A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors
Corresponding Author: Tian‑Ling Ren
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 64
Abstract
As a new generation of Zn-ion storage systems, Zn-ion hybrid supercapacitors (ZHSCs) garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors. ZHSCs have excellent integration of high energy density and power density, which seamlessly bridges the gap between batteries and supercapacitors, becoming one of the most viable future options for large-scale equipment and portable electronic devices. However, the currently reported two configurations of ZHSCs and corresponding energy storage mechanisms still lack systematic analyses. Herein, this review will be prudently organized from the perspectives of design strategies, electrode configurations, energy storage mechanisms, recent advances in electrode materials, electrolyte behaviors and further applications (micro or flexible devices) of ZHSCs. The synthesis processes and electrochemical properties of well-designed Zn anodes, capacitor-type electrodes and novel Zn-ion battery-type cathodes are comprehensively discussed. Finally, a brief summary and outlook for the further development of ZHSCs are presented as well. This review will provide timely access for researchers to the recent works regarding ZHSCs.
Highlights:
1 The advances of electrode materials, energy storage mechanisms, electrolytes and applications for Zn-ion hybrid supercapacitors (ZHSCs) are comprehensively summarized.
2 Recent progresses in ZHSCs are discussed by categorizing into two configurations of Zn//Cap and Cap//ZBC.
3 Future opportunities and challenges for the development of ZHSCs are also elaborated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
- Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang et al., Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 31(13), 1803800 (2019). https://doi.org/10.1002/adma.201803800
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, K. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30(24), 1703691 (2018). https://doi.org/10.1002/adma.201703691
- C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lu et al., Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569(7755), 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
- F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang et al., Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(21), 7062–7067 (2019). https://doi.org/10.1002/anie.201902679
- J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang et al., Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8(17), 1702619 (2018). https://doi.org/10.1002/aenm.201702619
- L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
- F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31(16), 1806510 (2019). https://doi.org/10.1002/adma.201806510
- C. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16, 102–125 (2019). https://doi.org/10.1016/j.ensm.2018.05.003
- T. Lv, M. Liu, D. Zhu, L. Gan, T. Chen, Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 30(17), 1705489 (2018). https://doi.org/10.1002/adma.201705489
- Y. Da, J. Liu, L. Zhou, X. Zhu, X. Chen et al., Engineering 2D architectures toward high-performance micro-supercapacitors. Adv. Mater. 31(1), 1802793 (2019). https://doi.org/10.1002/adma.201802793
- Q. Ren, H. Wang, X. Lu, Y. Tong, G. Li, Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 5(3), 1700515 (2018). https://doi.org/10.1002/advs.201700515
- H. Qiu, P. Du, K. Hu, J. Gao, H. Li et al., Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 31(19), 1900843 (2019). https://doi.org/10.1002/adma.201900843
- J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem et al., Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed. 58(21), 7035–7039 (2019). https://doi.org/10.1002/anie.201902109
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
- C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12(7), 2273–2285 (2019). https://doi.org/10.1039/c9ee00956f
- W. Chen, T. Lei, C. Wu, M. Deng, C. Gong et al., Designing safe electrolyte systems for a high-stability lithium-sulfur battery. Adv. Energy Mater. 8(10), 1702348 (2018). https://doi.org/10.1002/aenm.201702348
- B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30(17), 1705670 (2018). https://doi.org/10.1002/adma.201705670
- C. Lethien, J.L. Bideau, T. Brousse, Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci. 12(1), 96–115 (2019). https://doi.org/10.1039/c8ee02029a
- W. Guo, C. Yu, S. Li, Z. Wang, J. Yu et al., Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy 57, 459–472 (2019). https://doi.org/10.1016/j.nanoen.2018.12.015
- J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan et al., Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). https://doi.org/10.1002/adma.201202146
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/b813846j
- M. Yu, X. Feng, Thin-film electrode-based supercapacitors. Joule 3(2), 338–360 (2019). https://doi.org/10.1016/j.joule.2018.12.012
- H. Jiang, P.S. Lee, C. Li, 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6(1), 41–53 (2013). https://doi.org/10.1039/c2ee23284g
- J. Huang, B.G. Sumpter, V. Meunier, Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47(3), 520–524 (2008). https://doi.org/10.1002/anie.200703864
- B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009). https://doi.org/10.1038/nature07853
- M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang et al., Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 31(3), 1806005 (2019). https://doi.org/10.1002/adma.201806005
- W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia et al., Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
- Q. Chen, J. Jin, Z. Kou, C. Liao, Z. Liu et al., Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 16(14), 2000091 (2020). https://doi.org/10.1002/smll.202000091
- L. Dong, W. Yang, W. Yang, Y. Li, W. Wu et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7(23), 13810–13832 (2019). https://doi.org/10.1039/c9ta02678a
- B.D. Boruah, Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy Storage Mater. 21, 219–239 (2019). https://doi.org/10.1016/j.ensm.2019.06.012
- W. Fu, E. Zhao, R. Ma, Z. Sun, Y. Yang et al., Anatase TiO2 confined in carbon nanopores for high-energy Li-ion hybrid supercapacitors operating at high rates and subzero temperatures. Adv. Energy Mater. 10(2), 1902993 (2020). https://doi.org/10.1002/aenm.201902993
- D. Tie, S. Huang, J. Wang, J. Ma, J. Zhang et al., Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 21, 22–40 (2019). https://doi.org/10.1016/j.ensm.2018.12.018
- A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sust. Energ. Rev. 101, 123–145 (2019). https://doi.org/10.1016/j.rser.2018.10.026
- H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 85, 105942 (2021). https://doi.org/10.1016/j.nanoen.2021.105942
- E. Kim, H. Kim, B.J. Park, Y.H. Han, J.H. Park et al., Etching-assisted crumpled graphene wrapped spiky iron oxide particles for high-performance Li-ion hybrid supercapacitor. Small 14(16), 1704209 (2018). https://doi.org/10.1002/smll.201704209
- Z. Hu, S. Sayed, T. Jiang, X. Zhu, C. Lu et al., Self-assembled binary organic granules with multiple lithium uptake mechanisms toward high-energy flexible lithium-ion hybrid supercapacitors. Adv. Energy Mater. 8(30), 1802273 (2018). https://doi.org/10.1002/aenm.201802273
- B. Deng, T. Lei, W. Zhu, L. Xiao, J. Liu, In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv. Funct. Mater. 28(1), 1704330 (2018). https://doi.org/10.1002/adfm.201704330
- L. Que, F. Yu, Z. Wang, D. Gu, Pseudocapacitance of TiO2-x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 14(17), 1704508 (2018). https://doi.org/10.1002/smll.201704508
- Y. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu et al., Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
- H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
- H. Wang, D. Xu, G. Jia, Z. Mao, Y. Gong et al., Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater. 25, 114–123 (2020). https://doi.org/10.1016/j.ensm.2019.10.024
- Z. Tong, S. Liu, Y. Zhou, J. Zhao, Y. Wu et al., Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 13, 223–232 (2018). https://doi.org/10.1016/j.ensm.2017.12.005
- P. Zhang, L. Wang, F. Wang, D. Tan, G. Wang et al., A nonaqueous Na-ion hybrid micro-supercapacitor with wide potential window and ultrahigh areal energy density. Batteries Supercaps 2(11), 918–923 (2019). https://doi.org/10.1002/batt.201900079
- Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu et al., Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30(4), 1903878 (2020). https://doi.org/10.1002/adfm.201903878
- J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng et al., Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 10(15), 1904045 (2020). https://doi.org/10.1002/aenm.201904045
- Y. Cui, W. Liu, W. Feng, Y. Zhang, Y. Du et al., Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: toward fast potassium storage by constructing spacious “houses” for K ions. Adv. Funct. Mater. 30(10), 1908755 (2020). https://doi.org/10.1002/adfm.201908755
- G. An, J. Hong, S. Pak, Y. Cho, S. Lee et al., 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv. Energy Mater. 10(3), 1902981 (2020). https://doi.org/10.1002/aenm.201902981
- Y. Zhang, Z. Zhang, Y. Tang, D. Jia, Y. Huang et al., LiFePO4 particles embedded in fast bifunctional conductor rGO&C@Li3V2(PO4)3 nanosheets as cathodes for high-performance Li-ion hybrid capacitors. Adv. Funct. Mater. 29(17), 1807895 (2019). https://doi.org/10.1002/adfm.201807895
- R. Wang, P. Liu, J. Lang, L. Zhang, X. Yan, Coupling effect between ultra-small Mn3O4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Mater. 6, 53–60 (2017). https://doi.org/10.1016/j.ensm.2016.10.002
- H. Liu, L. Liao, Y. Lu, Q. Li, High energy density aqueous Li-ion flow capacitor. Adv. Energy Mater. 7(1), 1601248 (2017). https://doi.org/10.1002/aenm.201601248
- J. Li, L. An, H. Li, J. Sun, C. Shuck et al., Tunable stable operating potential window for high-voltage aqueous supercapacitors. Nano Energy 63, 103848 (2019). https://doi.org/10.1016/j.nanoen.2019.06.044
- Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang et al., Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 15(9), 1804539 (2019). https://doi.org/10.1002/smll.201804539
- H. Huang, D. Kundu, R. Yan, E. Tervoort, X. Chen et al., Fast Na-ion intercalation in zinc vanadate for high-performance Na-ion hybrid capacitor. Adv. Energy Mater. 8(35), 1802800 (2018). https://doi.org/10.1002/aenm.201802800
- S. Dong, Y. Xu, L. Wu, H. Dou, X. Zhang, Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Mater. 11, 8–15 (2018). https://doi.org/10.1016/j.ensm.2017.09.006
- C. An, Y. Yuan, B. Zhang, L. Tang, B. Xiao et al., Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 9(18), 1900356 (2019). https://doi.org/10.1002/aenm.201900356
- K.V. Nielson, T.L. Liu, Dawn of calcium batteries. Angew. Chem. Int. Ed. 59(9), 3368–3370 (2020). https://doi.org/10.1002/anie.201913465
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
- M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 4(1), 16–25 (2019). https://doi.org/10.1038/s41560-018-0295-9
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- D. Chao, H.J. Fan, Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 5(6), 1359–1361 (2019). https://doi.org/10.1016/j.chempr.2019.05.020
- P. He, Q. Chen, M. Yan, X. Xu, L. Zhou et al., Building better zinc-ion batteries: a materials perspective. EnergyChem 1(3), 100022 (2019). https://doi.org/10.1016/j.enchem.2019.100022
- S.S. Shinde, C.H. Lee, J.Y. Jung, N.K. Wagh, S.H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 12(2), 727–738 (2019). https://doi.org/10.1039/c8ee02679c
- B. Li, S. Zhang, B. Wang, Z. Xia, C. Tang et al., A porphyrin covalent organic framework cathode for flexible Zn-air batteries. Energy Environ. Sci. 11(7), 1723–1729 (2018). https://doi.org/10.1039/c8ee00977e
- Y. Guo, P. Yuan, J. Zhang, Y. Hu, I.S. Amiinu et al., Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 12(2), 1894–1901 (2018). https://doi.org/10.1021/acsnano.7b08721
- C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
- J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke et al., A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 28(39), 8732–8739 (2016). https://doi.org/10.1002/adma.201603038
- T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng et al., Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater. 31(16), 1807771 (2019). https://doi.org/10.1002/adma.201807771
- G. Liang, F. Mo, D. Wang, X. Li, Z. Huang et al., Commencing mild Ag-Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Mater. 25, 86–92 (2020). https://doi.org/10.1016/j.ensm.2019.10.028
- C. Li, Q. Zhang, J. Sun, T. Li, E. Songfeng et al., High-performance quasi-solid-state flexible aqueous rechargeable Ag-Zn battery based on metal-organic framework-derived Ag nanowires. ACS Energy Lett. 3(11), 2761–2768 (2018). https://doi.org/10.1021/acsenergylett.8b01675
- S. Berchmans, A.J. Bandodkar, W. Jia, J. Ramirez, Y.S. Meng et al., An epidermal alkaline rechargeable Ag-Zn printable tattoo battery for wearable electronics. J. Mater. Chem. A 2(38), 15788–15795 (2014). https://doi.org/10.1039/c4ta03256j
- Y. Zhao, Y. Wang, Z. Zhao, J. Zhao, T. Xin et al., Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode. Energy Storage Mater. 28, 64–72 (2020). https://doi.org/10.1016/j.ensm.2020.03.001
- Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang et al., Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 29(20), 1808820 (2019). https://doi.org/10.1002/adfm.201808820
- A. Noori, M.F.E. Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h
- L. Liu, Y. Feng, W. Wu, Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J. Power Sources 410, 69–77 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.012
- S. Yun, Y. Zhang, Q. Xu, J. Liu, Y. Qin, Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 60, 600–619 (2019). https://doi.org/10.1016/j.nanoen.2019.03.074
- S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv. Energy Mater. 9(47), 1902915 (2019). https://doi.org/10.1002/aenm.201902915
- Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
- H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
- H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31(44), 1904948 (2019). https://doi.org/10.1002/adma.201904948
- P. Yu, Y. Zeng, H. Zhang, M. Yu, Y. Tong et al., Flexible Zn-ion batteries: recent progresses and challenges. Small 15(7), 1804760 (2019). https://doi.org/10.1002/smll.201804760
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
- Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 27, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.01.003
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- Z. Fan, J. Jin, C. Li, J. Cai, C. Wei et al., 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 15(2), 3098–3107 (2021). https://doi.org/10.1021/acsnano.0c09646
- P. Liu, W. Liu, Y. Huang, P. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 25, 858–865 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
- P. Liu, R. Lv, Y. He, B. Na, B. Wang et al., An integrated, flexible aqueous Zn-ion battery with high energy and power densities. J. Power Sources 410, 137–142 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.017
- Y. Lu, Y. Wen, F. Huang, T. Zhu, S. Sun et al., Rational design and demonstration of a high-performance flexible Zn/V2O5 battery with thin-film electrodes and para-polybenzimidazole electrolyte membrane. Energy Storage Mater. 27, 418–425 (2020). https://doi.org/10.1016/j.ensm.2020.02.016
- M.M. Abou-Krisha, A.G. Alshammari, F.H. Assaf, F.A. El-Sheref, Electrochemical behavior of Zn-Co-Fe alloy electrodeposited from a sulfate bath on various substrate materials. Arab. J. Chem. 12(8), 3526–3533 (2019). https://doi.org/10.1016/j.arabjc.2015.10.008
- Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li et al., A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 13(7), 8275–8283 (2019). https://doi.org/10.1021/acsnano.9b03650
- G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin et al., A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 11(12), 3367–3374 (2018). https://doi.org/10.1039/c8ee02567c
- L. Lei, Y. Zheng, X. Zhang, Y. Su, X. Zhou et al., A ZIF-8 host for dendrite-free zinc anodes and N, O dual-doped carbon cathodes for high-performance zinc-ion hybrid capacitors. Chem. Asian J. 16(15), 2146–2153 (2021). https://doi.org/10.1002/asia.202100526
- S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/c9ta00733d
- H. Jia, Z. Wang, B. Tawiah, Y. Wang, C. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
- C. Leng, Z. Zhao, Y. Song, L. Sun, Z. Fan et al., 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density. Nano-Micro Lett. 13, 8 (2020). https://doi.org/10.1007/s40820-020-00535-w
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/c1cs15060j
- L.G.H. Staaf, P. Lundgren, P. Enoksson, Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy 9, 128–141 (2014). https://doi.org/10.1016/j.nanoen.2014.06.028
- Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali et al., Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18(2), 393–415 (2020). https://doi.org/10.1007/s10311-019-00955-0
- A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
- W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim et al., Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
- J. Yin, W. Zhang, W. Wang, N.A. Alhebshi, N. Salah et al., Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 10(37), 2001705 (2020). https://doi.org/10.1002/aenm.202001705
- H. Fan, X. Hu, S. Zhang, Z. Xu, G. Gao et al., Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon 180, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.04.093
- L. Han, H. Huang, J. Li, Z. Yang, X. Zhang et al., Novel zinc-iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. J. Mater. Chem. A 7(42), 24400–24407 (2019). https://doi.org/10.1039/c9ta07196b
- Z. Pan, Z. Lu, L. Xu, D. Wang, A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl. Surf. Sci. 510, 145384 (2020). https://doi.org/10.1016/j.apsusc.2020.145384
- H. Fan, S. Zhou, Q. Chen, G. Gao, Q. Ban et al., Phosphorus in honeycomb-like carbon as a cathode boosting pseudocapacitive properties for Zn-ion storage. J. Power Sources 493, 229687 (2021). https://doi.org/10.1016/j.jpowsour.2021.229687
- Y. Zhang, Z. Wang, D. Li, Q. Sun, K. Lai et al., Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. J. Mater. Chem. A 8(43), 22874–22885 (2020). https://doi.org/10.1039/d0ta08577d
- S. Zeng, X. Shi, D. Zheng, C. Yao, F. Wang et al., Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors. Mater. Res. Bull. 135, 111134 (2021). https://doi.org/10.1016/j.materresbull.2020.111134
- H. Chen, Y. Zheng, X. Zhu, W. Hong, Y. Tong et al., Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors. Mater. Res. Bull. 139, 111281 (2021). https://doi.org/10.1016/j.materresbull.2021.111281
- C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33(29), 2101698 (2021). https://doi.org/10.1002/adma.202101698
- H. Fan, S. Zhou, Q. Li, G. Gao, Y. Wang et al., Hydrogen-bonded frameworks crystals-assisted synthesis of flower-like carbon materials with penetrable meso/macropores from heavy fraction of bio-oil for Zn-ion hybrid supercapacitors. J. Colloid Interface Sci. 600, 681–690 (2021). https://doi.org/10.1016/j.jcis.2021.05.042
- L. Wen, F. Li, H. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
- A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, S.B. Waje et al., Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources 352, 174–186 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.128
- X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15(47), 1903817 (2019). https://doi.org/10.1002/smll.201903817
- Y.H. Tian, R. Amal, D.W. Wang, An aqueous metali-ion capacitor with oxidized carbon nanotubes and metalicn zinc electrodes. Front. Energy Res. 4, 34 (2016). https://doi.org/10.3389/fenrg.2016.00034
- D.S. Hecht, L.B. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482–1513 (2011). https://doi.org/10.1002/adma.201003188
- C. Hu, L. Dai, Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 31(7), 1804672 (2019). https://doi.org/10.1002/adma.201804672
- K. Gao, B. Wang, L. Tao, B.V. Cunning, Z. Zhang et al., Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and Co-doping. Adv. Mater. 31(13), 1805121 (2019). https://doi.org/10.1002/adma.201805121
- F. Wei, X. He, L. Ma, H. Zhang, N. Xiao et al., 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 12, 82 (2020). https://doi.org/10.1007/s40820-020-00416-2
- S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10(32), 2001239 (2020). https://doi.org/10.1002/aenm.202001239
- R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa et al., Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 47–65 (2020). https://doi.org/10.1016/j.mattod.2020.04.010
- A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 480, 228830 (2020). https://doi.org/10.1016/j.jpowsour.2020.228830
- Y. Zheng, H. Song, S. Chen, X. Yu, J. Zhu et al., Metal-free multi-heteroatom-doped carbon bifunctional electrocatalysts derived from a covalent triazine polymer. Small 16(47), 2004342 (2020). https://doi.org/10.1002/smll.202004342
- P. Liu, Y. Gao, Y. Tan, W. Liu, Y. Huang et al., Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 12(11), 2835–2841 (2019). https://doi.org/10.1007/s12274-019-2521-6
- J. Han, K. Wang, W. Liu, C. Li, X. Sun et al., Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale 10(27), 13083–13091 (2018). https://doi.org/10.1039/c8nr03889a
- X. Deng, J. Li, Z. Shan, J. Sha, L. Ma et al., A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 8(23), 11617–11625 (2020). https://doi.org/10.1039/d0ta02770g
- Y. Lee, G. An, Synergistic effects of phosphorus and boron Co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl. Mater. Interfaces 12(37), 41342–41349 (2020). https://doi.org/10.1021/acsami.0c10512
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- J. Du, Q. Cao, X. Tang, X. Xu, X. Long et al., 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chem. Eng. J. 416, 127885 (2021). https://doi.org/10.1016/j.cej.2020.127885
- J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009). https://doi.org/10.1038/nnano.2009.177
- J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999), 1637–1639 (2010). https://doi.org/10.1126/science.1194372
- Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 5(12), 1900537 (2019). https://doi.org/10.1002/aelm.201900537
- Y. Xu, X. Chen, C. Huang, Y. Zhou, B. Fan et al., Redox-active p-phenylenediamine functionalized reduced graphene oxide film through covalently grafting for ultrahigh areal capacitance Zn-ion hybrid supercapacitor. J. Power Sources 488, 229426 (2021). https://doi.org/10.1016/j.jpowsour.2020.229426
- P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
- N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F.S. Fernando, K. Jayaramulu et al., True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16(37), 2002806 (2020). https://doi.org/10.1002/smll.202002806
- S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim et al., 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352
- P. Das, Z.S. Wu, MXene for energy storage: present status and future perspectives. J. Phys-Energy 2(3), 032004 (2020). https://doi.org/10.1088/2515-7655/ab9b1d
- C.E. Ren, M. Zhao, T. Makaryan, J. Halim, M. Boota et al., Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 3(5), 689–693 (2016). https://doi.org/10.1002/celc.201600059
- Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136(17), 6385–6394 (2014). https://doi.org/10.1021/ja501520b
- M.A.M. Hasan, Y. Wang, C.R. Bowen, Y. Yang, 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 13, 82 (2021). https://doi.org/10.1007/s40820-021-00603-9
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- P.C. Ruan, X.L. Xu, J.X. Feng, L.H. Yu, X.L. Gao et al., Boosting zinc storage performance via conductive materials. Mater. Res. Bull. 133, 111077 (2021). https://doi.org/10.1016/j.materresbull.2020.111077
- J. Come, J.M. Black, M.R. Lukatskaya, M. Naguib, M. Beidaghi et al., Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 17, 27–35 (2015). https://doi.org/10.1016/j.nanoen.2015.07.028
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- M. Ghidiu, M.R. Lukatskaya, M. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- L. Li, W. Liu, K. Jiang, D. Chen, F. Qu et al., In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nano-Micro Lett. 13, 100 (2021). https://doi.org/10.1007/s40820-021-00634-2
- C. Huang, X. Zhao, Y. Xu, Y. Zhang, Y. Yang et al., Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode. ACS Sustain. Chem. Eng. 8(42), 16028–16036 (2020). https://doi.org/10.1021/acssuschemeng.0c06525
- Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong et al., Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 13, 95 (2021). https://doi.org/10.1007/s40820-021-00625-3
- K. Fic, G. Lota, E. Frackowiak, Effect of surfactants on capacitance properties of carbon electrodes. Electrochim. Acta 60, 206–212 (2012). https://doi.org/10.1016/j.electacta.2011.11.059
- F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/c8ee02892c
- J. Lee, A. Tolosa, B. Kruener, N. Jaeckel, S. Fleischmann et al., Asymmetric tin-vanadium redox electrolyte for hybrid energy storage with nanoporous carbon electrodes. Sustain. Energ. Fuels 1(2), 299–307 (2017). https://doi.org/10.1039/c6se00062b
- J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang et al., A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon 102, 255–261 (2016). https://doi.org/10.1016/j.carbon.2016.02.047
- K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2014). https://doi.org/10.1002/smll.201301991
- V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D
- K. Ren, Z. Liu, T. Wei, Z. Fan, Recent developments of transition metal compounds-carbon hybrid electrodes for high energy/power supercapacitors. Nano-Micro Lett. 13, 129 (2021). https://doi.org/10.1007/s40820-021-00642-2
- Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018). https://doi.org/10.1002/aenm.201703043
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
- L. Dong, W. Yang, W. Yang, C. Wang, Y. Li et al., High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage. Nano-Micro Lett. 11, 94 (2019). https://doi.org/10.1007/s40820-019-0328-3
- P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang et al., Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures. Adv. Sci. 3(6), 1500299 (2016). https://doi.org/10.1002/advs.201500299
- X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie et al., Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12(10), 5376–5381 (2012). https://doi.org/10.1021/nl302761z
- B. Yao, M. Li, J. Zhang, L. Zhang, Y. Song et al., TiN paper for ultrafast-charging supercapacitors. Nano-Micro Lett. 12, 3 (2019). https://doi.org/10.1007/s40820-019-0340-7
- Z.D. Huang, T.R. Wang, H. Song, X.L. Li, G.J. Liang et al., Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew. Chem. Int. Ed. 60(2), 1011–1021 (2021). https://doi.org/10.1002/anie.202012202
- C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
- D. Wang, Z. Pan, Z. Lu, From starch to porous carbon nanosheets: promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors. Microporous Mesoporous Mater. 306, 110445 (2020). https://doi.org/10.1016/j.micromeso.2020.110445
- X. Tuo, W. Yinong, W. Na, Z. Yi, L. Huan et al., A high-capacity aqueous Zn-ion hybrid energy storage device using poly(4,4’-thiodiphenol) modified activated carbon as a cathode material. J. Mater. Chem. A 7(40), 23076–23083 (2019). https://doi.org/10.1039/c9ta08693e
- K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao et al., Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44(3), 699–728 (2015). https://doi.org/10.1039/c4cs00218k
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- J.S. Park, J.H. Jo, Y. Aniskevich, A. Bakavets, G. Ragoisha et al., Open-structured vanadium dioxide as an intercalation host for Zn ions: investigation by first-principles calculation and experiments. Chem. Mater. 30(19), 6777–6787 (2018). https://doi.org/10.1021/acs.chemmater.8b02679
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- P. He, Y. Quan, X. Xu, M. Yan, W. Yang et al., High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13(47), 1702551 (2017). https://doi.org/10.1002/smll.201702551
- Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin et al., The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs. Adv. Funct. Mater. 30(14), 1909530 (2020). https://doi.org/10.1002/adfm.201909530
- G. Zampardi, F.L. Mantia, Prussian blue analogues as aqueous Zn-ion batteries electrodes: current challenges and future perspectives. Curr. Opin. Electroche. 21, 84–92 (2020). https://doi.org/10.1016/j.coelec.2020.01.014
- G. Du, H. Pang, Recent advancements in prussian blue analogues: preparation and application in batteries. Energy Storage Mater. 36, 387–408 (2021). https://doi.org/10.1016/j.ensm.2021.01.006
- H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai et al., Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 21, 154–161 (2019). https://doi.org/10.1016/j.ensm.2018.12.019
- S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng et al., Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9(2), 1945–1954 (2015). https://doi.org/10.1021/nn506851x
- W. Li, K. Wang, S. Cheng, K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 9(27), 1900993 (2019). https://doi.org/10.1002/aenm.201900993
- Y. Deng, L. Wan, Y. Xie, X. Qin, G. Chen, Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 4(45), 23914–23935 (2014). https://doi.org/10.1039/c4ra02686a
- L. Chen, C. Hao, Y. Zhang, Y. Wei, L. Dai et al., Guest ions pre-intercalation strategy of manganese-oxides for supercapacitor and battery applications. J. Energy Chem. 60, 480–493 (2021). https://doi.org/10.1016/j.jechem.2021.01.023
- Y. Li, D. Zhang, S. Huang, H.Y. Yang, Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries. Nano Energy 85, 105969 (2021). https://doi.org/10.1016/j.nanoen.2021.105969
- X. Wang, Z. Zhou, Z. Sun, J. Hah, Y. Yao et al., Atomic modulation of 3D conductive frameworks boost performance of MnO2 for coaxial fiber-shaped supercapacitors. Nano-Micro Lett. 13, 4 (2020). https://doi.org/10.1007/s40820-020-00529-8
- X. Ma, J. Cheng, L. Dong, W. Liu, J. Mou et al., Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 20, 335–342 (2019). https://doi.org/10.1016/j.ensm.2018.10.020
- X. Ma, J. Wang, X. Wang, L. Zhao, C. Xu, Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability. J. Mater. Sci.-Mater. Electron. 30(6), 5478–5486 (2019). https://doi.org/10.1007/s10854-019-00841-z
- S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan et al., A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
- S. Zuo, X. Xu, S. Ji, Z. Wang, Z. Liu et al., Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chem. Eur. J. 27(3), 830–860 (2021). https://doi.org/10.1002/chem.202002202
- D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/c9ta05053a
- X. Gong, J. Chen, P.S. Lee, Zinc-ion hybrid supercapacitors: progress and future perspective. Batteries Supercaps 4(10), 1529–1546 (2021). https://doi.org/10.1002/batt.202100034
- M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
- L. Yuan, J. Hao, C.C. Kao, C. Wu, H.K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/d1ee02021h
- X. Ma, J. Cheng, L. Dong, W. Liu, J. Mou et al., Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 20, 335–342 (2018). https://doi.org/10.1016/j.ensm.2018.10.020
- Z. Li, D. Chen, Y. An, C. Chen, L. Wu et al., Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 28, 307–314 (2020). https://doi.org/10.1016/j.ensm.2020.01.028
- L. Han, H. Huang, J. Li, X. Zhang, Z. Yang et al., A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition. J. Mater. Chem. A 8(30), 15042–15050 (2020). https://doi.org/10.1039/d0ta03547e
- N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
- F. Li, L. Yu, Q. Hu, S. Guo, Y. Mei et al., Fabricating low-temperature-tolerant and durable Zn-ion capacitors via modulation of co-solvent molecular interaction and cation solvation. Sci. China-Mater. 64(7), 1609–1620 (2021). https://doi.org/10.1007/s40843-020-1570-5
- H. Zhang, E.G. Gebresilassie, X. Judez, C. Li, M.L.M. Rodriguez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57(46), 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
- A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci. 9(6), 1955–1988 (2016). https://doi.org/10.1039/c6ee00123h
- M. Li, Q. He, Z. Li, Q. Li, Y. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019). https://doi.org/10.1002/aenm.201901469
- S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao et al., Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A 6(14), 5733–5739 (2018). https://doi.org/10.1039/c8ta01031e
- D. Gong, B. Wang, J. Zhu, R. Podila, A.M. Rao et al., An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 7(3), 1601885 (2017). https://doi.org/10.1002/aenm.201601885
- K. Lu, H. Zhang, F. Ye, W. Luo, H. Ma et al., Rechargeable potassium-ion batteries enabled by potassium-iodine conversion chemistry. Energy Storage Mater. 16, 1–5 (2019). https://doi.org/10.1016/j.ensm.2018.04.018
- Z. Zhao, J. Zhao, Z. Hu, J.D. Li, J.J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- P. Zhang, F. Wang, S. Yang, G. Wang, M. Yu et al., Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications. Energy Storage Mater. 28, 160–187 (2020). https://doi.org/10.1016/j.ensm.2020.02.029
- F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan et al., Recent developments of advanced micro-supercapacitors: design, fabrication and applications. npj Flex. Electron. 4(1), 31 (2020). https://doi.org/10.1038/s41528-020-00093-6
- B.D. Boruah, S. Nandi, A. Misra, Layered assembly of reduced graphene oxide and vanadium oxide heterostructure supercapacitor electrodes with larger surface area for efficient energy-storage performance. ACS Appl. Energy Mater. 1(4), 1567–1574 (2018). https://doi.org/10.1021/acsaem.7b00358
- W. Liu, Y. Feng, X. Yan, J. Chen, Q. Xue, Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23(33), 4111–4122 (2013). https://doi.org/10.1002/adfm.201203771
- L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao et al., High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28(5), 838–845 (2016). https://doi.org/10.1002/adma.201503333
- K. Robert, C. Douard, A. Demortiere, F. Blanchard, P. Roussel et al., On chip interdigitated micro-supercapacitors based on sputtered bifunctional vanadium nitride thin films with finely tuned inter- and intracolumnar porosities. Adv. Mater. Technol. 3(7), 1800036 (2018). https://doi.org/10.1002/admt.201800036
- K. Shen, J. Ding, S. Yang, 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 8(20), 1800408 (2018). https://doi.org/10.1002/aenm.201800408
- W. Liu, X. Yan, J. Chen, Y. Feng, Q. Xue, Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 5(13), 6053–6062 (2013). https://doi.org/10.1039/c3nr01139a
- Y. Peng, B. Akuzum, N. Kurra, M. Zhao, M. Alhabe et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
- S.C. Lee, U.M. Patil, S.J. Kim, S. Ahn, S. Kang et al., All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes. RSC Adv. 6(50), 43844–43854 (2016). https://doi.org/10.1039/c6ra06034j
- H. Hu, Z. Pei, H. Fan, C. Ye, 3D interdigital Au/MnO2/Au stacked hybrid electrodes for on-chip microsupercapacitors. Small 12(22), 3059–3069 (2016). https://doi.org/10.1002/smll.201503527
- X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26(28), 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
- L. Li, Z. Wu, S. Yuan, X. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014). https://doi.org/10.1039/c4ee00318g
- Y. Yan, X. Liu, J. Yan, C. Guan, J. Wang, Electrospun nanofibers for new generation flexible energy storage. Energy Environ. Mater. 4(4), 502–521 (2021). https://doi.org/10.1002/eem2.12146
- K.N. Kang, A. Ramadoss, J.W. Min, J.C. Yoon, D. Lee et al., Wire-shaped 3D-hybrid supercapacitors as substitutes for batteries. Nano-Micro Lett. 12, 28 (2020). https://doi.org/10.1007/s40820-019-0356-z
- H.B. Dong, J.W. Li, J. Guo, F.L. Lai, F.J. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021). https://doi.org/10.1002/adma.202007548
- F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- Z. Wang, Z. Ruan, W.S. Ng, H. Li, Z. Tang et al., Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric. Small Methods 2(10), 1800150 (2018). https://doi.org/10.1002/smtd.201800150
- L.V. Thong, H. Kim, A. Ghosh, J. Kim, J. Chang et al., Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7), 5940–5947 (2013). https://doi.org/10.1021/nn4016345
- Y. Huang, H. Hu, Y. Huang, M. Zhu, W. Meng et al., From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9(5), 4766–4775 (2015). https://doi.org/10.1021/acsnano.5b00860
- K. Guo, Y. Ma, H. Li, T. Zhai, Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending. Small 12(8), 1024–1033 (2016). https://doi.org/10.1002/smll.201503021
- J. Ren, W. Bai, G. Guan, Y. Zhang, H. Peng, Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 25(41), 5965–5970 (2013). https://doi.org/10.1002/adma.201302498
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
- P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu et al., Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014). https://doi.org/10.1002/aenm.201300759
References
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang et al., Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 31(13), 1803800 (2019). https://doi.org/10.1002/adma.201803800
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, K. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30(24), 1703691 (2018). https://doi.org/10.1002/adma.201703691
C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lu et al., Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569(7755), 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6
F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang et al., Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(21), 7062–7067 (2019). https://doi.org/10.1002/anie.201902679
J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang et al., Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8(17), 1702619 (2018). https://doi.org/10.1002/aenm.201702619
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31(16), 1806510 (2019). https://doi.org/10.1002/adma.201806510
C. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16, 102–125 (2019). https://doi.org/10.1016/j.ensm.2018.05.003
T. Lv, M. Liu, D. Zhu, L. Gan, T. Chen, Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 30(17), 1705489 (2018). https://doi.org/10.1002/adma.201705489
Y. Da, J. Liu, L. Zhou, X. Zhu, X. Chen et al., Engineering 2D architectures toward high-performance micro-supercapacitors. Adv. Mater. 31(1), 1802793 (2019). https://doi.org/10.1002/adma.201802793
Q. Ren, H. Wang, X. Lu, Y. Tong, G. Li, Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 5(3), 1700515 (2018). https://doi.org/10.1002/advs.201700515
H. Qiu, P. Du, K. Hu, J. Gao, H. Li et al., Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 31(19), 1900843 (2019). https://doi.org/10.1002/adma.201900843
J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem et al., Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed. 58(21), 7035–7039 (2019). https://doi.org/10.1002/anie.201902109
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12(7), 2273–2285 (2019). https://doi.org/10.1039/c9ee00956f
W. Chen, T. Lei, C. Wu, M. Deng, C. Gong et al., Designing safe electrolyte systems for a high-stability lithium-sulfur battery. Adv. Energy Mater. 8(10), 1702348 (2018). https://doi.org/10.1002/aenm.201702348
B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30(17), 1705670 (2018). https://doi.org/10.1002/adma.201705670
C. Lethien, J.L. Bideau, T. Brousse, Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci. 12(1), 96–115 (2019). https://doi.org/10.1039/c8ee02029a
W. Guo, C. Yu, S. Li, Z. Wang, J. Yu et al., Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy 57, 459–472 (2019). https://doi.org/10.1016/j.nanoen.2018.12.015
J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan et al., Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). https://doi.org/10.1002/adma.201202146
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/b813846j
M. Yu, X. Feng, Thin-film electrode-based supercapacitors. Joule 3(2), 338–360 (2019). https://doi.org/10.1016/j.joule.2018.12.012
H. Jiang, P.S. Lee, C. Li, 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6(1), 41–53 (2013). https://doi.org/10.1039/c2ee23284g
J. Huang, B.G. Sumpter, V. Meunier, Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47(3), 520–524 (2008). https://doi.org/10.1002/anie.200703864
B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009). https://doi.org/10.1038/nature07853
M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang et al., Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 31(3), 1806005 (2019). https://doi.org/10.1002/adma.201806005
W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia et al., Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
Q. Chen, J. Jin, Z. Kou, C. Liao, Z. Liu et al., Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 16(14), 2000091 (2020). https://doi.org/10.1002/smll.202000091
L. Dong, W. Yang, W. Yang, Y. Li, W. Wu et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7(23), 13810–13832 (2019). https://doi.org/10.1039/c9ta02678a
B.D. Boruah, Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy Storage Mater. 21, 219–239 (2019). https://doi.org/10.1016/j.ensm.2019.06.012
W. Fu, E. Zhao, R. Ma, Z. Sun, Y. Yang et al., Anatase TiO2 confined in carbon nanopores for high-energy Li-ion hybrid supercapacitors operating at high rates and subzero temperatures. Adv. Energy Mater. 10(2), 1902993 (2020). https://doi.org/10.1002/aenm.201902993
D. Tie, S. Huang, J. Wang, J. Ma, J. Zhang et al., Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 21, 22–40 (2019). https://doi.org/10.1016/j.ensm.2018.12.018
A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sust. Energ. Rev. 101, 123–145 (2019). https://doi.org/10.1016/j.rser.2018.10.026
H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 85, 105942 (2021). https://doi.org/10.1016/j.nanoen.2021.105942
E. Kim, H. Kim, B.J. Park, Y.H. Han, J.H. Park et al., Etching-assisted crumpled graphene wrapped spiky iron oxide particles for high-performance Li-ion hybrid supercapacitor. Small 14(16), 1704209 (2018). https://doi.org/10.1002/smll.201704209
Z. Hu, S. Sayed, T. Jiang, X. Zhu, C. Lu et al., Self-assembled binary organic granules with multiple lithium uptake mechanisms toward high-energy flexible lithium-ion hybrid supercapacitors. Adv. Energy Mater. 8(30), 1802273 (2018). https://doi.org/10.1002/aenm.201802273
B. Deng, T. Lei, W. Zhu, L. Xiao, J. Liu, In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv. Funct. Mater. 28(1), 1704330 (2018). https://doi.org/10.1002/adfm.201704330
L. Que, F. Yu, Z. Wang, D. Gu, Pseudocapacitance of TiO2-x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 14(17), 1704508 (2018). https://doi.org/10.1002/smll.201704508
Y. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu et al., Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
H. Wang, D. Xu, G. Jia, Z. Mao, Y. Gong et al., Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater. 25, 114–123 (2020). https://doi.org/10.1016/j.ensm.2019.10.024
Z. Tong, S. Liu, Y. Zhou, J. Zhao, Y. Wu et al., Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 13, 223–232 (2018). https://doi.org/10.1016/j.ensm.2017.12.005
P. Zhang, L. Wang, F. Wang, D. Tan, G. Wang et al., A nonaqueous Na-ion hybrid micro-supercapacitor with wide potential window and ultrahigh areal energy density. Batteries Supercaps 2(11), 918–923 (2019). https://doi.org/10.1002/batt.201900079
Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu et al., Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30(4), 1903878 (2020). https://doi.org/10.1002/adfm.201903878
J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng et al., Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 10(15), 1904045 (2020). https://doi.org/10.1002/aenm.201904045
Y. Cui, W. Liu, W. Feng, Y. Zhang, Y. Du et al., Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: toward fast potassium storage by constructing spacious “houses” for K ions. Adv. Funct. Mater. 30(10), 1908755 (2020). https://doi.org/10.1002/adfm.201908755
G. An, J. Hong, S. Pak, Y. Cho, S. Lee et al., 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv. Energy Mater. 10(3), 1902981 (2020). https://doi.org/10.1002/aenm.201902981
Y. Zhang, Z. Zhang, Y. Tang, D. Jia, Y. Huang et al., LiFePO4 particles embedded in fast bifunctional conductor rGO&C@Li3V2(PO4)3 nanosheets as cathodes for high-performance Li-ion hybrid capacitors. Adv. Funct. Mater. 29(17), 1807895 (2019). https://doi.org/10.1002/adfm.201807895
R. Wang, P. Liu, J. Lang, L. Zhang, X. Yan, Coupling effect between ultra-small Mn3O4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Mater. 6, 53–60 (2017). https://doi.org/10.1016/j.ensm.2016.10.002
H. Liu, L. Liao, Y. Lu, Q. Li, High energy density aqueous Li-ion flow capacitor. Adv. Energy Mater. 7(1), 1601248 (2017). https://doi.org/10.1002/aenm.201601248
J. Li, L. An, H. Li, J. Sun, C. Shuck et al., Tunable stable operating potential window for high-voltage aqueous supercapacitors. Nano Energy 63, 103848 (2019). https://doi.org/10.1016/j.nanoen.2019.06.044
Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang et al., Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 15(9), 1804539 (2019). https://doi.org/10.1002/smll.201804539
H. Huang, D. Kundu, R. Yan, E. Tervoort, X. Chen et al., Fast Na-ion intercalation in zinc vanadate for high-performance Na-ion hybrid capacitor. Adv. Energy Mater. 8(35), 1802800 (2018). https://doi.org/10.1002/aenm.201802800
S. Dong, Y. Xu, L. Wu, H. Dou, X. Zhang, Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Mater. 11, 8–15 (2018). https://doi.org/10.1016/j.ensm.2017.09.006
C. An, Y. Yuan, B. Zhang, L. Tang, B. Xiao et al., Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 9(18), 1900356 (2019). https://doi.org/10.1002/aenm.201900356
K.V. Nielson, T.L. Liu, Dawn of calcium batteries. Angew. Chem. Int. Ed. 59(9), 3368–3370 (2020). https://doi.org/10.1002/anie.201913465
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 4(1), 16–25 (2019). https://doi.org/10.1038/s41560-018-0295-9
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
D. Chao, H.J. Fan, Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 5(6), 1359–1361 (2019). https://doi.org/10.1016/j.chempr.2019.05.020
P. He, Q. Chen, M. Yan, X. Xu, L. Zhou et al., Building better zinc-ion batteries: a materials perspective. EnergyChem 1(3), 100022 (2019). https://doi.org/10.1016/j.enchem.2019.100022
S.S. Shinde, C.H. Lee, J.Y. Jung, N.K. Wagh, S.H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 12(2), 727–738 (2019). https://doi.org/10.1039/c8ee02679c
B. Li, S. Zhang, B. Wang, Z. Xia, C. Tang et al., A porphyrin covalent organic framework cathode for flexible Zn-air batteries. Energy Environ. Sci. 11(7), 1723–1729 (2018). https://doi.org/10.1039/c8ee00977e
Y. Guo, P. Yuan, J. Zhang, Y. Hu, I.S. Amiinu et al., Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 12(2), 1894–1901 (2018). https://doi.org/10.1021/acsnano.7b08721
C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke et al., A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 28(39), 8732–8739 (2016). https://doi.org/10.1002/adma.201603038
T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng et al., Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater. 31(16), 1807771 (2019). https://doi.org/10.1002/adma.201807771
G. Liang, F. Mo, D. Wang, X. Li, Z. Huang et al., Commencing mild Ag-Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Mater. 25, 86–92 (2020). https://doi.org/10.1016/j.ensm.2019.10.028
C. Li, Q. Zhang, J. Sun, T. Li, E. Songfeng et al., High-performance quasi-solid-state flexible aqueous rechargeable Ag-Zn battery based on metal-organic framework-derived Ag nanowires. ACS Energy Lett. 3(11), 2761–2768 (2018). https://doi.org/10.1021/acsenergylett.8b01675
S. Berchmans, A.J. Bandodkar, W. Jia, J. Ramirez, Y.S. Meng et al., An epidermal alkaline rechargeable Ag-Zn printable tattoo battery for wearable electronics. J. Mater. Chem. A 2(38), 15788–15795 (2014). https://doi.org/10.1039/c4ta03256j
Y. Zhao, Y. Wang, Z. Zhao, J. Zhao, T. Xin et al., Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode. Energy Storage Mater. 28, 64–72 (2020). https://doi.org/10.1016/j.ensm.2020.03.001
Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang et al., Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 29(20), 1808820 (2019). https://doi.org/10.1002/adfm.201808820
A. Noori, M.F.E. Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h
L. Liu, Y. Feng, W. Wu, Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J. Power Sources 410, 69–77 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.012
S. Yun, Y. Zhang, Q. Xu, J. Liu, Y. Qin, Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 60, 600–619 (2019). https://doi.org/10.1016/j.nanoen.2019.03.074
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv. Energy Mater. 9(47), 1902915 (2019). https://doi.org/10.1002/aenm.201902915
Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31(44), 1904948 (2019). https://doi.org/10.1002/adma.201904948
P. Yu, Y. Zeng, H. Zhang, M. Yu, Y. Tong et al., Flexible Zn-ion batteries: recent progresses and challenges. Small 15(7), 1804760 (2019). https://doi.org/10.1002/smll.201804760
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 27, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.01.003
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
Z. Fan, J. Jin, C. Li, J. Cai, C. Wei et al., 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 15(2), 3098–3107 (2021). https://doi.org/10.1021/acsnano.0c09646
P. Liu, W. Liu, Y. Huang, P. Li, J. Yan et al., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 25, 858–865 (2020). https://doi.org/10.1016/j.ensm.2019.09.004
P. Liu, R. Lv, Y. He, B. Na, B. Wang et al., An integrated, flexible aqueous Zn-ion battery with high energy and power densities. J. Power Sources 410, 137–142 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.017
Y. Lu, Y. Wen, F. Huang, T. Zhu, S. Sun et al., Rational design and demonstration of a high-performance flexible Zn/V2O5 battery with thin-film electrodes and para-polybenzimidazole electrolyte membrane. Energy Storage Mater. 27, 418–425 (2020). https://doi.org/10.1016/j.ensm.2020.02.016
M.M. Abou-Krisha, A.G. Alshammari, F.H. Assaf, F.A. El-Sheref, Electrochemical behavior of Zn-Co-Fe alloy electrodeposited from a sulfate bath on various substrate materials. Arab. J. Chem. 12(8), 3526–3533 (2019). https://doi.org/10.1016/j.arabjc.2015.10.008
Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li et al., A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 13(7), 8275–8283 (2019). https://doi.org/10.1021/acsnano.9b03650
G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin et al., A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 11(12), 3367–3374 (2018). https://doi.org/10.1039/c8ee02567c
L. Lei, Y. Zheng, X. Zhang, Y. Su, X. Zhou et al., A ZIF-8 host for dendrite-free zinc anodes and N, O dual-doped carbon cathodes for high-performance zinc-ion hybrid capacitors. Chem. Asian J. 16(15), 2146–2153 (2021). https://doi.org/10.1002/asia.202100526
S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/c9ta00733d
H. Jia, Z. Wang, B. Tawiah, Y. Wang, C. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
C. Leng, Z. Zhao, Y. Song, L. Sun, Z. Fan et al., 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density. Nano-Micro Lett. 13, 8 (2020). https://doi.org/10.1007/s40820-020-00535-w
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/c1cs15060j
L.G.H. Staaf, P. Lundgren, P. Enoksson, Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy 9, 128–141 (2014). https://doi.org/10.1016/j.nanoen.2014.06.028
Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali et al., Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18(2), 393–415 (2020). https://doi.org/10.1007/s10311-019-00955-0
A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim et al., Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
J. Yin, W. Zhang, W. Wang, N.A. Alhebshi, N. Salah et al., Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 10(37), 2001705 (2020). https://doi.org/10.1002/aenm.202001705
H. Fan, X. Hu, S. Zhang, Z. Xu, G. Gao et al., Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon 180, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.04.093
L. Han, H. Huang, J. Li, Z. Yang, X. Zhang et al., Novel zinc-iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. J. Mater. Chem. A 7(42), 24400–24407 (2019). https://doi.org/10.1039/c9ta07196b
Z. Pan, Z. Lu, L. Xu, D. Wang, A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl. Surf. Sci. 510, 145384 (2020). https://doi.org/10.1016/j.apsusc.2020.145384
H. Fan, S. Zhou, Q. Chen, G. Gao, Q. Ban et al., Phosphorus in honeycomb-like carbon as a cathode boosting pseudocapacitive properties for Zn-ion storage. J. Power Sources 493, 229687 (2021). https://doi.org/10.1016/j.jpowsour.2021.229687
Y. Zhang, Z. Wang, D. Li, Q. Sun, K. Lai et al., Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. J. Mater. Chem. A 8(43), 22874–22885 (2020). https://doi.org/10.1039/d0ta08577d
S. Zeng, X. Shi, D. Zheng, C. Yao, F. Wang et al., Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors. Mater. Res. Bull. 135, 111134 (2021). https://doi.org/10.1016/j.materresbull.2020.111134
H. Chen, Y. Zheng, X. Zhu, W. Hong, Y. Tong et al., Bamboo-derived porous carbons for Zn-ion hybrid supercapacitors. Mater. Res. Bull. 139, 111281 (2021). https://doi.org/10.1016/j.materresbull.2021.111281
C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33(29), 2101698 (2021). https://doi.org/10.1002/adma.202101698
H. Fan, S. Zhou, Q. Li, G. Gao, Y. Wang et al., Hydrogen-bonded frameworks crystals-assisted synthesis of flower-like carbon materials with penetrable meso/macropores from heavy fraction of bio-oil for Zn-ion hybrid supercapacitors. J. Colloid Interface Sci. 600, 681–690 (2021). https://doi.org/10.1016/j.jcis.2021.05.042
L. Wen, F. Li, H. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, S.B. Waje et al., Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources 352, 174–186 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.128
X. Zhang, Z. Pei, C. Wang, Z. Yuan, L. Wei et al., Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15(47), 1903817 (2019). https://doi.org/10.1002/smll.201903817
Y.H. Tian, R. Amal, D.W. Wang, An aqueous metali-ion capacitor with oxidized carbon nanotubes and metalicn zinc electrodes. Front. Energy Res. 4, 34 (2016). https://doi.org/10.3389/fenrg.2016.00034
D.S. Hecht, L.B. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482–1513 (2011). https://doi.org/10.1002/adma.201003188
C. Hu, L. Dai, Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 31(7), 1804672 (2019). https://doi.org/10.1002/adma.201804672
K. Gao, B. Wang, L. Tao, B.V. Cunning, Z. Zhang et al., Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and Co-doping. Adv. Mater. 31(13), 1805121 (2019). https://doi.org/10.1002/adma.201805121
F. Wei, X. He, L. Ma, H. Zhang, N. Xiao et al., 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 12, 82 (2020). https://doi.org/10.1007/s40820-020-00416-2
S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10(32), 2001239 (2020). https://doi.org/10.1002/aenm.202001239
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa et al., Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 47–65 (2020). https://doi.org/10.1016/j.mattod.2020.04.010
A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 480, 228830 (2020). https://doi.org/10.1016/j.jpowsour.2020.228830
Y. Zheng, H. Song, S. Chen, X. Yu, J. Zhu et al., Metal-free multi-heteroatom-doped carbon bifunctional electrocatalysts derived from a covalent triazine polymer. Small 16(47), 2004342 (2020). https://doi.org/10.1002/smll.202004342
P. Liu, Y. Gao, Y. Tan, W. Liu, Y. Huang et al., Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 12(11), 2835–2841 (2019). https://doi.org/10.1007/s12274-019-2521-6
J. Han, K. Wang, W. Liu, C. Li, X. Sun et al., Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale 10(27), 13083–13091 (2018). https://doi.org/10.1039/c8nr03889a
X. Deng, J. Li, Z. Shan, J. Sha, L. Ma et al., A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 8(23), 11617–11625 (2020). https://doi.org/10.1039/d0ta02770g
Y. Lee, G. An, Synergistic effects of phosphorus and boron Co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl. Mater. Interfaces 12(37), 41342–41349 (2020). https://doi.org/10.1021/acsami.0c10512
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
J. Du, Q. Cao, X. Tang, X. Xu, X. Long et al., 3D printing-assisted gyroidal graphite foam for advanced supercapacitors. Chem. Eng. J. 416, 127885 (2021). https://doi.org/10.1016/j.cej.2020.127885
J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009). https://doi.org/10.1038/nnano.2009.177
J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999), 1637–1639 (2010). https://doi.org/10.1126/science.1194372
Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 5(12), 1900537 (2019). https://doi.org/10.1002/aelm.201900537
Y. Xu, X. Chen, C. Huang, Y. Zhou, B. Fan et al., Redox-active p-phenylenediamine functionalized reduced graphene oxide film through covalently grafting for ultrahigh areal capacitance Zn-ion hybrid supercapacitor. J. Power Sources 488, 229426 (2021). https://doi.org/10.1016/j.jpowsour.2020.229426
P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F.S. Fernando, K. Jayaramulu et al., True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16(37), 2002806 (2020). https://doi.org/10.1002/smll.202002806
S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim et al., 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352
P. Das, Z.S. Wu, MXene for energy storage: present status and future perspectives. J. Phys-Energy 2(3), 032004 (2020). https://doi.org/10.1088/2515-7655/ab9b1d
C.E. Ren, M. Zhao, T. Makaryan, J. Halim, M. Boota et al., Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 3(5), 689–693 (2016). https://doi.org/10.1002/celc.201600059
Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136(17), 6385–6394 (2014). https://doi.org/10.1021/ja501520b
M.A.M. Hasan, Y. Wang, C.R. Bowen, Y. Yang, 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 13, 82 (2021). https://doi.org/10.1007/s40820-021-00603-9
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
P.C. Ruan, X.L. Xu, J.X. Feng, L.H. Yu, X.L. Gao et al., Boosting zinc storage performance via conductive materials. Mater. Res. Bull. 133, 111077 (2021). https://doi.org/10.1016/j.materresbull.2020.111077
J. Come, J.M. Black, M.R. Lukatskaya, M. Naguib, M. Beidaghi et al., Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 17, 27–35 (2015). https://doi.org/10.1016/j.nanoen.2015.07.028
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
M. Ghidiu, M.R. Lukatskaya, M. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
L. Li, W. Liu, K. Jiang, D. Chen, F. Qu et al., In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nano-Micro Lett. 13, 100 (2021). https://doi.org/10.1007/s40820-021-00634-2
C. Huang, X. Zhao, Y. Xu, Y. Zhang, Y. Yang et al., Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode. ACS Sustain. Chem. Eng. 8(42), 16028–16036 (2020). https://doi.org/10.1021/acssuschemeng.0c06525
Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong et al., Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 13, 95 (2021). https://doi.org/10.1007/s40820-021-00625-3
K. Fic, G. Lota, E. Frackowiak, Effect of surfactants on capacitance properties of carbon electrodes. Electrochim. Acta 60, 206–212 (2012). https://doi.org/10.1016/j.electacta.2011.11.059
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/c8ee02892c
J. Lee, A. Tolosa, B. Kruener, N. Jaeckel, S. Fleischmann et al., Asymmetric tin-vanadium redox electrolyte for hybrid energy storage with nanoporous carbon electrodes. Sustain. Energ. Fuels 1(2), 299–307 (2017). https://doi.org/10.1039/c6se00062b
J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang et al., A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon 102, 255–261 (2016). https://doi.org/10.1016/j.carbon.2016.02.047
K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2014). https://doi.org/10.1002/smll.201301991
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D
K. Ren, Z. Liu, T. Wei, Z. Fan, Recent developments of transition metal compounds-carbon hybrid electrodes for high energy/power supercapacitors. Nano-Micro Lett. 13, 129 (2021). https://doi.org/10.1007/s40820-021-00642-2
Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018). https://doi.org/10.1002/aenm.201703043
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
L. Dong, W. Yang, W. Yang, C. Wang, Y. Li et al., High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage. Nano-Micro Lett. 11, 94 (2019). https://doi.org/10.1007/s40820-019-0328-3
P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang et al., Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures. Adv. Sci. 3(6), 1500299 (2016). https://doi.org/10.1002/advs.201500299
X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie et al., Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12(10), 5376–5381 (2012). https://doi.org/10.1021/nl302761z
B. Yao, M. Li, J. Zhang, L. Zhang, Y. Song et al., TiN paper for ultrafast-charging supercapacitors. Nano-Micro Lett. 12, 3 (2019). https://doi.org/10.1007/s40820-019-0340-7
Z.D. Huang, T.R. Wang, H. Song, X.L. Li, G.J. Liang et al., Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew. Chem. Int. Ed. 60(2), 1011–1021 (2021). https://doi.org/10.1002/anie.202012202
C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
D. Wang, Z. Pan, Z. Lu, From starch to porous carbon nanosheets: promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors. Microporous Mesoporous Mater. 306, 110445 (2020). https://doi.org/10.1016/j.micromeso.2020.110445
X. Tuo, W. Yinong, W. Na, Z. Yi, L. Huan et al., A high-capacity aqueous Zn-ion hybrid energy storage device using poly(4,4’-thiodiphenol) modified activated carbon as a cathode material. J. Mater. Chem. A 7(40), 23076–23083 (2019). https://doi.org/10.1039/c9ta08693e
K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao et al., Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44(3), 699–728 (2015). https://doi.org/10.1039/c4cs00218k
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
J.S. Park, J.H. Jo, Y. Aniskevich, A. Bakavets, G. Ragoisha et al., Open-structured vanadium dioxide as an intercalation host for Zn ions: investigation by first-principles calculation and experiments. Chem. Mater. 30(19), 6777–6787 (2018). https://doi.org/10.1021/acs.chemmater.8b02679
P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
P. He, Y. Quan, X. Xu, M. Yan, W. Yang et al., High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13(47), 1702551 (2017). https://doi.org/10.1002/smll.201702551
Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin et al., The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs. Adv. Funct. Mater. 30(14), 1909530 (2020). https://doi.org/10.1002/adfm.201909530
G. Zampardi, F.L. Mantia, Prussian blue analogues as aqueous Zn-ion batteries electrodes: current challenges and future perspectives. Curr. Opin. Electroche. 21, 84–92 (2020). https://doi.org/10.1016/j.coelec.2020.01.014
G. Du, H. Pang, Recent advancements in prussian blue analogues: preparation and application in batteries. Energy Storage Mater. 36, 387–408 (2021). https://doi.org/10.1016/j.ensm.2021.01.006
H. Zhang, J. Wang, Q. Liu, W. He, Z. Lai et al., Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 21, 154–161 (2019). https://doi.org/10.1016/j.ensm.2018.12.019
S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng et al., Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9(2), 1945–1954 (2015). https://doi.org/10.1021/nn506851x
W. Li, K. Wang, S. Cheng, K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 9(27), 1900993 (2019). https://doi.org/10.1002/aenm.201900993
Y. Deng, L. Wan, Y. Xie, X. Qin, G. Chen, Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 4(45), 23914–23935 (2014). https://doi.org/10.1039/c4ra02686a
L. Chen, C. Hao, Y. Zhang, Y. Wei, L. Dai et al., Guest ions pre-intercalation strategy of manganese-oxides for supercapacitor and battery applications. J. Energy Chem. 60, 480–493 (2021). https://doi.org/10.1016/j.jechem.2021.01.023
Y. Li, D. Zhang, S. Huang, H.Y. Yang, Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries. Nano Energy 85, 105969 (2021). https://doi.org/10.1016/j.nanoen.2021.105969
X. Wang, Z. Zhou, Z. Sun, J. Hah, Y. Yao et al., Atomic modulation of 3D conductive frameworks boost performance of MnO2 for coaxial fiber-shaped supercapacitors. Nano-Micro Lett. 13, 4 (2020). https://doi.org/10.1007/s40820-020-00529-8
X. Ma, J. Cheng, L. Dong, W. Liu, J. Mou et al., Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 20, 335–342 (2019). https://doi.org/10.1016/j.ensm.2018.10.020
X. Ma, J. Wang, X. Wang, L. Zhao, C. Xu, Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability. J. Mater. Sci.-Mater. Electron. 30(6), 5478–5486 (2019). https://doi.org/10.1007/s10854-019-00841-z
S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan et al., A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
S. Zuo, X. Xu, S. Ji, Z. Wang, Z. Liu et al., Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chem. Eur. J. 27(3), 830–860 (2021). https://doi.org/10.1002/chem.202002202
D. Selvakumaran, A. Pan, S. Liang, G. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7(31), 18209–18236 (2019). https://doi.org/10.1039/c9ta05053a
X. Gong, J. Chen, P.S. Lee, Zinc-ion hybrid supercapacitors: progress and future perspective. Batteries Supercaps 4(10), 1529–1546 (2021). https://doi.org/10.1002/batt.202100034
M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
L. Yuan, J. Hao, C.C. Kao, C. Wu, H.K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/d1ee02021h
X. Ma, J. Cheng, L. Dong, W. Liu, J. Mou et al., Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 20, 335–342 (2018). https://doi.org/10.1016/j.ensm.2018.10.020
Z. Li, D. Chen, Y. An, C. Chen, L. Wu et al., Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 28, 307–314 (2020). https://doi.org/10.1016/j.ensm.2020.01.028
L. Han, H. Huang, J. Li, X. Zhang, Z. Yang et al., A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition. J. Mater. Chem. A 8(30), 15042–15050 (2020). https://doi.org/10.1039/d0ta03547e
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
F. Li, L. Yu, Q. Hu, S. Guo, Y. Mei et al., Fabricating low-temperature-tolerant and durable Zn-ion capacitors via modulation of co-solvent molecular interaction and cation solvation. Sci. China-Mater. 64(7), 1609–1620 (2021). https://doi.org/10.1007/s40843-020-1570-5
H. Zhang, E.G. Gebresilassie, X. Judez, C. Li, M.L.M. Rodriguez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57(46), 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci. 9(6), 1955–1988 (2016). https://doi.org/10.1039/c6ee00123h
M. Li, Q. He, Z. Li, Q. Li, Y. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019). https://doi.org/10.1002/aenm.201901469
S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao et al., Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A 6(14), 5733–5739 (2018). https://doi.org/10.1039/c8ta01031e
D. Gong, B. Wang, J. Zhu, R. Podila, A.M. Rao et al., An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 7(3), 1601885 (2017). https://doi.org/10.1002/aenm.201601885
K. Lu, H. Zhang, F. Ye, W. Luo, H. Ma et al., Rechargeable potassium-ion batteries enabled by potassium-iodine conversion chemistry. Energy Storage Mater. 16, 1–5 (2019). https://doi.org/10.1016/j.ensm.2018.04.018
Z. Zhao, J. Zhao, Z. Hu, J.D. Li, J.J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
P. Zhang, F. Wang, S. Yang, G. Wang, M. Yu et al., Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications. Energy Storage Mater. 28, 160–187 (2020). https://doi.org/10.1016/j.ensm.2020.02.029
F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan et al., Recent developments of advanced micro-supercapacitors: design, fabrication and applications. npj Flex. Electron. 4(1), 31 (2020). https://doi.org/10.1038/s41528-020-00093-6
B.D. Boruah, S. Nandi, A. Misra, Layered assembly of reduced graphene oxide and vanadium oxide heterostructure supercapacitor electrodes with larger surface area for efficient energy-storage performance. ACS Appl. Energy Mater. 1(4), 1567–1574 (2018). https://doi.org/10.1021/acsaem.7b00358
W. Liu, Y. Feng, X. Yan, J. Chen, Q. Xue, Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23(33), 4111–4122 (2013). https://doi.org/10.1002/adfm.201203771
L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao et al., High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28(5), 838–845 (2016). https://doi.org/10.1002/adma.201503333
K. Robert, C. Douard, A. Demortiere, F. Blanchard, P. Roussel et al., On chip interdigitated micro-supercapacitors based on sputtered bifunctional vanadium nitride thin films with finely tuned inter- and intracolumnar porosities. Adv. Mater. Technol. 3(7), 1800036 (2018). https://doi.org/10.1002/admt.201800036
K. Shen, J. Ding, S. Yang, 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 8(20), 1800408 (2018). https://doi.org/10.1002/aenm.201800408
W. Liu, X. Yan, J. Chen, Y. Feng, Q. Xue, Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 5(13), 6053–6062 (2013). https://doi.org/10.1039/c3nr01139a
Y. Peng, B. Akuzum, N. Kurra, M. Zhao, M. Alhabe et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
S.C. Lee, U.M. Patil, S.J. Kim, S. Ahn, S. Kang et al., All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes. RSC Adv. 6(50), 43844–43854 (2016). https://doi.org/10.1039/c6ra06034j
H. Hu, Z. Pei, H. Fan, C. Ye, 3D interdigital Au/MnO2/Au stacked hybrid electrodes for on-chip microsupercapacitors. Small 12(22), 3059–3069 (2016). https://doi.org/10.1002/smll.201503527
X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26(28), 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
L. Li, Z. Wu, S. Yuan, X. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014). https://doi.org/10.1039/c4ee00318g
Y. Yan, X. Liu, J. Yan, C. Guan, J. Wang, Electrospun nanofibers for new generation flexible energy storage. Energy Environ. Mater. 4(4), 502–521 (2021). https://doi.org/10.1002/eem2.12146
K.N. Kang, A. Ramadoss, J.W. Min, J.C. Yoon, D. Lee et al., Wire-shaped 3D-hybrid supercapacitors as substitutes for batteries. Nano-Micro Lett. 12, 28 (2020). https://doi.org/10.1007/s40820-019-0356-z
H.B. Dong, J.W. Li, J. Guo, F.L. Lai, F.J. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021). https://doi.org/10.1002/adma.202007548
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
Z. Wang, Z. Ruan, W.S. Ng, H. Li, Z. Tang et al., Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric. Small Methods 2(10), 1800150 (2018). https://doi.org/10.1002/smtd.201800150
L.V. Thong, H. Kim, A. Ghosh, J. Kim, J. Chang et al., Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7), 5940–5947 (2013). https://doi.org/10.1021/nn4016345
Y. Huang, H. Hu, Y. Huang, M. Zhu, W. Meng et al., From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9(5), 4766–4775 (2015). https://doi.org/10.1021/acsnano.5b00860
K. Guo, Y. Ma, H. Li, T. Zhai, Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending. Small 12(8), 1024–1033 (2016). https://doi.org/10.1002/smll.201503021
J. Ren, W. Bai, G. Guan, Y. Zhang, H. Peng, Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 25(41), 5965–5970 (2013). https://doi.org/10.1002/adma.201302498
X. Pu, L. Li, M. Liu, C. Jiang, C. Du et al., Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu et al., Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014). https://doi.org/10.1002/aenm.201300759