Cellulose Nanopaper: Fabrication, Functionalization, and Applications
Corresponding Author: Kai Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 104
Abstract
Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices, food packaging, biomedical application, and so forth, owing to their various advantages such as good flexibility, tunable light transmittance, high thermal stability, low thermal expansion coefficient, and superior mechanical properties. Herein, recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies. We begin with a brief introduction of the three types of nanocellulose: cellulose nanocrystals, cellulose nanofibrils and bacterial cellulose, recapitulating their differences in preparation and properties. Then, the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared. Furthermore, the advanced applications of cellulose nanopaper including energy storage, electronic devices, water treatment, and high-performance packaging materials were highlighted. Finally, the prospects and ongoing challenges of cellulose nanopaper were summarized.
Highlights:
1 Preparation strategies of cellulose nanopaper were elaborated.
2 Functionalization of cellulose nanopaper and its advanced applications were summarized.
3 Prospects and challenges of cellulose nanopaper were discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
- D. Zhao, B. Pang, Y. Zhu, W. Cheng, K. Cao et al., A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34(10), 2107857 (2022). https://doi.org/10.1002/adma.202107857
- K.J.D. France, T. Hoare, E.D. Cranston, Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29(11), 4609–4631 (2017). https://doi.org/10.1021/acs.chemmater.7b00531
- W. Liu, H. Du, M. Zhang, K. Liu, H. Liu et al., Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain. Chem. Eng. 8(20), 7536–7562 (2020). https://doi.org/10.1021/acssuschemeng.0c00125
- K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang et al., Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr. Polym. 259, 117740 (2021). https://doi.org/10.1016/j.carbpol.2021.117740
- D. Zhao, Y. Zhu, W. Cheng, G. Xu, Q. Wang et al., A dynamic gel with reversible and tunable topological networks and performances. Matter 2(2), 390–403 (2020). https://doi.org/10.1016/j.matt.2019.10.020
- K. Liu, H. Du, W. Liu, H. Liu, M. Zhang et al., Cellulose nanomaterials for oil exploration applications. Polym. Rev. (2021). https://doi.org/10.1080/15583724.2021.2007121
- H. Du, C. Liu, X. Mu, W. Gong, D. Lv et al., Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23(4), 2389–2407 (2016). https://doi.org/10.1007/s10570-016-0963-5
- W. Ma, L. Li, X. Xiao, H. Du, X. Ren et al., Construction of chlorine labeled ZnO–chitosan loaded cellulose nanofibrils film with quick antibacterial performance and prominent UV stability. Macromol. Mater. Eng. 305(8), 2000228 (2020). https://doi.org/10.1002/mame.202000228
- X. Li, R. Xu, J. Yang, S. Nie, D. Liu et al., Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind. Crops Prod. 130, 184–197 (2019). https://doi.org/10.1016/j.indcrop.2018.12.082
- M. Tavakolian, S.M. Jafari, T.G.M. Ven, A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 12, 73 (2020). https://doi.org/10.1007/s40820-020-0408-4
- R. Xiong, R.X. Xu, C. Huang, S.D. Smedt, K. Braeckmans, Stimuli-responsive nanobubbles for biomedical applications. Chem. Soc. Rev. 50(9), 5746–5776 (2021). https://doi.org/10.1039/C9CS00839J
- R. Xiong, D. Hua, J.V. Hoeck, D. Berdecka, L. Léger et al., Photothermal nanofibres enable safe engineering of therapeutic cells. Nat. Nanotechnol. 16(11), 1281–1291 (2021). https://doi.org/10.1038/s41565-021-00976-3
- C. Liu, H. Du, L. Dong, X. Wang, Y. Zhang et al., Properties of nanocelluloses and their application as rheology modifier in paper coating. Ind. Eng. Chem. Res. 56(29), 8264–8273 (2017). https://doi.org/10.1021/acs.iecr.7b01804
- M.A. Herrera, A.P. Mathew, K. Oksman, Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose 24(9), 3969–3980 (2017). https://doi.org/10.1007/s10570-017-1405-8
- L. Dai, Y. Wang, X. Zou, Z. Chen, H. Liu et al., Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials. Small 16(13), 1906567 (2020). https://doi.org/10.1002/smll.201906567
- H. Golmohammadi, E. Morales-Narváez, T. Naghdi, A. Merkoçi, Nanocellulose in sensing and biosensing. Chem. Mater. 29(13), 5426–5446 (2017). https://doi.org/10.1021/acs.chemmater.7b01170
- Q. Fu, C. Cui, L. Meng, S. Hao, R. Dai et al., Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring. Mater. Chem. Front. 5(5), 2051–2091 (2021). https://doi.org/10.1039/D0QM00748J
- J. Wu, X. Che, H. Hu, H. Xu, B. Li et al., Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. J. Mater. Chem. A 8(11), 5442–5448 (2020). https://doi.org/10.1039/C9TA14039E
- B. Pang, G. Jiang, J. Zhou, Y. Zhu, W. Cheng et al., Molecular-scale design of cellulose-based functional materials for flexible electronic devices. Adv. Electron. Mater. 7(2), 2000944 (2021). https://doi.org/10.1002/aelm.202000944
- H. Du, M. Parit, K. Liu, M. Zhang, Z. Jiang et al., Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces 13(27), 32115–32125 (2021). https://doi.org/10.1021/acsami.1c06647
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202113082
- T. Xu, H. Du, H. Liu, W. Liu, X. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33(48), 2101368 (2021). https://doi.org/10.1002/adma.202101368
- H. Liu, H. Du, T. Zheng, K. Liu, X. Ji et al., Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 426, 130817 (2021). https://doi.org/10.1016/j.cej.2021.130817
- C. Ding, T. Liu, X. Yan, L. Huang, S. Ryu et al., An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors. Nano-Micro Lett. 12, 63 (2020). https://doi.org/10.1007/s40820-020-0393-7
- T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. (2022). https://doi.org/10.1016/j.ensm.2022.03.013
- H. Du, C. Liu, M. Zhang, Q. Kong, B. Li et al., Preparation and industrialization status of nanocellulose. Prog. Chem. 30(4), 448 (2018). https://doi.org/10.7536/PC170830
- R. Liu, L. Dai, C. Si, Z. Zeng, Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym. 195, 63–70 (2018). https://doi.org/10.1016/j.carbpol.2018.04.085
- X. Li, R. Xu, J. Yang, S. Nie, D. Liu et al., Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind. Crops Prod. 130, 184–197 (2019). https://doi.org/10.1016/j.indcrop.2018.12.082
- M. Parit, B. Aksoy, Z. Jiang, Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers. Cellulose 25(5), 2915–2924 (2018). https://doi.org/10.1007/s10570-018-1759-6
- C. Miao, H. Du, M. Parit, Z. Jiang, H.V. Tippur et al., Superior crack initiation and growth characteristics of cellulose nanopapers. Cellulose 27(6), 3181–3195 (2020). https://doi.org/10.1007/s10570-020-03015-x
- C. Miao, H. Du, X. Zhang, H.V. Tippur, Dynamic crack initiation and growth in cellulose nanopaper. Cellulose 29(1), 557–569 (2022). https://doi.org/10.1007/s10570-021-04310-x
- Y. Li, H. Zhu, F. Shen, J. Wan, S. Lacey et al., Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13, 346–354 (2015). https://doi.org/10.1016/j.nanoen.2015.02.015
- C. Tong, S. Zhang, T. Zhong, Z. Fang, H. Liu, Highly fibrillated and intrinsically flame-retardant nanofibrillated cellulose for transparent mineral filler-free fire-protective coatings. Chem. Eng. J. 419, 129440 (2021). https://doi.org/10.1016/j.cej.2021.129440
- J. Wang, W. Chen, T. Dong, H. Wang, S. Si et al., Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chem. 23(24), 10062–10070 (2021). https://doi.org/10.1039/D1GC03906G
- J. Xu, C. Li, L. Dai, C. Xu, Y. Zhong et al., Biomass fractionation and lignin fractionation towards lignin valorization. ChemSusChem 13(17), 4284–4295 (2020). https://doi.org/10.1002/cssc.202001491
- R.T. Mackin, K.R. Fontenot, J.V. Edwards, N.T. Prevost, C. Grimm et al., Synthesis and characterization of TEMPO-oxidized peptide-cellulose conjugate biosensors for detecting human neutrophil elastase. Cellulose 29(2), 1293–1305 (2022). https://doi.org/10.1007/s10570-021-04362-z
- F. Brunetti, A. Operamolla, S. Castro-Hermosa, G. Lucarelli, V. Manca et al., Printed solar cells and energy storage devices on paper substrates. Adv. Funct. Mater. 29(21), 1806798 (2019). https://doi.org/10.1002/adfm.201806798
- A. Barhoum, P. Samyn, T. Öhlund, A. Dufresne, Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40), 15181–15205 (2017). https://doi.org/10.1039/C7NR04656A
- F. Hoeng, A. Denneulin, J. Bras, Use of nanocellulose in printed electronics: a review. Nanoscale 8(27), 13131–13154 (2016). https://doi.org/10.1039/C6NR03054H
- A. Operamolla, Recent advances on renewable and biodegradable cellulose nanopaper substrates for transparent light-harvesting devices: interaction with humid environment. Int. J. Photoenergy 2019, e3057929 (2019). https://doi.org/10.1155/2019/3057929
- Z. Fang, G. Hou, C. Chen, L. Hu, Nanocellulose-based films and their emerging applications. Curr. Opin. Solid State Mater. Sci. 23(4), 100764 (2019). https://doi.org/10.1016/j.cossms.2019.07.003
- D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), 2000619 (2021). https://doi.org/10.1002/adma.202000619
- Z. Shi, Y. Zhang, G.O. Phillips, G. Yang, Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014). https://doi.org/10.1016/j.foodhyd.2013.07.012
- H. Xie, H. Du, X. Yang, C. Si, Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int. J. Polym. Sci. 2018, 7923068 (2018). https://doi.org/10.1155/2018/7923068
- H. Du, C. Liu, Y. Zhang, G. Yu, C. Si et al., Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind. Crops Prod. 94, 736–745 (2016). https://doi.org/10.1016/j.indcrop.2016.09.059
- Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010). https://doi.org/10.1021/cr900339w
- K. Liu, H. Du, T. Zheng, W. Liu, M. Zhang et al., Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem. 23(24), 9723–9746 (2021). https://doi.org/10.1039/D1GC02841C
- X. Yang, H. Xie, H. Du, X. Zhang, Z. Zou et al., Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain. Chem. Eng. 7(7), 7200–7208 (2019). https://doi.org/10.1021/acssuschemeng.9b00209
- H. Wang, H. Xie, H. Du, X. Wang, W. Liu et al., Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohydr. Polym. 239, 116233 (2020). https://doi.org/10.1016/j.carbpol.2020.116233
- W. Liu, H. Du, H. Liu, H. Xie, T. Xu et al., Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain. Chem. Eng. 8(44), 16691–16700 (2020). https://doi.org/10.1021/acssuschemeng.0c06561
- H. Wang, H. Du, K. Liu, H. Liu, T. Xu et al., Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr. Polym. 266(15), 118107 (2021). https://doi.org/10.1016/j.carbpol.2021.118107
- J. George, S. Sabapathi, Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45–54 (2015). https://doi.org/10.2147/NSA.S64386
- H. Du, W. Liu, M. Zhang, C. Si, X. Zhang et al., Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.020
- M. Parit, H. Du, X. Zhang, C. Prather, M. Adams et al., Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym. 240, 116304 (2020). https://doi.org/10.1016/j.carbpol.2020.116304
- O. Nechyporchuk, M.N. Belgacem, J. Bras, Production of cellulose nanofibrils: a review of recent advances. Ind. Crops Prod. 93, 2–25 (2016). https://doi.org/10.1016/j.indcrop.2016.02.016
- H. Du, M. Parit, M. Wu, X. Che, Y. Wang et al., Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J. Hazard. Mater. 400, 123106 (2020). https://doi.org/10.1016/j.jhazmat.2020.123106
- W. Liu, H. Du, K. Liu, H. Liu, H. Xie et al., Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydr. Polym. 267, 118220 (2021). https://doi.org/10.1016/j.carbpol.2021.118220
- R. Xu, H. Du, C. Liu, H. Liu, M. Wu et al., An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J. Clean. Prod. 313, 127834 (2021). https://doi.org/10.1016/j.jclepro.2021.127834
- S. Gorgieva, Bacterial cellulose as a versatile platform for research and development of biomedical materials. Processes 8(5), 624 (2020). https://doi.org/10.3390/pr8050624
- W. Liu, H. Du, T. Zheng, C. Si, Recent insights on biomedical applications of bacterial cellulose based composite hydrogels. Curr. Med. Chem. 28(40), 8319–8332 (2021). https://doi.org/10.2174/0929867328666210412124444
- S. Gorgieva, J. Trček, Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 9(10), 1352 (2019). https://doi.org/10.3390/nano9101352
- D. Lv, H. Du, X. Che, M. Wu, Y. Zhang et al., Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustain. Chem. Eng. 7(10), 9449–9463 (2019). https://doi.org/10.1021/acssuschemeng.9b00714
- A.J. Benítez, A. Walther, Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J. Mater. Chem. A 5(31), 16003–16024 (2017). https://doi.org/10.1039/C7TA02006F
- J.F. Revol, H. Bradford, J. Giasson, R.H. Marchessault, D.G. Gray, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14(3), 170–172 (1992). https://doi.org/10.1016/S0141-8130(05)80008-X
- A. Dufresne, J.Y. Cavaillé, M.R. Vignon, Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J. Appl. Polym. Sci. 64(6), 1185–1194 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6%3c1185::AID-APP19%3e3.0.CO;2-V
- T. Taniguchi, K. Okamura, New films produced from microfibrillated natural fibres. Polym. Int. 47(3), 291–294 (1998). https://doi.org/10.1002/(SICI)1097-0126(199811)47:3%3c291::AID-PI11%3e3.0.CO;2-1
- Y. Peng, D.J. Gardner, Y. Han, A. Kiziltas, Z. Cai et al., Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5), 2379–2392 (2013). https://doi.org/10.1007/s10570-013-0019-z
- A. Sosnik, K.P. Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug ps and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 223, 40–54 (2015). https://doi.org/10.1016/j.cis.2015.05.003
- J. Han, C. Zhou, Y. Wu, F. Liu, Q. Wu, Self-assembling behavior of cellulose nanops during freeze-drying: effect of suspension concentration, p size, crystal structure, and surface charge. Biomacromol 14(5), 1529–1540 (2013). https://doi.org/10.1021/bm4001734
- H. Fukuzumi, T. Saito, A. Isogai, Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr. Polym. 93(1), 172–177 (2013). https://doi.org/10.1016/j.carbpol.2012.04.069
- C. Aulin, M. Gällstedt, T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3), 559–574 (2010). https://doi.org/10.1007/s10570-009-9393-y
- H. Sehaqui, A. Liu, Q. Zhou, L.A. Berglund, Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromol 11(9), 2195–2198 (2010). https://doi.org/10.1021/bm100490s
- A. Tran, W.Y. Hamad, M.J. MacLachlan, Fabrication of cellulose nanocrystal films through differential evaporation for patterned coatings. ACS Appl. Nano Mater. 1(7), 3098–3104 (2018). https://doi.org/10.1021/acsanm.8b00947
- M.A. Hubbe, A. Ferrer, P. Tyagi, Y. Yin, C. Salas et al., Nanocellulose in thin films, coatings, and plies for packaging applications: a review. Bioresources 12(1), 2143–2233 (2017). https://doi.org/10.15376/biores.12.1.2143-2233
- D. Beneventi, E. Zeno, D. Chaussy, Rapid nanopaper production by spray deposition of concentrated microfibrillated cellulose slurries. Ind. Crops Prod. 72, 200–205 (2015). https://doi.org/10.1016/j.indcrop.2014.11.023
- H. Sehaqui, S. Morimune, T. Nishino, L.A. Berglund, Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning. Biomacromol 13(11), 3661–3667 (2012). https://doi.org/10.1021/bm301105s
- M. Österberg, J. Vartiainen, J. Lucenius, U. Hippi, J. Seppälä et al., A fast method to produce strong nfc films as a platform for barrier and functional materials. ACS Appl. Mater. Interfaces 5(11), 4640–4647 (2013). https://doi.org/10.1021/am401046x
- Q. Wang, H. Du, F. Zhang, Y. Zhang, M. Wu et al., Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. J. Mater. Chem. A 6(27), 13021–13030 (2018). https://doi.org/10.1039/C8TA01986J
- J. Wetterling, S. Jonsson, T. Mattsson, H. Theliander, The influence of ionic strength on the electroassisted filtration of microcrystalline cellulose. Ind. Eng. Chem. Res. 56(44), 12789–12798 (2017). https://doi.org/10.1021/acs.iecr.7b03575
- J. Vartiainen, M. Vähä-Nissi, A. Harlin, Biopolymer films and coatings in packaging applications—a review of recent developments. Mater. Sci. Appl. 5(10), 708–718 (2014). https://doi.org/10.4236/msa.2014.510072
- F. Ansari, Y. Ding, L.A. Berglund, R.H. Dauskardt, Toward sustainable multifunctional coatings containing nanocellulose in a hybrid glass matrix. ACS Nano 12(6), 5495–5503 (2018). https://doi.org/10.1021/acsnano.8b01057
- V.K. Rastogi, P. Samyn, Bio-based coatings for paper applications. Coatings 5(4), 887–930 (2015). https://doi.org/10.3390/coatings5040887
- L.F. Krol, D. Beneventi, F. Alloin, D. Chaussy, Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition. J. Mater. Sci. 50(11), 4095–4103 (2015). https://doi.org/10.1007/s10853-015-8965-5
- K. Shanmugam, H. Doosthosseini, S. Varanasi, G. Garnier, W. Batchelor, Flexible spray coating process for smooth nanocellulose film production. Cellulose 25(3), 1725–1741 (2018). https://doi.org/10.1007/s10570-018-1677-7
- V. Kumar, A. Elfving, H. Koivula, D. Bousfield, M. Toivakka, Roll-to-roll processed cellulose nanofiber coatings. Ind. Eng. Chem. Res. 55(12), 3603–3613 (2016). https://doi.org/10.1021/acs.iecr.6b00417
- R.A. Chowdhury, C. Clarkson, V.A. Apalangya, S.M.N. Islam, J.P. Youngblood, Roll-to-roll fabrication of cellulose nanocrystal-poly(vinyl alcohol) composite coatings with controlled anisotropy. Cellulose 25(11), 6547–6560 (2018). https://doi.org/10.1007/s10570-018-2019-5
- S.M.E.A. Azrak, W.J. Costakis, R.J. Moon, G.T. Schueneman, J.P. Youngblood, Continuous processing of cellulose nanofibril sheets through conventional single-screw extrusion. ACS Appl. Polym. Mater. 2(8), 3365–3377 (2020). https://doi.org/10.1021/acsapm.0c00477
- M. Wang, X. Jia, W. Liu, X. Lin, Water insoluble and flexible transparent film based on carboxymethyl cellulose. Carbohydr. Polym. 255, 117353 (2021). https://doi.org/10.1016/j.carbpol.2020.117353
- S.V. Nguyen, B.K. Lee, Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment. Cellulose 28(9), 5693–5705 (2021). https://doi.org/10.1007/s10570-021-03894-8
- L. Sun, X. Zhang, H. Liu, K. Liu, H. Du et al., Recent advances in hydrophobic modification of nanocellulose. Curr. Org. Chem. 25(3), 417–436 (2021). https://doi.org/10.2174/1385272824999201210191041
- A.G. Cunha, Q. Zhou, P.T. Larsson, L.A. Berglund, Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption. Cellulose 21(4), 2773–2787 (2014). https://doi.org/10.1007/s10570-014-0334-z
- A. Operamolla, S. Casalini, D. Console, L. Capodieci, F.D. Benedetto et al., Tailoring water stability of cellulose nanopaper by surface functionalization. Soft Matter 14(36), 7390–7400 (2018). https://doi.org/10.1039/C8SM00433A
- H. Zhu, B.B. Narakathu, Z. Fang, A.T. Aijazi, M. Joyce et al., A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale 6(15), 9110–9115 (2014). https://doi.org/10.1039/C4NR02036G
- M.H. Jung, N.M. Park, S.Y. Lee, Color tunable nanopaper solar cells using hybrid CH3NH3PbI3−xBrx perovskite. Sol. Energy 139, 458–466 (2016). https://doi.org/10.1016/j.solener.2016.10.032
- O.A.T. Dias, S. Konar, A.L. Leão, W. Yang, J. Tjong et al., Current state of applications of nanocellulose in flexible energy and electronic devices. Front. Chem. 8, 420 (2020). https://doi.org/10.3389/fchem.2020.00420
- A.T. Vicente, A. Araújo, M.J. Mendes, D. Nunes, M.J. Oliveira et al., Multifunctional cellulose-paper for light harvesting and smart sensing applications. J. Mater. Chem. C 6(13), 3143–3181 (2018). https://doi.org/10.1039/C7TC05271E
- X. Xu, Y.L. Hsieh, Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale 11(24), 11719–11729 (2019). https://doi.org/10.1039/C9NR01602C
- R. Xiong, S. Yu, M.J. Smith, J. Zhou, M. Krecker et al., Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials. ACS Nano 13(8), 9074–9081 (2019). https://doi.org/10.1021/acsnano.9b03305
- H. Du, M. Parit, K. Liu, M. Zhang, Z. Jiang et al., Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohydr. Polym. 270, 118372 (2021). https://doi.org/10.1016/j.carbpol.2021.118372
- H. Zhang, L. Shi, X. Feng, Use of chitosan to reinforce transparent conductive cellulose nanopaper. J. Mater. Chem. C 6(2), 242–248 (2018). https://doi.org/10.1039/C7TC03980H
- E. Morales-Narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv et al., Nanopaper as an optical sensing platform. ACS Nano 9(7), 7296–7305 (2015). https://doi.org/10.1021/acsnano.5b03097
- S. Galland, R.L. Andersson, M. Salajková, V. Ström, R.T. Olsson et al., Cellulose nanofibers decorated with magnetic nanops – synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. J. Mater. Chem. C 1(47), 7963–7972 (2013). https://doi.org/10.1039/C3TC31748J
- M. Nogi, M. Karakawa, N. Komoda, H. Yagyu, T.T. Nge, Transparent conductive nanofiber paper for foldable solar cells. Sci. Rep. 5(1), 17254 (2015). https://doi.org/10.1038/srep17254
- M.M.G. Campo, M. Darder, P. Aranda, M. Akkari, Y. Huttel et al., Functional hybrid nanopaper by assembling nanofibers of cellulose and sepiolite. Adv. Funct. Mater. 28(27), 1703048 (2018). https://doi.org/10.1002/adfm.201703048
- G. Song, R. Kang, L. Guo, Z. Ali, X. Chen et al., Highly flexible few-layer Ti3C2 MXene/cellulose nanofiber heat-spreader films with enhanced thermal conductivity. New J. Chem. 44(17), 7186–7193 (2020). https://doi.org/10.1039/D0NJ00672F
- F. Carosio, J. Kochumalayil, F. Cuttica, G. Camino, L. Berglund, Oriented clay nanopaper from biobased components—mechanisms for superior fire protection properties. ACS Appl. Mater. Interfaces 7(10), 5847–5856 (2015). https://doi.org/10.1021/am509058h
- H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao et al., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4), 3606–3613 (2014). https://doi.org/10.1021/nn500134m
- Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu et al., Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep. 3(1), 1536 (2013). https://doi.org/10.1038/srep01536
- J.D. Fox, J.R. Capadona, P.D. Marasco, S.J. Rowan, Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J. Am. Chem. Soc. 135(13), 5167–5174 (2013). https://doi.org/10.1021/ja4002713
- B. Wang, A.J. Benitez, F. Lossada, R. Merindol, A. Walther, Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers. Angew. Chem. Int. Ed. 128(20), 6070–6074 (2016). https://doi.org/10.1002/ange.201511512
- M. Wu, P. Sukyai, D. Lv, F. Zhang, P. Wang et al., Water and humidity-induced shape memory cellulose nanopaper with quick response, excellent wet strength and folding resistance. Chem. Eng. J. 392, 123673 (2020). https://doi.org/10.1016/j.cej.2019.123673
- K. Zhao, W. Wang, A. Teng, K. Zhang, Y. Ma et al., Using cellulose nanofibers to reinforce polysaccharide films: blending vs layer-by-layer casting. Carbohydr. Polym. 227, 115264 (2020). https://doi.org/10.1016/j.carbpol.2019.115264
- H. Yu, Y. Tian, M. Dirican, D. Fang, C. Yan et al., Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels. Carbohydr. Polym. 273, 118539 (2021). https://doi.org/10.1016/j.carbpol.2021.118539
- Y. Pan, Z. Qin, S. Kheiri, B. Ying, P. Pan et al., Optical printing of conductive silver on ultrasmooth nanocellulose paper for flexible electronics. Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202101598
- Y. Wang, J.T. Huang, Transparent, conductive and superhydrophobic cellulose films for flexible electrode application. RSC Adv. 11(58), 36607–36616 (2021). https://doi.org/10.1039/D1RA06865B
- Y. Su, Y. Zhao, H. Zhang, X. Feng, L. Shi et al., Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. J. Mater. Chem. C 5(3), 573–581 (2017). https://doi.org/10.1039/C6TC04928A
- F. Hoeng, A. Denneulin, G. Krosnicki, J. Bras, Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films. J. Mater. Chem. C 4(46), 10945–10954 (2016). https://doi.org/10.1039/C6TC03629E
- H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu et al., Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016). https://doi.org/10.1021/acs.chemrev.6b00225
- T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
- K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00425-2
- Y. Gao, D. Liu, Y. Xie, Y. Song, E. Zhu et al., Flexible and sensitive piezoresistive electronic skin based on TOCN/PPy hydrogel films. J. Appl. Polym. Sci. 138(48), 51367 (2021). https://doi.org/10.1002/app.51367
- C. Ma, W. Cao, W. Zhang, M. Ma, W. Sun et al., Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021). https://doi.org/10.1016/j.cej.2020.126438
- J.D. Yuen, S.A. Walper, B.J. Melde, M.A. Daniele, D.A. Stenger, Electrolyte-sensing transistor decals enabled by ultrathin microbial nanocellulose. Sci. Rep. 7(1), 40867 (2017). https://doi.org/10.1038/srep40867
- M. Jung, K. Kim, B. Kim, K.J. Lee, J.W. Kang et al., Vertically stacked nanocellulose tactile sensor. Nanoscale 9(44), 17212–17219 (2017). https://doi.org/10.1039/C7NR03685J
- S. Wang, J. Xu, W. Wang, G.J.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
- R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12(10), 938–944 (2013). https://doi.org/10.1038/nmat3755
- M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z. Bao, 25th anniversary : the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013). https://doi.org/10.1002/adma.201302240
- A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
- L. Gao, C. Zhu, L. Li, C. Zhang, J. Liu et al., All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 11(28), 25034–25042 (2019). https://doi.org/10.1021/acsami.9b07465
- J. Yang, H. Li, J. Cheng, T. He, J. Li et al., Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring. J. Mater. Sci. 56(24), 13859–13873 (2021). https://doi.org/10.1007/s10853-021-05909-y
- S. Ji, B.G. Hyun, K. Kim, S.Y. Lee, S.H. Kim et al., Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Mater. 8(8), e299–e299 (2016). https://doi.org/10.1038/am.2016.113
- E. Najafabadi, Y.H. Zhou, K.A. Knauer, C. Fuentes-Hernandez, B. Kippelen, Efficient organic light-emitting diodes fabricated on cellulose nanocrystal substrates. Appl. Phys. Lett. 105(6), 063305 (2014). https://doi.org/10.1063/1.4891046
- H. Zhu, Z. Xiao, D. Liu, Y. Li, N.J. Weadock et al., Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 6(7), 2105–2111 (2013). https://doi.org/10.1039/C3EE40492G
- S. Yang, Q. Xie, X. Liu, M. Wu, S. Wang et al., Acetylation improves thermal stability and transmittance in FOLED substrates based on nanocellulose films. RSC Adv. 8(7), 3619–3625 (2018). https://doi.org/10.1039/C7RA11134G
- K. Zhang, G. Chen, R. Li, K. Zhao, J. Shen et al., Facile preparation of highly transparent conducting nanopaper with electrical robustness. ACS Sustain. Chem. Eng. 8(13), 5132–5139 (2020). https://doi.org/10.1021/acssuschemeng.9b07266
- W. Chen, K. Abe, K. Uetani, H. Yu, Y. Liu et al., Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21(3), 1517–1528 (2014). https://doi.org/10.1007/s10570-014-0172-z
- Y. Zhang, L. Zhang, K. Cui, S. Ge, X. Cheng et al., Paper-based electronics: flexible electronics based on micro/nanostructured paper. Adv. Mater. 30(51), 1870394 (2018). https://doi.org/10.1002/adma.201870394
- S. Li, D. Huang, J. Yang, B. Zhang, X. Zhang et al., Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9, 309–317 (2014). https://doi.org/10.1016/j.nanoen.2014.08.004
- Z. Wang, P. Tammela, M. Strømme, L. Nyholm, Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 7(8), 3418–3423 (2015). https://doi.org/10.1039/C4NR07251K
- W. Zheng, R. Lv, B. Na, H. Liu, T. Jin et al., Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors. J. Mater. Chem. A 5(25), 12969–12976 (2017). https://doi.org/10.1039/C7TA01990D
- H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022). https://doi.org/10.1016/j.cej.2021.131994
- Q. Jiang, C. Kacica, T. Soundappan, K. Liu, S. Tadepalli et al., An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J. Mater. Chem. A 5(27), 13976–13982 (2017). https://doi.org/10.1039/C7TA03824K
- S. Zhou, X. Kong, B. Zheng, F. Huo, M. Strømme et al., Cellulose nanofiber @ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 13(8), 9578–9586 (2019). https://doi.org/10.1021/acsnano.9b04670
- W. Qi, R. Lv, B. Na, H. Liu, Y. He et al., Nanocellulose-assisted growth of manganese dioxide on thin graphite papers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 6(4), 4739–4745 (2018). https://doi.org/10.1021/acssuschemeng.7b03858
- C. Olivier, C. Moreau, P. Bertoncini, H. Bizot, O. Chauvet et al., Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 28(34), 12463–12471 (2012). https://doi.org/10.1021/la302077a
- M.M. Hamedi, A. Hajian, A.B. Fall, K. Håkansson, M. Salajkova et al., Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3), 2467–2476 (2014). https://doi.org/10.1021/nn4060368
- W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31(41), 1902977 (2019). https://doi.org/10.1002/adma.201902977
- V.N. An, L.P.N. Phong, N.V. Nhi, T.T.T. Van, H.T.C. Nhan et al., Effect of imidazole-doped nanocrystalline cellulose on the characterization of nafion films of fuel cells. J. Chem. Technol. Biotechnol. 96(11), 3114–3121 (2021). https://doi.org/10.1002/jctb.6863
- M. Mashkour, M. Rahimnejad, M. Mashkour, F. Soavi, Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly. Appl. Energy 282, 116150 (2021). https://doi.org/10.1016/j.apenergy.2020.116150
- T. Bayer, B.V. Cunning, B. Šmíd, R. Selyanchyn, S. Fujikawa et al., Spray deposition of sulfonated cellulose nanofibers as electrolyte membranes in fuel cells. Cellulose 28(3), 1355–1367 (2021). https://doi.org/10.1007/s10570-020-03593-w
- G. Jiang, J. Qiao, F. Hong, Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int. J. Hydrog. Energy 37(11), 9182–9192 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.195
- L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil et al., Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6(2), 513–518 (2013). https://doi.org/10.1039/C2EE23635D
- L. Gao, L. Chao, M. Hou, J. Liang, Y. Chen et al., Flexible, transparent nanocellulose paper-based perovskite solar cells. NPJ Flex. Electron. 3(1), 4 (2019). https://doi.org/10.1038/s41528-019-0048-2
- C. Zhang, J. Mo, Q. Fu, Y. Liu, S. Wang et al., Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81, 105637 (2021). https://doi.org/10.1016/j.nanoen.2020.105637
- M. Zhang, H. Du, K. Liu, S. Nie, T. Xu et al., Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid Mater. 4, 865–884 (2021). https://doi.org/10.1007/s42114-021-00312-2
- C. Yao, A. Hernandez, Y. Yu, Z. Cai, X. Wang, Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30, 103–108 (2016). https://doi.org/10.1016/j.nanoen.2016.09.036
- H.J. Kim, E.C. Yim, J.H. Kim, S.J. Kim, J.Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017). https://doi.org/10.1016/j.nanoen.2017.01.035
- S. Nie, C. Cai, X. Lin, C. Zhang, Y. Lu et al., Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain. Chem. Eng. 8(50), 18678–18685 (2020). https://doi.org/10.1021/acssuschemeng.0c07531
- J. Peng, H. Zhang, Q. Zheng, C.M. Clemons, R.C. Sabo et al., A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9(4), 1428–1433 (2017). https://doi.org/10.1039/C6NR07602E
- I. Kim, H. Jeon, D. Kim, J. You, D. Kim, All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 53, 975–981 (2018). https://doi.org/10.1016/j.nanoen.2018.09.060
- Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang et al., High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11, 719–727 (2015). https://doi.org/10.1016/j.nanoen.2014.11.061
- H. Oh, S.S. Kwak, B. Kim, E. Han, G.H. Lim et al., Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 29(37), 1904066 (2019). https://doi.org/10.1002/adfm.201904066
- S. Roy, H.U. Ko, P.K. Maji, L.V. Hai, J. Kim, Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chem. Eng. J. 385, 123723 (2020). https://doi.org/10.1016/j.cej.2019.123723
- T. Wu, Y. Song, Z. Shi, D. Liu, S. Chen et al., High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting. Nano Energy 80, 105541 (2021). https://doi.org/10.1016/j.nanoen.2020.105541
- H. Kargarzadeh, J. Huang, N. Lin, I. Ahmad, M. Mariano et al., Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci. 87, 197–227 (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.008
- J. Wang, D.J. Gardner, N.M. Stark, D.W. Bousfield, M. Tajvidi et al., Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 6(1), 49–70 (2018). https://doi.org/10.1021/acssuschemeng.7b03523
- G. Fotie, S. Limbo, L. Piergiovanni, Manufacturing of food packaging based on nanocellulose: current advances and challenges. Nanomaterials 10(9), 1726 (2020). https://doi.org/10.3390/nano10091726
- M. Vähä-Nissi, H.M. Koivula, H.M. Räisänen, J. Vartiainen, P. Ragni et al., Cellulose nanofibrils in biobased multilayer films for food packaging. J. Appl. Polym. Sci. 134(19), 44830 (2017). https://doi.org/10.1002/app.44830
- L.S.F. Leite, S. Bilatto, R.T. Paschoalin, A.C. Soares, F.K.V. Moreira et al., Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. Int. J. Biol. Macromol. 165, 2974–2983 (2020). https://doi.org/10.1016/j.ijbiomac.2020.10.189
- A. Oberlintner, V. Shvalya, A. Vasudevan, D. Vengust, B. Likozar et al., Hydrophilic to hydrophobic: ultrafast conversion of cellulose nanofibrils by cold plasma fluorination. Appl. Surf. Sci. 581, 152276 (2022). https://doi.org/10.1016/j.apsusc.2021.152276
- Y.S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao et al., Photothermal membrane water treatment for two worlds. Acc. Chem. Res. 52(5), 1215–1225 (2019). https://doi.org/10.1021/acs.accounts.9b00012
- C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
- A. Pandya, K. Shah, H. Prajapati, G.S. Vishwakarma, GQD embedded bacterial cellulose nanopaper based multi-layered filtration membranes assembly for industrial dye and heavy metal removal in wastewater. Cellulose 28(16), 10385–10398 (2021). https://doi.org/10.1007/s10570-021-04174-1
- T. Xu, Q. Jiang, D. Ghim, K.K. Liu, H. Sun et al., Catalytically active bacterial nanocellulose-based ultrafiltration membrane. Small 14(15), 1704006 (2018). https://doi.org/10.1002/smll.201704006
- H. Ma, C. Burger, B.S. Hsiao, B. Chu, Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J. Membr. Sci. 454, 272–282 (2014). https://doi.org/10.1016/j.memsci.2013.11.055
- H.G. Derami, Q. Jiang, D. Ghim, S. Cao, Y.J. Chandar et al., A robust and scalable polydopamine/bacterial nanocellulose hybrid membrane for efficient wastewater treatment. ACS Appl. Nano Mater. 2(2), 1092–1101 (2019). https://doi.org/10.1021/acsanm.9b00022
- Q. Zhu, Y. Wang, M. Li, K. Liu, C. Hu et al., Activable carboxylic acid functionalized crystalline nanocellulose/PVA-Co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions. Sep. Purif. Technol. 186, 70–77 (2017). https://doi.org/10.1016/j.seppur.2017.05.050
- F. Wahid, X.J. Zhao, Y. Duan, X. Zhao, S. Jia et al., Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation. Carbohydr. Polym. 257, 117611 (2021). https://doi.org/10.1016/j.carbpol.2020.117611
- Q. Jiang, D. Ghim, S. Cao, S. Tadepalli, K. Liu et al., Photothermally active reduced graphene oxide/bacterial nanocellulose composites as biofouling-resistant ultrafiltration membranes. Environ. Sci. Technol. 53(1), 412–421 (2019). https://doi.org/10.1021/acs.est.8b02772
- Z. Karim, A.P. Mathew, M. Grahn, J. Mouzon, K. Oksman, Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr. Polym. 112, 668–676 (2014). https://doi.org/10.1016/j.carbpol.2014.06.048
References
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
D. Zhao, B. Pang, Y. Zhu, W. Cheng, K. Cao et al., A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34(10), 2107857 (2022). https://doi.org/10.1002/adma.202107857
K.J.D. France, T. Hoare, E.D. Cranston, Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29(11), 4609–4631 (2017). https://doi.org/10.1021/acs.chemmater.7b00531
W. Liu, H. Du, M. Zhang, K. Liu, H. Liu et al., Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain. Chem. Eng. 8(20), 7536–7562 (2020). https://doi.org/10.1021/acssuschemeng.0c00125
K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang et al., Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr. Polym. 259, 117740 (2021). https://doi.org/10.1016/j.carbpol.2021.117740
D. Zhao, Y. Zhu, W. Cheng, G. Xu, Q. Wang et al., A dynamic gel with reversible and tunable topological networks and performances. Matter 2(2), 390–403 (2020). https://doi.org/10.1016/j.matt.2019.10.020
K. Liu, H. Du, W. Liu, H. Liu, M. Zhang et al., Cellulose nanomaterials for oil exploration applications. Polym. Rev. (2021). https://doi.org/10.1080/15583724.2021.2007121
H. Du, C. Liu, X. Mu, W. Gong, D. Lv et al., Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23(4), 2389–2407 (2016). https://doi.org/10.1007/s10570-016-0963-5
W. Ma, L. Li, X. Xiao, H. Du, X. Ren et al., Construction of chlorine labeled ZnO–chitosan loaded cellulose nanofibrils film with quick antibacterial performance and prominent UV stability. Macromol. Mater. Eng. 305(8), 2000228 (2020). https://doi.org/10.1002/mame.202000228
X. Li, R. Xu, J. Yang, S. Nie, D. Liu et al., Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind. Crops Prod. 130, 184–197 (2019). https://doi.org/10.1016/j.indcrop.2018.12.082
M. Tavakolian, S.M. Jafari, T.G.M. Ven, A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 12, 73 (2020). https://doi.org/10.1007/s40820-020-0408-4
R. Xiong, R.X. Xu, C. Huang, S.D. Smedt, K. Braeckmans, Stimuli-responsive nanobubbles for biomedical applications. Chem. Soc. Rev. 50(9), 5746–5776 (2021). https://doi.org/10.1039/C9CS00839J
R. Xiong, D. Hua, J.V. Hoeck, D. Berdecka, L. Léger et al., Photothermal nanofibres enable safe engineering of therapeutic cells. Nat. Nanotechnol. 16(11), 1281–1291 (2021). https://doi.org/10.1038/s41565-021-00976-3
C. Liu, H. Du, L. Dong, X. Wang, Y. Zhang et al., Properties of nanocelluloses and their application as rheology modifier in paper coating. Ind. Eng. Chem. Res. 56(29), 8264–8273 (2017). https://doi.org/10.1021/acs.iecr.7b01804
M.A. Herrera, A.P. Mathew, K. Oksman, Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose 24(9), 3969–3980 (2017). https://doi.org/10.1007/s10570-017-1405-8
L. Dai, Y. Wang, X. Zou, Z. Chen, H. Liu et al., Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials. Small 16(13), 1906567 (2020). https://doi.org/10.1002/smll.201906567
H. Golmohammadi, E. Morales-Narváez, T. Naghdi, A. Merkoçi, Nanocellulose in sensing and biosensing. Chem. Mater. 29(13), 5426–5446 (2017). https://doi.org/10.1021/acs.chemmater.7b01170
Q. Fu, C. Cui, L. Meng, S. Hao, R. Dai et al., Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring. Mater. Chem. Front. 5(5), 2051–2091 (2021). https://doi.org/10.1039/D0QM00748J
J. Wu, X. Che, H. Hu, H. Xu, B. Li et al., Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. J. Mater. Chem. A 8(11), 5442–5448 (2020). https://doi.org/10.1039/C9TA14039E
B. Pang, G. Jiang, J. Zhou, Y. Zhu, W. Cheng et al., Molecular-scale design of cellulose-based functional materials for flexible electronic devices. Adv. Electron. Mater. 7(2), 2000944 (2021). https://doi.org/10.1002/aelm.202000944
H. Du, M. Parit, K. Liu, M. Zhang, Z. Jiang et al., Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces 13(27), 32115–32125 (2021). https://doi.org/10.1021/acsami.1c06647
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202113082
T. Xu, H. Du, H. Liu, W. Liu, X. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33(48), 2101368 (2021). https://doi.org/10.1002/adma.202101368
H. Liu, H. Du, T. Zheng, K. Liu, X. Ji et al., Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 426, 130817 (2021). https://doi.org/10.1016/j.cej.2021.130817
C. Ding, T. Liu, X. Yan, L. Huang, S. Ryu et al., An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors. Nano-Micro Lett. 12, 63 (2020). https://doi.org/10.1007/s40820-020-0393-7
T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. (2022). https://doi.org/10.1016/j.ensm.2022.03.013
H. Du, C. Liu, M. Zhang, Q. Kong, B. Li et al., Preparation and industrialization status of nanocellulose. Prog. Chem. 30(4), 448 (2018). https://doi.org/10.7536/PC170830
R. Liu, L. Dai, C. Si, Z. Zeng, Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym. 195, 63–70 (2018). https://doi.org/10.1016/j.carbpol.2018.04.085
X. Li, R. Xu, J. Yang, S. Nie, D. Liu et al., Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind. Crops Prod. 130, 184–197 (2019). https://doi.org/10.1016/j.indcrop.2018.12.082
M. Parit, B. Aksoy, Z. Jiang, Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers. Cellulose 25(5), 2915–2924 (2018). https://doi.org/10.1007/s10570-018-1759-6
C. Miao, H. Du, M. Parit, Z. Jiang, H.V. Tippur et al., Superior crack initiation and growth characteristics of cellulose nanopapers. Cellulose 27(6), 3181–3195 (2020). https://doi.org/10.1007/s10570-020-03015-x
C. Miao, H. Du, X. Zhang, H.V. Tippur, Dynamic crack initiation and growth in cellulose nanopaper. Cellulose 29(1), 557–569 (2022). https://doi.org/10.1007/s10570-021-04310-x
Y. Li, H. Zhu, F. Shen, J. Wan, S. Lacey et al., Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13, 346–354 (2015). https://doi.org/10.1016/j.nanoen.2015.02.015
C. Tong, S. Zhang, T. Zhong, Z. Fang, H. Liu, Highly fibrillated and intrinsically flame-retardant nanofibrillated cellulose for transparent mineral filler-free fire-protective coatings. Chem. Eng. J. 419, 129440 (2021). https://doi.org/10.1016/j.cej.2021.129440
J. Wang, W. Chen, T. Dong, H. Wang, S. Si et al., Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chem. 23(24), 10062–10070 (2021). https://doi.org/10.1039/D1GC03906G
J. Xu, C. Li, L. Dai, C. Xu, Y. Zhong et al., Biomass fractionation and lignin fractionation towards lignin valorization. ChemSusChem 13(17), 4284–4295 (2020). https://doi.org/10.1002/cssc.202001491
R.T. Mackin, K.R. Fontenot, J.V. Edwards, N.T. Prevost, C. Grimm et al., Synthesis and characterization of TEMPO-oxidized peptide-cellulose conjugate biosensors for detecting human neutrophil elastase. Cellulose 29(2), 1293–1305 (2022). https://doi.org/10.1007/s10570-021-04362-z
F. Brunetti, A. Operamolla, S. Castro-Hermosa, G. Lucarelli, V. Manca et al., Printed solar cells and energy storage devices on paper substrates. Adv. Funct. Mater. 29(21), 1806798 (2019). https://doi.org/10.1002/adfm.201806798
A. Barhoum, P. Samyn, T. Öhlund, A. Dufresne, Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40), 15181–15205 (2017). https://doi.org/10.1039/C7NR04656A
F. Hoeng, A. Denneulin, J. Bras, Use of nanocellulose in printed electronics: a review. Nanoscale 8(27), 13131–13154 (2016). https://doi.org/10.1039/C6NR03054H
A. Operamolla, Recent advances on renewable and biodegradable cellulose nanopaper substrates for transparent light-harvesting devices: interaction with humid environment. Int. J. Photoenergy 2019, e3057929 (2019). https://doi.org/10.1155/2019/3057929
Z. Fang, G. Hou, C. Chen, L. Hu, Nanocellulose-based films and their emerging applications. Curr. Opin. Solid State Mater. Sci. 23(4), 100764 (2019). https://doi.org/10.1016/j.cossms.2019.07.003
D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33(28), 2000619 (2021). https://doi.org/10.1002/adma.202000619
Z. Shi, Y. Zhang, G.O. Phillips, G. Yang, Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014). https://doi.org/10.1016/j.foodhyd.2013.07.012
H. Xie, H. Du, X. Yang, C. Si, Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int. J. Polym. Sci. 2018, 7923068 (2018). https://doi.org/10.1155/2018/7923068
H. Du, C. Liu, Y. Zhang, G. Yu, C. Si et al., Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind. Crops Prod. 94, 736–745 (2016). https://doi.org/10.1016/j.indcrop.2016.09.059
Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010). https://doi.org/10.1021/cr900339w
K. Liu, H. Du, T. Zheng, W. Liu, M. Zhang et al., Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem. 23(24), 9723–9746 (2021). https://doi.org/10.1039/D1GC02841C
X. Yang, H. Xie, H. Du, X. Zhang, Z. Zou et al., Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain. Chem. Eng. 7(7), 7200–7208 (2019). https://doi.org/10.1021/acssuschemeng.9b00209
H. Wang, H. Xie, H. Du, X. Wang, W. Liu et al., Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohydr. Polym. 239, 116233 (2020). https://doi.org/10.1016/j.carbpol.2020.116233
W. Liu, H. Du, H. Liu, H. Xie, T. Xu et al., Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain. Chem. Eng. 8(44), 16691–16700 (2020). https://doi.org/10.1021/acssuschemeng.0c06561
H. Wang, H. Du, K. Liu, H. Liu, T. Xu et al., Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr. Polym. 266(15), 118107 (2021). https://doi.org/10.1016/j.carbpol.2021.118107
J. George, S. Sabapathi, Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45–54 (2015). https://doi.org/10.2147/NSA.S64386
H. Du, W. Liu, M. Zhang, C. Si, X. Zhang et al., Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.020
M. Parit, H. Du, X. Zhang, C. Prather, M. Adams et al., Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym. 240, 116304 (2020). https://doi.org/10.1016/j.carbpol.2020.116304
O. Nechyporchuk, M.N. Belgacem, J. Bras, Production of cellulose nanofibrils: a review of recent advances. Ind. Crops Prod. 93, 2–25 (2016). https://doi.org/10.1016/j.indcrop.2016.02.016
H. Du, M. Parit, M. Wu, X. Che, Y. Wang et al., Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J. Hazard. Mater. 400, 123106 (2020). https://doi.org/10.1016/j.jhazmat.2020.123106
W. Liu, H. Du, K. Liu, H. Liu, H. Xie et al., Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydr. Polym. 267, 118220 (2021). https://doi.org/10.1016/j.carbpol.2021.118220
R. Xu, H. Du, C. Liu, H. Liu, M. Wu et al., An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J. Clean. Prod. 313, 127834 (2021). https://doi.org/10.1016/j.jclepro.2021.127834
S. Gorgieva, Bacterial cellulose as a versatile platform for research and development of biomedical materials. Processes 8(5), 624 (2020). https://doi.org/10.3390/pr8050624
W. Liu, H. Du, T. Zheng, C. Si, Recent insights on biomedical applications of bacterial cellulose based composite hydrogels. Curr. Med. Chem. 28(40), 8319–8332 (2021). https://doi.org/10.2174/0929867328666210412124444
S. Gorgieva, J. Trček, Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 9(10), 1352 (2019). https://doi.org/10.3390/nano9101352
D. Lv, H. Du, X. Che, M. Wu, Y. Zhang et al., Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustain. Chem. Eng. 7(10), 9449–9463 (2019). https://doi.org/10.1021/acssuschemeng.9b00714
A.J. Benítez, A. Walther, Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J. Mater. Chem. A 5(31), 16003–16024 (2017). https://doi.org/10.1039/C7TA02006F
J.F. Revol, H. Bradford, J. Giasson, R.H. Marchessault, D.G. Gray, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14(3), 170–172 (1992). https://doi.org/10.1016/S0141-8130(05)80008-X
A. Dufresne, J.Y. Cavaillé, M.R. Vignon, Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J. Appl. Polym. Sci. 64(6), 1185–1194 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6%3c1185::AID-APP19%3e3.0.CO;2-V
T. Taniguchi, K. Okamura, New films produced from microfibrillated natural fibres. Polym. Int. 47(3), 291–294 (1998). https://doi.org/10.1002/(SICI)1097-0126(199811)47:3%3c291::AID-PI11%3e3.0.CO;2-1
Y. Peng, D.J. Gardner, Y. Han, A. Kiziltas, Z. Cai et al., Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5), 2379–2392 (2013). https://doi.org/10.1007/s10570-013-0019-z
A. Sosnik, K.P. Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug ps and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 223, 40–54 (2015). https://doi.org/10.1016/j.cis.2015.05.003
J. Han, C. Zhou, Y. Wu, F. Liu, Q. Wu, Self-assembling behavior of cellulose nanops during freeze-drying: effect of suspension concentration, p size, crystal structure, and surface charge. Biomacromol 14(5), 1529–1540 (2013). https://doi.org/10.1021/bm4001734
H. Fukuzumi, T. Saito, A. Isogai, Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr. Polym. 93(1), 172–177 (2013). https://doi.org/10.1016/j.carbpol.2012.04.069
C. Aulin, M. Gällstedt, T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3), 559–574 (2010). https://doi.org/10.1007/s10570-009-9393-y
H. Sehaqui, A. Liu, Q. Zhou, L.A. Berglund, Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromol 11(9), 2195–2198 (2010). https://doi.org/10.1021/bm100490s
A. Tran, W.Y. Hamad, M.J. MacLachlan, Fabrication of cellulose nanocrystal films through differential evaporation for patterned coatings. ACS Appl. Nano Mater. 1(7), 3098–3104 (2018). https://doi.org/10.1021/acsanm.8b00947
M.A. Hubbe, A. Ferrer, P. Tyagi, Y. Yin, C. Salas et al., Nanocellulose in thin films, coatings, and plies for packaging applications: a review. Bioresources 12(1), 2143–2233 (2017). https://doi.org/10.15376/biores.12.1.2143-2233
D. Beneventi, E. Zeno, D. Chaussy, Rapid nanopaper production by spray deposition of concentrated microfibrillated cellulose slurries. Ind. Crops Prod. 72, 200–205 (2015). https://doi.org/10.1016/j.indcrop.2014.11.023
H. Sehaqui, S. Morimune, T. Nishino, L.A. Berglund, Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning. Biomacromol 13(11), 3661–3667 (2012). https://doi.org/10.1021/bm301105s
M. Österberg, J. Vartiainen, J. Lucenius, U. Hippi, J. Seppälä et al., A fast method to produce strong nfc films as a platform for barrier and functional materials. ACS Appl. Mater. Interfaces 5(11), 4640–4647 (2013). https://doi.org/10.1021/am401046x
Q. Wang, H. Du, F. Zhang, Y. Zhang, M. Wu et al., Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. J. Mater. Chem. A 6(27), 13021–13030 (2018). https://doi.org/10.1039/C8TA01986J
J. Wetterling, S. Jonsson, T. Mattsson, H. Theliander, The influence of ionic strength on the electroassisted filtration of microcrystalline cellulose. Ind. Eng. Chem. Res. 56(44), 12789–12798 (2017). https://doi.org/10.1021/acs.iecr.7b03575
J. Vartiainen, M. Vähä-Nissi, A. Harlin, Biopolymer films and coatings in packaging applications—a review of recent developments. Mater. Sci. Appl. 5(10), 708–718 (2014). https://doi.org/10.4236/msa.2014.510072
F. Ansari, Y. Ding, L.A. Berglund, R.H. Dauskardt, Toward sustainable multifunctional coatings containing nanocellulose in a hybrid glass matrix. ACS Nano 12(6), 5495–5503 (2018). https://doi.org/10.1021/acsnano.8b01057
V.K. Rastogi, P. Samyn, Bio-based coatings for paper applications. Coatings 5(4), 887–930 (2015). https://doi.org/10.3390/coatings5040887
L.F. Krol, D. Beneventi, F. Alloin, D. Chaussy, Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition. J. Mater. Sci. 50(11), 4095–4103 (2015). https://doi.org/10.1007/s10853-015-8965-5
K. Shanmugam, H. Doosthosseini, S. Varanasi, G. Garnier, W. Batchelor, Flexible spray coating process for smooth nanocellulose film production. Cellulose 25(3), 1725–1741 (2018). https://doi.org/10.1007/s10570-018-1677-7
V. Kumar, A. Elfving, H. Koivula, D. Bousfield, M. Toivakka, Roll-to-roll processed cellulose nanofiber coatings. Ind. Eng. Chem. Res. 55(12), 3603–3613 (2016). https://doi.org/10.1021/acs.iecr.6b00417
R.A. Chowdhury, C. Clarkson, V.A. Apalangya, S.M.N. Islam, J.P. Youngblood, Roll-to-roll fabrication of cellulose nanocrystal-poly(vinyl alcohol) composite coatings with controlled anisotropy. Cellulose 25(11), 6547–6560 (2018). https://doi.org/10.1007/s10570-018-2019-5
S.M.E.A. Azrak, W.J. Costakis, R.J. Moon, G.T. Schueneman, J.P. Youngblood, Continuous processing of cellulose nanofibril sheets through conventional single-screw extrusion. ACS Appl. Polym. Mater. 2(8), 3365–3377 (2020). https://doi.org/10.1021/acsapm.0c00477
M. Wang, X. Jia, W. Liu, X. Lin, Water insoluble and flexible transparent film based on carboxymethyl cellulose. Carbohydr. Polym. 255, 117353 (2021). https://doi.org/10.1016/j.carbpol.2020.117353
S.V. Nguyen, B.K. Lee, Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment. Cellulose 28(9), 5693–5705 (2021). https://doi.org/10.1007/s10570-021-03894-8
L. Sun, X. Zhang, H. Liu, K. Liu, H. Du et al., Recent advances in hydrophobic modification of nanocellulose. Curr. Org. Chem. 25(3), 417–436 (2021). https://doi.org/10.2174/1385272824999201210191041
A.G. Cunha, Q. Zhou, P.T. Larsson, L.A. Berglund, Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption. Cellulose 21(4), 2773–2787 (2014). https://doi.org/10.1007/s10570-014-0334-z
A. Operamolla, S. Casalini, D. Console, L. Capodieci, F.D. Benedetto et al., Tailoring water stability of cellulose nanopaper by surface functionalization. Soft Matter 14(36), 7390–7400 (2018). https://doi.org/10.1039/C8SM00433A
H. Zhu, B.B. Narakathu, Z. Fang, A.T. Aijazi, M. Joyce et al., A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale 6(15), 9110–9115 (2014). https://doi.org/10.1039/C4NR02036G
M.H. Jung, N.M. Park, S.Y. Lee, Color tunable nanopaper solar cells using hybrid CH3NH3PbI3−xBrx perovskite. Sol. Energy 139, 458–466 (2016). https://doi.org/10.1016/j.solener.2016.10.032
O.A.T. Dias, S. Konar, A.L. Leão, W. Yang, J. Tjong et al., Current state of applications of nanocellulose in flexible energy and electronic devices. Front. Chem. 8, 420 (2020). https://doi.org/10.3389/fchem.2020.00420
A.T. Vicente, A. Araújo, M.J. Mendes, D. Nunes, M.J. Oliveira et al., Multifunctional cellulose-paper for light harvesting and smart sensing applications. J. Mater. Chem. C 6(13), 3143–3181 (2018). https://doi.org/10.1039/C7TC05271E
X. Xu, Y.L. Hsieh, Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale 11(24), 11719–11729 (2019). https://doi.org/10.1039/C9NR01602C
R. Xiong, S. Yu, M.J. Smith, J. Zhou, M. Krecker et al., Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials. ACS Nano 13(8), 9074–9081 (2019). https://doi.org/10.1021/acsnano.9b03305
H. Du, M. Parit, K. Liu, M. Zhang, Z. Jiang et al., Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohydr. Polym. 270, 118372 (2021). https://doi.org/10.1016/j.carbpol.2021.118372
H. Zhang, L. Shi, X. Feng, Use of chitosan to reinforce transparent conductive cellulose nanopaper. J. Mater. Chem. C 6(2), 242–248 (2018). https://doi.org/10.1039/C7TC03980H
E. Morales-Narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv et al., Nanopaper as an optical sensing platform. ACS Nano 9(7), 7296–7305 (2015). https://doi.org/10.1021/acsnano.5b03097
S. Galland, R.L. Andersson, M. Salajková, V. Ström, R.T. Olsson et al., Cellulose nanofibers decorated with magnetic nanops – synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. J. Mater. Chem. C 1(47), 7963–7972 (2013). https://doi.org/10.1039/C3TC31748J
M. Nogi, M. Karakawa, N. Komoda, H. Yagyu, T.T. Nge, Transparent conductive nanofiber paper for foldable solar cells. Sci. Rep. 5(1), 17254 (2015). https://doi.org/10.1038/srep17254
M.M.G. Campo, M. Darder, P. Aranda, M. Akkari, Y. Huttel et al., Functional hybrid nanopaper by assembling nanofibers of cellulose and sepiolite. Adv. Funct. Mater. 28(27), 1703048 (2018). https://doi.org/10.1002/adfm.201703048
G. Song, R. Kang, L. Guo, Z. Ali, X. Chen et al., Highly flexible few-layer Ti3C2 MXene/cellulose nanofiber heat-spreader films with enhanced thermal conductivity. New J. Chem. 44(17), 7186–7193 (2020). https://doi.org/10.1039/D0NJ00672F
F. Carosio, J. Kochumalayil, F. Cuttica, G. Camino, L. Berglund, Oriented clay nanopaper from biobased components—mechanisms for superior fire protection properties. ACS Appl. Mater. Interfaces 7(10), 5847–5856 (2015). https://doi.org/10.1021/am509058h
H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao et al., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4), 3606–3613 (2014). https://doi.org/10.1021/nn500134m
Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu et al., Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep. 3(1), 1536 (2013). https://doi.org/10.1038/srep01536
J.D. Fox, J.R. Capadona, P.D. Marasco, S.J. Rowan, Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J. Am. Chem. Soc. 135(13), 5167–5174 (2013). https://doi.org/10.1021/ja4002713
B. Wang, A.J. Benitez, F. Lossada, R. Merindol, A. Walther, Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers. Angew. Chem. Int. Ed. 128(20), 6070–6074 (2016). https://doi.org/10.1002/ange.201511512
M. Wu, P. Sukyai, D. Lv, F. Zhang, P. Wang et al., Water and humidity-induced shape memory cellulose nanopaper with quick response, excellent wet strength and folding resistance. Chem. Eng. J. 392, 123673 (2020). https://doi.org/10.1016/j.cej.2019.123673
K. Zhao, W. Wang, A. Teng, K. Zhang, Y. Ma et al., Using cellulose nanofibers to reinforce polysaccharide films: blending vs layer-by-layer casting. Carbohydr. Polym. 227, 115264 (2020). https://doi.org/10.1016/j.carbpol.2019.115264
H. Yu, Y. Tian, M. Dirican, D. Fang, C. Yan et al., Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels. Carbohydr. Polym. 273, 118539 (2021). https://doi.org/10.1016/j.carbpol.2021.118539
Y. Pan, Z. Qin, S. Kheiri, B. Ying, P. Pan et al., Optical printing of conductive silver on ultrasmooth nanocellulose paper for flexible electronics. Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202101598
Y. Wang, J.T. Huang, Transparent, conductive and superhydrophobic cellulose films for flexible electrode application. RSC Adv. 11(58), 36607–36616 (2021). https://doi.org/10.1039/D1RA06865B
Y. Su, Y. Zhao, H. Zhang, X. Feng, L. Shi et al., Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. J. Mater. Chem. C 5(3), 573–581 (2017). https://doi.org/10.1039/C6TC04928A
F. Hoeng, A. Denneulin, G. Krosnicki, J. Bras, Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films. J. Mater. Chem. C 4(46), 10945–10954 (2016). https://doi.org/10.1039/C6TC03629E
H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu et al., Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016). https://doi.org/10.1021/acs.chemrev.6b00225
T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00425-2
Y. Gao, D. Liu, Y. Xie, Y. Song, E. Zhu et al., Flexible and sensitive piezoresistive electronic skin based on TOCN/PPy hydrogel films. J. Appl. Polym. Sci. 138(48), 51367 (2021). https://doi.org/10.1002/app.51367
C. Ma, W. Cao, W. Zhang, M. Ma, W. Sun et al., Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021). https://doi.org/10.1016/j.cej.2020.126438
J.D. Yuen, S.A. Walper, B.J. Melde, M.A. Daniele, D.A. Stenger, Electrolyte-sensing transistor decals enabled by ultrathin microbial nanocellulose. Sci. Rep. 7(1), 40867 (2017). https://doi.org/10.1038/srep40867
M. Jung, K. Kim, B. Kim, K.J. Lee, J.W. Kang et al., Vertically stacked nanocellulose tactile sensor. Nanoscale 9(44), 17212–17219 (2017). https://doi.org/10.1039/C7NR03685J
S. Wang, J. Xu, W. Wang, G.J.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12(10), 938–944 (2013). https://doi.org/10.1038/nmat3755
M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z. Bao, 25th anniversary : the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013). https://doi.org/10.1002/adma.201302240
A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017). https://doi.org/10.1038/nnano.2017.125
L. Gao, C. Zhu, L. Li, C. Zhang, J. Liu et al., All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 11(28), 25034–25042 (2019). https://doi.org/10.1021/acsami.9b07465
J. Yang, H. Li, J. Cheng, T. He, J. Li et al., Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring. J. Mater. Sci. 56(24), 13859–13873 (2021). https://doi.org/10.1007/s10853-021-05909-y
S. Ji, B.G. Hyun, K. Kim, S.Y. Lee, S.H. Kim et al., Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Mater. 8(8), e299–e299 (2016). https://doi.org/10.1038/am.2016.113
E. Najafabadi, Y.H. Zhou, K.A. Knauer, C. Fuentes-Hernandez, B. Kippelen, Efficient organic light-emitting diodes fabricated on cellulose nanocrystal substrates. Appl. Phys. Lett. 105(6), 063305 (2014). https://doi.org/10.1063/1.4891046
H. Zhu, Z. Xiao, D. Liu, Y. Li, N.J. Weadock et al., Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 6(7), 2105–2111 (2013). https://doi.org/10.1039/C3EE40492G
S. Yang, Q. Xie, X. Liu, M. Wu, S. Wang et al., Acetylation improves thermal stability and transmittance in FOLED substrates based on nanocellulose films. RSC Adv. 8(7), 3619–3625 (2018). https://doi.org/10.1039/C7RA11134G
K. Zhang, G. Chen, R. Li, K. Zhao, J. Shen et al., Facile preparation of highly transparent conducting nanopaper with electrical robustness. ACS Sustain. Chem. Eng. 8(13), 5132–5139 (2020). https://doi.org/10.1021/acssuschemeng.9b07266
W. Chen, K. Abe, K. Uetani, H. Yu, Y. Liu et al., Individual cotton cellulose nanofibers: pretreatment and fibrillation technique. Cellulose 21(3), 1517–1528 (2014). https://doi.org/10.1007/s10570-014-0172-z
Y. Zhang, L. Zhang, K. Cui, S. Ge, X. Cheng et al., Paper-based electronics: flexible electronics based on micro/nanostructured paper. Adv. Mater. 30(51), 1870394 (2018). https://doi.org/10.1002/adma.201870394
S. Li, D. Huang, J. Yang, B. Zhang, X. Zhang et al., Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9, 309–317 (2014). https://doi.org/10.1016/j.nanoen.2014.08.004
Z. Wang, P. Tammela, M. Strømme, L. Nyholm, Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 7(8), 3418–3423 (2015). https://doi.org/10.1039/C4NR07251K
W. Zheng, R. Lv, B. Na, H. Liu, T. Jin et al., Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors. J. Mater. Chem. A 5(25), 12969–12976 (2017). https://doi.org/10.1039/C7TA01990D
H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022). https://doi.org/10.1016/j.cej.2021.131994
Q. Jiang, C. Kacica, T. Soundappan, K. Liu, S. Tadepalli et al., An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J. Mater. Chem. A 5(27), 13976–13982 (2017). https://doi.org/10.1039/C7TA03824K
S. Zhou, X. Kong, B. Zheng, F. Huo, M. Strømme et al., Cellulose nanofiber @ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 13(8), 9578–9586 (2019). https://doi.org/10.1021/acsnano.9b04670
W. Qi, R. Lv, B. Na, H. Liu, Y. He et al., Nanocellulose-assisted growth of manganese dioxide on thin graphite papers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 6(4), 4739–4745 (2018). https://doi.org/10.1021/acssuschemeng.7b03858
C. Olivier, C. Moreau, P. Bertoncini, H. Bizot, O. Chauvet et al., Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 28(34), 12463–12471 (2012). https://doi.org/10.1021/la302077a
M.M. Hamedi, A. Hajian, A.B. Fall, K. Håkansson, M. Salajkova et al., Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3), 2467–2476 (2014). https://doi.org/10.1021/nn4060368
W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31(41), 1902977 (2019). https://doi.org/10.1002/adma.201902977
V.N. An, L.P.N. Phong, N.V. Nhi, T.T.T. Van, H.T.C. Nhan et al., Effect of imidazole-doped nanocrystalline cellulose on the characterization of nafion films of fuel cells. J. Chem. Technol. Biotechnol. 96(11), 3114–3121 (2021). https://doi.org/10.1002/jctb.6863
M. Mashkour, M. Rahimnejad, M. Mashkour, F. Soavi, Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly. Appl. Energy 282, 116150 (2021). https://doi.org/10.1016/j.apenergy.2020.116150
T. Bayer, B.V. Cunning, B. Šmíd, R. Selyanchyn, S. Fujikawa et al., Spray deposition of sulfonated cellulose nanofibers as electrolyte membranes in fuel cells. Cellulose 28(3), 1355–1367 (2021). https://doi.org/10.1007/s10570-020-03593-w
G. Jiang, J. Qiao, F. Hong, Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int. J. Hydrog. Energy 37(11), 9182–9192 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.195
L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil et al., Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6(2), 513–518 (2013). https://doi.org/10.1039/C2EE23635D
L. Gao, L. Chao, M. Hou, J. Liang, Y. Chen et al., Flexible, transparent nanocellulose paper-based perovskite solar cells. NPJ Flex. Electron. 3(1), 4 (2019). https://doi.org/10.1038/s41528-019-0048-2
C. Zhang, J. Mo, Q. Fu, Y. Liu, S. Wang et al., Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81, 105637 (2021). https://doi.org/10.1016/j.nanoen.2020.105637
M. Zhang, H. Du, K. Liu, S. Nie, T. Xu et al., Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid Mater. 4, 865–884 (2021). https://doi.org/10.1007/s42114-021-00312-2
C. Yao, A. Hernandez, Y. Yu, Z. Cai, X. Wang, Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30, 103–108 (2016). https://doi.org/10.1016/j.nanoen.2016.09.036
H.J. Kim, E.C. Yim, J.H. Kim, S.J. Kim, J.Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017). https://doi.org/10.1016/j.nanoen.2017.01.035
S. Nie, C. Cai, X. Lin, C. Zhang, Y. Lu et al., Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain. Chem. Eng. 8(50), 18678–18685 (2020). https://doi.org/10.1021/acssuschemeng.0c07531
J. Peng, H. Zhang, Q. Zheng, C.M. Clemons, R.C. Sabo et al., A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9(4), 1428–1433 (2017). https://doi.org/10.1039/C6NR07602E
I. Kim, H. Jeon, D. Kim, J. You, D. Kim, All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 53, 975–981 (2018). https://doi.org/10.1016/j.nanoen.2018.09.060
Y. Zhao, Q. Liao, G. Zhang, Z. Zhang, Q. Liang et al., High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11, 719–727 (2015). https://doi.org/10.1016/j.nanoen.2014.11.061
H. Oh, S.S. Kwak, B. Kim, E. Han, G.H. Lim et al., Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 29(37), 1904066 (2019). https://doi.org/10.1002/adfm.201904066
S. Roy, H.U. Ko, P.K. Maji, L.V. Hai, J. Kim, Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chem. Eng. J. 385, 123723 (2020). https://doi.org/10.1016/j.cej.2019.123723
T. Wu, Y. Song, Z. Shi, D. Liu, S. Chen et al., High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting. Nano Energy 80, 105541 (2021). https://doi.org/10.1016/j.nanoen.2020.105541
H. Kargarzadeh, J. Huang, N. Lin, I. Ahmad, M. Mariano et al., Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci. 87, 197–227 (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.008
J. Wang, D.J. Gardner, N.M. Stark, D.W. Bousfield, M. Tajvidi et al., Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 6(1), 49–70 (2018). https://doi.org/10.1021/acssuschemeng.7b03523
G. Fotie, S. Limbo, L. Piergiovanni, Manufacturing of food packaging based on nanocellulose: current advances and challenges. Nanomaterials 10(9), 1726 (2020). https://doi.org/10.3390/nano10091726
M. Vähä-Nissi, H.M. Koivula, H.M. Räisänen, J. Vartiainen, P. Ragni et al., Cellulose nanofibrils in biobased multilayer films for food packaging. J. Appl. Polym. Sci. 134(19), 44830 (2017). https://doi.org/10.1002/app.44830
L.S.F. Leite, S. Bilatto, R.T. Paschoalin, A.C. Soares, F.K.V. Moreira et al., Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. Int. J. Biol. Macromol. 165, 2974–2983 (2020). https://doi.org/10.1016/j.ijbiomac.2020.10.189
A. Oberlintner, V. Shvalya, A. Vasudevan, D. Vengust, B. Likozar et al., Hydrophilic to hydrophobic: ultrafast conversion of cellulose nanofibrils by cold plasma fluorination. Appl. Surf. Sci. 581, 152276 (2022). https://doi.org/10.1016/j.apsusc.2021.152276
Y.S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao et al., Photothermal membrane water treatment for two worlds. Acc. Chem. Res. 52(5), 1215–1225 (2019). https://doi.org/10.1021/acs.accounts.9b00012
C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
A. Pandya, K. Shah, H. Prajapati, G.S. Vishwakarma, GQD embedded bacterial cellulose nanopaper based multi-layered filtration membranes assembly for industrial dye and heavy metal removal in wastewater. Cellulose 28(16), 10385–10398 (2021). https://doi.org/10.1007/s10570-021-04174-1
T. Xu, Q. Jiang, D. Ghim, K.K. Liu, H. Sun et al., Catalytically active bacterial nanocellulose-based ultrafiltration membrane. Small 14(15), 1704006 (2018). https://doi.org/10.1002/smll.201704006
H. Ma, C. Burger, B.S. Hsiao, B. Chu, Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J. Membr. Sci. 454, 272–282 (2014). https://doi.org/10.1016/j.memsci.2013.11.055
H.G. Derami, Q. Jiang, D. Ghim, S. Cao, Y.J. Chandar et al., A robust and scalable polydopamine/bacterial nanocellulose hybrid membrane for efficient wastewater treatment. ACS Appl. Nano Mater. 2(2), 1092–1101 (2019). https://doi.org/10.1021/acsanm.9b00022
Q. Zhu, Y. Wang, M. Li, K. Liu, C. Hu et al., Activable carboxylic acid functionalized crystalline nanocellulose/PVA-Co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions. Sep. Purif. Technol. 186, 70–77 (2017). https://doi.org/10.1016/j.seppur.2017.05.050
F. Wahid, X.J. Zhao, Y. Duan, X. Zhao, S. Jia et al., Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation. Carbohydr. Polym. 257, 117611 (2021). https://doi.org/10.1016/j.carbpol.2020.117611
Q. Jiang, D. Ghim, S. Cao, S. Tadepalli, K. Liu et al., Photothermally active reduced graphene oxide/bacterial nanocellulose composites as biofouling-resistant ultrafiltration membranes. Environ. Sci. Technol. 53(1), 412–421 (2019). https://doi.org/10.1021/acs.est.8b02772
Z. Karim, A.P. Mathew, M. Grahn, J. Mouzon, K. Oksman, Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr. Polym. 112, 668–676 (2014). https://doi.org/10.1016/j.carbpol.2014.06.048