thermal annealing. Mater. Sci. Semicond. Process. 62, 92–102 (2017). https://doi.org/10.1016/j.mssp.2016.11.008
T.-J. Ha, D. Kiriya, K. Chen, A. Javey, Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation. ACS Appl. Mater. Interfaces 6, 8441–8446 (2014). https://doi.org/10.1021/am5013326
M.-H. Chiu, C. Zhang, H.-W. Shiu, C.-P. Chuu, C.-H. Chen et al., Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015). https://doi.org/10.1038/ncomms8666
J.H. Park, A. Sanne, Y. Guo, M. Amani, K. Zhang et al., Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 3, e1701661 (2017). https://doi.org/10.1126/sciadv.1701661
X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015). https://doi.org/10.1038/nnano.2015.70
P. Luo, C. Liu, J. Lin, X. Duan, W. Zhang et al., Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron. 5, 849–858 (2022). https://doi.org/10.1038/s41928-022-00877-w
C. Liu, X. Zou, Y. Lv, X. Liu, C. Ma et al., Controllable van der Waals gaps by water adsorption. Nat. Nanotechnol. 19, 448–454 (2024). https://doi.org/10.1038/s41565-023-01579-w
W. Huang, Y. Zhang, M. Song, B. Wang, H. Hou et al., Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chin. Chem. Lett. 33, 2281–2290 (2022). https://doi.org/10.1016/j.cclet.2021.08.086
P. Wu, Mobility overestimation in molybdenum disulfide transistors due to invasive voltage probes. Nat. Electron. 6, 836–838 (2023). https://doi.org/10.1038/s41928-023-01043-6
R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, Integrated nanoelectronics for the future. Nat. Mater. 6, 810–812 (2007). https://doi.org/10.1038/nmat2014
in Frontmatter and index (2002), pp. i-xiv.
H. Wong, H. Iwai, On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng. 83, 1867–1904 (2006). https://doi.org/10.1016/j.mee.2006.01.271
Z. Yu, Z.-Y. Ong, S. Li, J.-B. Xu, G. Zhang et al., Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 27, 1604093 (2017). https://doi.org/10.1002/adfm.201604093
M.M. Perera, M.-W. Lin, H.-J. Chuang, B.P. Chamlagain, C. Wang et al., Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7, 4449–4458 (2013). https://doi.org/10.1021/nn401053g
M. Yu, C. Tan, X. Gao, J. Tang, H. Peng, Chemical vapor deposition growth of high-mobility 2D semiconductor Bi2O2Se: controllability and material quality. Acta Phys. Chim. Sin. 39, 2306043 (2023). https://doi.org/10.3866/pku.Whxb202306043
Y.Z. Kang, G.H. An, M.-G. Jeon, S.J. Shin, S.J. Kim et al., Increased mobility and reduced hysteresis of MoS2 field-effect transistors via direct surface precipitation of CsPbBr3-nanoclusters for charge transfer doping. Nano Lett. 23, 8914–8922 (2023). https://doi.org/10.1021/acs.nanolett.3c02293
D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano et al., FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47, 2320–2325 (2000). https://doi.org/10.1109/16.887014
L. Liang, R. Hu, L. Yu, Toward monolithic growth integration of nanowire electronics in 3D architecture: a review. Sci. China Inf. Sci. 66, 200406 (2023). https://doi.org/10.1007/s11432-023-3774-y
P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, H.-J.L. Gossmann et al., GaAs-based metal-oxide semiconductor field-effect transistors with Al2O3 gate dielectrics grown by atomic layer deposition. J. Electron. Mater. 33, 912–915 (2004). https://doi.org/10.1007/s11664-004-0220-9
E. Ungersboeck, V. Sverdlov, H. Kosina, S. Selberherr, in Strain engineering for CMOS devices. 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. Shanghai, China. (IEEE, 2006), pp. 124–127.
E. Pop, Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010). https://doi.org/10.1007/s12274-010-1019-z
X. Li, X. Shi, D. Marian, D. Soriano, T. Cusati et al., Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices. Sci. Adv. 9, eade5706 (2023). https://doi.org/10.1126/sciadv.ade5706
C. Wang, L. Cusin, C. Ma, E. Unsal, H. Wang et al., Enhancing the carrier transport in monolayer MoS2 through interlayer coupling with 2D covalent organic frameworks. Adv. Mater. 36, e2305882 (2024). https://doi.org/10.1002/adma.202305882
X. Liu, X. Zhou, Y. Pan, J. Yang, H. Xiang et al., Charge–ferroelectric transition in ultrathin Na0.5Bi4.5Ti4O15 flakes probed via a dual-gated full van der Waals transistor. Adv. Mater. 32, 2004813 (2020). https://doi.org/10.1002/adma.202004813
T. Liu, S. Liu, K.-H. Tu, H. Schmidt, L. Chu et al., Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223–226 (2019). https://doi.org/10.1038/s41565-019-0361-x
H. Zeng, Y. Wen, L. Yin, R. Cheng, H. Wang et al., Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys. 18, 53603 (2023). https://doi.org/10.1007/s11467-023-1286-2
A. Fukui, K. Matsuyama, H. Onoe, S. Itai, H. Ikeno et al., Unusual selective monitoring of N, N-dimethylformamide in a two-dimensional material field-effect transistor. ACS Nano 17, 14981–14989 (2023). https://doi.org/10.1021/acsnano.3c03915
T.S. Kim, G. Noh, S. Kwon, J.Y. Kim, K.P. Dhakal et al., Diffusion control on the van der Waals surface of monolayers for uniform Bi-layer MoS2 growth. Adv. Funct. Mater. 34, 2312365 (2024). https://doi.org/10.1002/adfm.202312365
X. Pang, Y. Wang, Y. Zhu, Z. Zhang, D. Xiang et al., Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition. Nat. Commun. 15, 1613 (2024). https://doi.org/10.1038/s41467-024-46050-z
M. Sebek, Z. Wang, N.G. West, M. Yang, D.C.J. Neo et al., Van der Waals enabled formation and integration of ultrathin high-κ dielectrics on 2D semiconductors. NPJ 2D Mater. Appl. 8, 9 (2024). https://doi.org/10.1038/s41699-024-00443-2
J. Chen, Z. Liu, Z. Lv, Y. Hou, X. Chen et al., Controllable synthesis of transferable ultrathin Bi2Ge(Si)O5 dielectric alloys with composition-tunable high-κ properties. J. Am. Chem. Soc. (2024). https://doi.org/10.1021/jacs.4c02496
J. Wang, L. He, Y. Zhang, H. Nong, S. Li et al., Locally strained 2D materials: preparation, properties, and applications. Adv. Mater. 36, e2314145 (2024). https://doi.org/10.1002/adma.202314145
H.K. Ng, D. Xiang, A. Suwardi, G. Hu, K. Yang et al., Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nat. Electron. 5, 489–496 (2022). https://doi.org/10.1038/s41928-022-00777-z
D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001). https://doi.org/10.1109/5.915374
J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson et al., Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018). https://doi.org/10.1002/aelm.201600501
X. Li, J. Yang, H. Sun, L. Huang, H. Li et al., Controlled synthesis and accurate doping of wafer-scale 2D semiconducting transition metal dichalcogenides. Adv. Mater. (2023). https://doi.org/10.1002/adma.202305115
Z. Wang, H. Xia, P. Wang, X. Zhou, C. Liu et al., Controllable doping in 2D layered materials. Adv. Mater. 33, e2104942 (2021). https://doi.org/10.1002/adma.202104942
U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, GaN-based RF power devices and amplifiers. Proc. IEEE 96, 287–305 (2008). https://doi.org/10.1109/JPROC.2007.911060
T. Kimoto, Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 54, 040103 (2015). https://doi.org/10.7567/jjap.54.040103
Z. Liu, Q. Zhang, X. Huang, C. Liu, P. Zhou, Contact engineering for temperature stability improvement of Bi-contacted MoS2 field effect transistors. Sci. China Inf. Sci. 67, 160402 (2024). https://doi.org/10.1007/s11432-023-3942-2
N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8
W. Fei, J. Trommer, M.C. Lemme, T. Mikolajick, A. Heinzig, Emerging reconfigurable electronic devices based on two-dimensional materials: a review. InfoMat 4, e12355 (2022). https://doi.org/10.1002/inf2.12355
A. Liu, Y.-S. Kim, M.G. Kim, Y. Reo, T. Zou et al., Selenium-alloyed tellurium oxide for amorphous p-channel transistors. Nature 629, 798–802 (2024). https://doi.org/10.1038/s41586-024-07360-w
L. Loh, Z. Zhang, M. Bosman, G. Eda, Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021). https://doi.org/10.1007/s12274-020-3013-4
A. Bhardwaj, P. Suryanarayana, Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study. Eur. Phys. J. B 95, 59 (2022). https://doi.org/10.1140/epjb/s10051-022-00319-8
C. Pan, C.-Y. Wang, S.-J. Liang, Y. Wang, T. Cao et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020). https://doi.org/10.1038/s41928-020-0433-9
X. Sun, C. Zhu, J. Yi, L. Xiang, C. Ma et al., Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 5, 752–760 (2022). https://doi.org/10.1038/s41928-022-00858-z
A. Ram, K. Maity, C. Marchand, A. Mahmoudi, A.R. Kshirsagar et al., Reconfigurable multifunctional van der Waals ferroelectric devices and logic circuits. ACS Nano 17, 21865–21877 (2023). https://doi.org/10.1021/acsnano.3c07952
J. Chen, P. Li, J. Zhu, X.-M. Wu, R. Liu et al., Reconfigurable MoTe2 field-effect transistors and its application in compact CMOS circuits. IEEE Trans. Electron Devices 68, 4748–4753 (2021). https://doi.org/10.1109/TED.2021.3096493
P. Wu, D. Reis, X.S. Hu, J. Appenzeller, Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 4, 45–53 (2020). https://doi.org/10.1038/s41928-020-00511-7
S.W. Kim, J. Seo, S. Lee, D. Shen, Y. Kim et al., Nonvolatile reconfigurable logic device based on photoinduced interfacial charge trapping in van der Waals gap. ACS Appl. Mater. Interfaces 16, 22131–22138 (2024). https://doi.org/10.1021/acsami.4c01627
J. Chen, Q. Wang, Y. Sheng, G. Cao, P. Yang et al., High-Performance WSe2 Photodetector Based on a Laser-Induced p–n Junction. ACS Appl. Mater. Interfaces 11, 43330–43336 (2019). https://doi.org/10.1021/acsami.9b13948
F. Zhang, Y. Lu, D.S. Schulman, T. Zhang, K. Fujisawa et al., Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport. Sci. Adv. 5, eaav5003 (2019). https://doi.org/10.1126/sciadv.aav5003
J. Chen, J. Zhu, Q. Wang, J. Wan, R. Liu, Homogeneous 2D MoTe2 CMOS inverters and p–n junctions formed by laser-irradiation-induced p-type doping. Small 16, 2001428 (2020). https://doi.org/10.1002/smll.202001428
J. Chen, J. Zhu, P. Li, X.-M. Wu, R. Liu et al., Fabricating in-plane MoTe2 p-n homojunction photodetector using laser-induced p-type doping. IEEE Trans. Electron Devices 68, 4485–4490 (2021). https://doi.org/10.1109/TED.2021.3099082
J. Chen, Y. Shan, Q. Wang, J. Zhu, R. Liu, P-type laser-doped WSe2/MoTe2 van der Waals heterostructure photodetector. Nanotechnology 31, 295201 (2020). https://doi.org/10.1088/1361-6528/ab87cd
S.J. Yun, D.L. Duong, D.M. Ha, K. Singh, T.L. Phan et al., Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 7, 1903076 (2020). https://doi.org/10.1002/advs.201903076
A. Oberoi, Y. Han, S.P. Stepanoff, A. Pannone, Y. Sun et al., Toward high-performance p-type two-dimensional field effect transistors: contact engineering, scaling, and doping. ACS Nano 17, 19709–19723 (2023). https://doi.org/10.1021/acsnano.3c03060
X. Yan, J.H. Qian, J. Ma, A. Zhang, S.E. Liu et al., Reconfigurable mixed-kernel heterojunction transistors for personalized support vector machine classification. Nat. Electron. 6, 862–869 (2023). https://doi.org/10.1038/s41928-023-01042-7
K.H. Kim, S. Song, B. Kim, P. Musavigharavi, N. Trainor et al., Tuning polarity in WSe2/AlScN FeFETs via contact engineering. ACS Nano 18, 4180–4188 (2024). https://doi.org/10.1021/acsnano.3c09279
T. Kang, Z. Lu, L. Liu, M. Huang, Y. Hu et al., In situ defect engineering of controllable carrier types in WSe2 for homomaterial inverters and self-powered photodetectors. Nano Lett. 23, 11034–11042 (2023). https://doi.org/10.1021/acs.nanolett.3c03328
J. Muñoz, Rational design of stimuli-responsive inorganic 2D materials via molecular engineering: toward molecule-programmable nanoelectronics. Adv. Mater. 36, e2305546 (2024). https://doi.org/10.1002/adma.202305546
K. Iniewski, CMOS Processors and Memories (Springer, Netherlands, 2010)
S. Zeng, C. Liu, X. Huang, Z. Tang, L. Liu et al., An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat. Commun. 13, 56 (2022). https://doi.org/10.1038/s41467-021-27644-3
Z. Sheng, J. Dong, W. Hu, Y. Wang, H. Sun et al., Reconfigurable logic-in-memory computing based on a polarity-controllable two-dimensional transistor. Nano Lett. 23, 5242–5249 (2023). https://doi.org/10.1021/acs.nanolett.3c01248
G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
W. Sang, D. Xiang, Y. Cao, F. Tan, Z. Han et al., Highly reconfigurable logic-In-memory operations in tunable Gaussian transistors for multifunctional image processing. Adv. Funct. Mater. 34, 2307675 (2024). https://doi.org/10.1002/adfm.202307675
J. Niu, S. Jeon, D. Kim, S. Baek, H.H. Yoo et al., Dual-logic-in-memory implementation with orthogonal polarization of van der Waals ferroelectric heterostructure. InfoMat 6, e12490 (2024). https://doi.org/10.1002/inf2.12490
X. Gao, Q. Chen, Q. Qin, L. Li, M. Liu et al., Realization of flexible in-memory computing in a van der Waals ferroelectric heterostructure tri-gate transistor. Nano Res. 17, 1886–1892 (2024). https://doi.org/10.1007/s12274-023-5964-8
R. Peng, Y. Wu, B. Wang, R. Shi, L. Xu et al., Programmable graded doping for reconfigurable molybdenum ditelluride devices. Nat. Electron. 6, 852–861 (2023). https://doi.org/10.1038/s41928-023-01056-1
R. Quhe, Z. Di, J. Zhang, Y. Sun, L. Zhang et al., Asymmetric conducting route and potential redistribution determine the polarization-dependent conductivity in layered ferroelectrics. Nat. Nanotechnol. 19, 173–180 (2024). https://doi.org/10.1038/s41565-023-01539-4
T. Zhu, K. Liu, Y. Zhang, S. Meng, M. He et al., Gate voltage- and bias voltage-tunable staggered-gap to broken-gap transition based on WSe2/Ta2NiSe5 heterostructure for multimode optoelectronic logic gate. ACS Nano 18, 11462–11473 (2024). https://doi.org/10.1021/acsnano.4c02923
Z. Li, X. Huang, L. Xu, Z. Peng, X.-X. Yu et al., 2D van der Waals vertical heterojunction transistors for ternary neural networks. Nano Lett. 23, 11710–11718 (2023). https://doi.org/10.1021/acs.nanolett.3c03553
S.E. Yu, H.J. Lee, M.-G. Kim, S. Im, Y.T. Lee, J-MISFET hybrid dual-gate switching device for multifunctional optoelectronic logic gate applications. ACS Nano 18, 11404–11415 (2024). https://doi.org/10.1021/acsnano.4c01450
L. Wu, A. Wang, J. Shi, J. Yan, Z. Zhou et al., Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 16, 882–887 (2021). https://doi.org/10.1038/s41565-021-00904-5
J. Chen, G. Dun, J. Hu, Z. Lin, Y. Wang et al., Polarized tunneling transistor for ultrafast memory. ACS Nano 17, 12374–12382 (2023). https://doi.org/10.1021/acsnano.3c01786
J. Chen, Y.-Q. Zhu, X.-C. Zhao, Z.-H. Wang, K. Zhang et al., PZT-enabled MoS2 floating gate transistors: overcoming boltzmann tyranny and achieving ultralow energy consumption for high-accuracy neuromorphic computing. Nano Lett. 23, 10196–10204 (2023). https://doi.org/10.1021/acs.nanolett.3c02721
H. Wang, H. Guo, R. Guzman, N. JiaziLa, K. Wu et al., Ultrafast non-volatile floating-gate memory based on all-2D materials. Adv. Mater. (2024). https://doi.org/10.1002/adma.202311652
Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023). https://doi.org/10.1007/s40820-022-01010-4
C. Liu, J. Pan, Q. Yuan, C. Zhu, J. Liu et al., Highly reliable van der Waals memory boosted by a single 2D charge trap medium. Adv. Mater. 36, e2305580 (2024). https://doi.org/10.1002/adma.202305580
H. Wang, L. Bao, R. Guzman, K. Wu, A. Wang et al., Ultrafast-programmable 2D homojunctions based on van der Waals heterostructures on a silicon substrate. Adv. Mater. 35, e2301067 (2023). https://doi.org/10.1002/adma.202301067
L. Liu, Y. Sun, X. Huang, C. Liu, Z. Tang et al., Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor. Mater. Futures 1, 025301 (2022). https://doi.org/10.1088/2752-5724/ac7067
X. Huang, C. Liu, Z. Tang, S. Zeng, S. Wang et al., An ultrafast bipolar flash memory for self-activated in-memory computing. Nat. Nanotechnol. 18, 486–492 (2023). https://doi.org/10.1038/s41565-023-01339-w
H. Ning, Z. Yu, Q. Zhang, H. Wen, B. Gao et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18, 493–500 (2023). https://doi.org/10.1038/s41565-023-01343-0
Y. Wang, Y. Zhe