Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications
Corresponding Author: Tongkai Chen
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 100
Abstract
Cell membrane coating technology is an approach to the biomimetic replication of cell membrane properties, and is an active area of ongoing research readily applicable to nanoscale biomedicine. Nanoparticles (NPs) coated with cell membranes offer an opportunity to unite natural cell membrane properties with those of the artificial inner core material. The coated NPs not only increase their biocompatibility but also achieve effective and extended circulation in vivo, allowing for the execution of targeted functions. Although cell membrane-coated NPs offer clear advantages, much work remains before they can be applied in clinical practice. In this review, we first provide a comprehensive overview of the theory of cell membrane coating technology, followed by a summary of the existing preparation and characterization techniques. Next, we focus on the functions and applications of various cell membrane types. In addition, we collate model drugs used in cell membrane coating technology, and review the patent applications related to this technology from the past 10 years. Finally, we survey future challenges and trends pertaining to this technology in an effort to provide a comprehensive overview of the future development of cell membrane coating technology.
Highlights:
1 The recent progress on using cell membrane-coated nanoparticles for drug delivery, cancer treatment, vascular disease, immune modulation, and detoxification are summarized in this review.
2 The patent applications related to the cell membrane coating technology from the past 10 years are collected, the future challenges and trends pertaining to this technology are comprehensively discussed.
3 Unique properties of cell membrane-coated nanoparticles make it a promising strategy for biomedical applications and will make outstanding contributions to human health.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.S. Agasti, S. Rana, M.H. Park, C.K. Kim, C.C. You, V.M. Rotello, Nanoparticles for detection and diagnosis. Adv. Drug Deliv. Rev. 62(3), 316–328 (2010). https://doi.org/10.1016/j.addr.2009.11.004
- R.H. Fang, L. Zhang, Nanoparticle-based modulation of the immune system. Annu. Rev. Chem. Biomol. Eng. 7, 305–326 (2016). https://doi.org/10.1146/annurev-chembioeng-080615-034446
- S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, P. Chen, Biocompatibility of engineered nanoparticles for drug delivery. J. Control Release 166(2), 182–194 (2013). https://doi.org/10.1016/j.jconrel.2012.12.013
- T. Doane, C. Burda, Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 65(5), 607–621 (2013). https://doi.org/10.1016/j.addr.2012.05.012
- S. Shi, F. Chen, S. Goel, S.A. Graves, H. Luo, C.P. Theuer, J.W. Engle, W. Cai, In vivo tumor-targeted dual-modality pet/optical imaging with a yolk/shell-structured silica nanosystem. Nano-Micro Lett. 10(4), 65 (2018). https://doi.org/10.1007/s40820-018-0216-2
- S. Shrivastava, D. Dash, Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano-Micro Lett. 2(3), 164–168 (2010). https://doi.org/10.5101/nml.v2i3.p164-168
- M.E. Peralta, S.A. Jadhav, G. Magnacca, D. Scalarone, D.O. Martire, M.E. Parolo, L. Carlos, Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J. Colloid Interf. Sci. 544, 198–205 (2019). https://doi.org/10.1016/j.jcis.2019.02.086
- J.Q. Peng, S. Fumoto, T. Suga, H. Miyamoto, N. Kuroda, S. Kawakami, K. Nishida, Targeted co-delivery of protein and drug to a tumor in vivo by sophisticated RGD-modified lipid-calcium carbonate nanoparticles. J. Control Release 302, 42–53 (2019). https://doi.org/10.1016/j.jconrel.2019.03.021
- P. Davoodi, L.Y. Lee, Q. Xu, V. Sunil, Y. Sun, S. Soh, C.H. Wang, Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 132, 104–138 (2018). https://doi.org/10.1016/j.addr.2018.07.002
- A.C. Anselmo, S. Mitragotri, Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J. Control Release 190, 531–541 (2014). https://doi.org/10.1016/j.jconrel.2014.03.050
- A. Parodi, R. Molinaro, M. Sushnitha, M. Evangelopoulos, J.O. Martinez, N. Arrighetti, C. Corbo, E. Tasciotti, Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 147, 155–168 (2017). https://doi.org/10.1016/j.biomaterials.2017.09.020
- J.L. Wang, X.J. Du, J.X. Yang, S. Shen, H.J. Li et al., The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials 182, 104–113 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.022
- F.M. Veronese, G. Pasut, Pegylation, successful approach to drug delivery. Drug Discov. Today 10(21), 1451–1458 (2005). https://doi.org/10.1016/s1359-6446(05)03575-0
- T. Shimizu, A.S. Abu Lila, R. Fujita, M. Awata, M. Kawanishi, Y. Hashimoto, K. Okuhira, Y. Ishima, T. Ishida, A hydroxyl peg version of pegylated liposomes and its impact on anti-PEG IGm induction and on the accelerated clearance of pegylated liposomes. Eur. J. Pharm. Biopharm. 127, 142–149 (2018). https://doi.org/10.1016/j.ejpb.2018.02.019
- K. Shiraishi, M. Hamano, H. Ma, K. Kawano, Y. Maitani, T. Aoshi, K.J. Ishii, M. Yokoyama, Hydrophobic blocks of PEG-conjugates play a significant role in the accelerated blood clearance (ABC) phenomenon. J. Control Release 165(3), 183–190 (2013). https://doi.org/10.1016/j.jconrel.2012.11.016
- X. Wan, J. Zhang, W. Yu, L. Shen, S. Ji, T. Hu, Effect of protein immunogenicity and peg size and branching on the anti-PEG immune response to pegylated proteins. Process Biochem. 52, 183–191 (2017). https://doi.org/10.1016/j.procbio.2016.09.029
- M.Y. Thanuja, C. Anupama, S.H. Ranganath, Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv. Drug Deliv. Rev. 132, 57–80 (2018). https://doi.org/10.1016/j.addr.2018.06.012
- C. Sabu, C. Rejo, S. Kotta, K. Pramod, Bioinspired and biomimetic systems for advanced drug and gene delivery. J. Control Release 287, 142–155 (2018). https://doi.org/10.1016/j.jconrel.2018.08.033
- R.A. Meyer, J.C. Sunshine, J.J. Green, Biomimetic particles as therapeutics. Trends Biotechnol. 33(9), 514–524 (2015). https://doi.org/10.1016/j.tibtech.2015.07.001
- R.H. Fang, Y. Jiang, J.C. Fang, L. Zhang, Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128, 69–83 (2017). https://doi.org/10.1016/j.biomaterials.2017.02.041
- R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30(23), e1706759 (2018). https://doi.org/10.1002/adma.201706759
- Q. Xia, Y. Zhang, Z. Li, X. Hou, N. Feng, Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharmaceutica Sinica B 9(4), 675–689 (2019). https://doi.org/10.1016/j.apsb.2019.01.011
- H.H. Wu, Y. Zhou, Y. Tabata, J.Q. Gao, Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J. Control Release 294, 102–113 (2019). https://doi.org/10.1016/j.jconrel.2018.12.019
- C.M. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L. Zhang, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 108(27), 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
- A.V. Kroll, R.H. Fang, L. Zhang, Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug. Chem. 28(1), 23–32 (2017). https://doi.org/10.1021/acs.bioconjchem.6b00569
- K. Simons, W.L. Vaz, Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004). https://doi.org/10.1146/annurev.biophys.32.110601.141803
- Y. Zhai, J. Su, W. Ran, P. Zhang, Q. Yin, Z. Zhang, H. Yu, Y. Li, Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 7(10), 2575–2592 (2017). https://doi.org/10.7150/thno.20118
- X. Wei, J. Gao, R.H. Fang, B.T. Luk, A.V. Kroll et al., Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 111, 116–123 (2016). https://doi.org/10.1016/j.biomaterials.2016.10.003
- L. Rao, L.-L. Bu, J.-H. Xu, B. Cai, G.-T. Yu et al., Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 11(46), 6225–6236 (2015). https://doi.org/10.1002/smll.201502388
- T. Kang, Q. Zhu, D. Wei, J. Feng, J. Yao et al., Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11(2), 1397–1411 (2017). https://doi.org/10.1021/acsnano.6b06477
- C. Gao, Z. Lin, Z. Wu, X. Lin, Q. He, Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl. Mater. Interfaces. 8(50), 34252–34260 (2016). https://doi.org/10.1021/acsami.6b12865
- H. Cao, Z. Dan, X. He, Z. Zhang, H. Yu, Q. Yin, Y. Li, Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10(8), 7738–7748 (2016). https://doi.org/10.1021/acsnano.6b03148
- R. Yang, J. Xu, L. Xu, X. Sun, Q. Chen, Y. Zhao, R. Peng, Z. Liu, Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 12(6), 5121–5129 (2018). https://doi.org/10.1021/acsnano.7b09041
- L. Rao, Z. He, Q.F. Meng, Z. Zhou, L.L. Bu et al., Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J. Biomed. Mater. Res. A 105(2), 521–530 (2017). https://doi.org/10.1002/jbm.a.35927
- V. Vijayan, S. Uthaman, I.K. Park, in Cell membrane coated nanoparticles: an emerging biomimetic nanoplatform for targeted bioimaging and therapy, ed. by NOH I (Springer, Singapore Pte Ltd, Singapore, 2018), pp. 45–59
- Z. Fan, P.Y. Li, J. Deng, S.C. Bady, H. Cheng, Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res. 11(10), 5573–5583 (2018). https://doi.org/10.1007/s12274-018-2084-y
- A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos et al., Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8(1), 61–68 (2013). https://doi.org/10.1038/nnano.2012.212
- L. Rao, Q.-F. Meng, Q. Huang, P. Liu, L.-L. Bu et al., Photocatalytic degradation of cell membrane coatings for controlled drug release. Adv. Healthc. Mater. 5(12), 1420–1427 (2016). https://doi.org/10.1002/adhm.201600303
- J. Su, H. Sun, Q. Meng, P. Zhang, Q. Yin, Y. Li, Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 7(3), 523–537 (2017). https://doi.org/10.7150/thno.17259
- Q. Xu, J. Wan, N. Bie, X. Song, X. Yang et al., A biomimetic gold nanocages-based nanoplatform for efficient tumor ablation and reduced inflammation. Theranostics 8(19), 5362–5378 (2018). https://doi.org/10.7150/thno.27631
- X. Ren, R. Zheng, X. Fang, X. Wang, X. Zhang, W. Yang, X. Sha, Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 92, 13–24 (2016). https://doi.org/10.1016/j.biomaterials.2016.03.026
- L. Rao, Q.F. Meng, L.L. Bu, B. Cai, Q. Huang et al., Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 9(3), 2159–2168 (2017). https://doi.org/10.1021/acsami.6b14450
- W.L. Liu, M.Z. Zou, T. Liu, J.Y. Zeng, X. Li et al., Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv. Mater. 31(18), 1900499 (2019). https://doi.org/10.1002/adma.201900499
- Z. Fan, J. Deng, P.Y. Li, D.R. Chery, Y. Su et al., A new class of biological materials: cell membrane-derived hydrogel scaffolds. Biomaterials 197, 244–254 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.020
- X. Liang, X. Ye, C. Wang, C. Xing, Q. Miao et al., Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control Release 296, 150–161 (2019). https://doi.org/10.1016/j.jconrel.2019.01.027
- D. Dehaini, X. Wei, R.H. Fang, S. Masson, P. Angsantikul et al., Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 29(16), 1606209 (2017). https://doi.org/10.1002/adma.201606209
- M. Mathiyazhakan, C. Wiraja, C. Xu, A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett. 10(1), 10 (2018). https://doi.org/10.1007/s40820-017-0166-0
- V. Vijayan, S. Uthaman, I.K. Park, Cell membrane coated nanoparticles: an emerging biomimetic nanoplatform for targeted bioimaging and therapy. Adv. Exp. Med. Biol. 1064, 45–59 (2018). https://doi.org/10.1007/978-981-13-0445-3_3
- S.Y. Li, H. Cheng, W.X. Qiu, L. Zhang, S.S. Wan, J.Y. Zeng, X.Z. Zhang, Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 142, 149–161 (2017). https://doi.org/10.1016/j.biomaterials.2017.07.026
- C. Gao, Z. Lin, B. Jurado-Sanchez, X. Lin, Z. Wu, Q. He, Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30), 4056–4062 (2016). https://doi.org/10.1002/smll.201600624
- W. Chen, J. Ouyang, X. Yi, Y. Xu, C. Niu et al., Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 30(3), 1703458 (2018). https://doi.org/10.1002/adma.201703458
- Y. Chen, M. Chen, Y. Zhang, J.H. Lee, T. Escajadillo et al., Broad-spectrum neutralization of pore-forming toxins with human erythrocyte membrane-coated nanosponges. Adv. Healthc. Mater. 7(13), e1701366 (2018). https://doi.org/10.1002/adhm.201701366
- H.W. Chen, Z.S. Fang, Y.T. Chen, Y.I. Chen, B.Y. Yao et al., Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection. ACS Appl. Mater. Interfaces 9(46), 39953–39961 (2017). https://doi.org/10.1021/acsami.7b09931
- X. Wei, G. Zhang, D. Ran, N. Krishnan, R.H. Fang, W. Gao, S.A. Spector, L. Zhang, T-cell-mimicking nanoparticles can neutralize HIV infectivity. Adv. Mater. 30(45), e1802233 (2018). https://doi.org/10.1002/adma.201802233
- S. Thamphiwatana, P. Angsantikul, T. Escajadillo, Q. Zhang, J. Olson et al., Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc. Natl. Acad. Sci. U.S.A. 114(43), 11488–11493 (2017). https://doi.org/10.1073/pnas.1714267114
- Y. Han, H. Pan, W. Li, Z. Chen, A. Ma et al., T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv. Sci. 6(15), 1900251 (2019). https://doi.org/10.1002/advs.201900251
- J. Jin, B. Krishnamachary, J.D. Barnett, S. Chatterjee, D. Chang et al., Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce t-cells. ACS Appl. Mater. Interfaces 11(8), 7850–7861 (2019). https://doi.org/10.1021/acsami.8b22309
- F. Gao, L. Xu, B. Yang, F. Fan, L. Yang, Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier. ACS Infect. Dis. 5(2), 218–227 (2019). https://doi.org/10.1021/acsinfecdis.8b00212
- J. Xie, Q. Shen, K. Huang, T. Zheng, L. Cheng et al., Oriented assembly of cell-mimicking nanoparticles via a molecular affinity strategy for targeted drug delivery. ACS Nano 13(5), 5268–5277 (2019). https://doi.org/10.1021/acsnano.8b09681
- J.M. Liu, D.D. Zhang, G.Z. Fang, S. Wang, Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. Biomaterials 165, 39–47 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.042
- J. Zhang, Y. Miao, W. Ni, H. Xiao, J. Zhang, Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma. Artif. Cells Nanomed. Biotechnol. 47(1), 2298–2305 (2019). https://doi.org/10.1080/21691401.2019.1622554
- J. Yang, Y. Teng, Y. Fu, C. Zhang, Chlorins e6 loaded silica nanoparticles coated with gastric cancer cell membrane for tumor specific photodynamic therapy of gastric cancer. Int. J. Nanomed. 14, 5061–5071 (2019). https://doi.org/10.2147/IJN.S202910
- H. Ding, Y. Lv, D. Ni, J. Wang, Z. Tian, W. Wei, G. Ma, Erythrocyte membrane-coated NIR-triggered biomimetic nanovectors with programmed delivery for photodynamic therapy of cancer. Nanoscale 7(21), 9806–9815 (2015). https://doi.org/10.1039/c5nr02470f
- L. Rao, L.-L. Bu, B. Cai, J.-H. Xu, A. Li et al., Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 28(18), 3460–3466 (2016). https://doi.org/10.1002/adma.201506086
- J.-G. Piao, L. Wang, F. Gao, Y.-Z. You, Y. Xiong, L. Yang, Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8(10), 10414–10425 (2014). https://doi.org/10.1021/nn503779d
- W. Gao, C.M. Hu, R.H. Fang, B.T. Luk, J. Su, L. Zhang, Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. 25(26), 3549–3553 (2013). https://doi.org/10.1002/adma.201300638
- L. Rao, L.L. Bu, L. Ma, W. Wang, H. Liu et al., Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem. Int. Ed. 57(4), 986–991 (2018). https://doi.org/10.1002/anie.201709457
- W. Gao, R.H. Fang, S. Thamphiwatana, B.T. Luk, J. Li et al., Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 15(2), 1403–1409 (2015). https://doi.org/10.1021/nl504798g
- J. Zhu, M. Zhang, D. Zheng, S. Hong, J. Feng, X.Z. Zhang, A universal approach to render nanomedicine with biological identity derived from cell membranes. Biomacromol 19(6), 2043–2052 (2018). https://doi.org/10.1021/acs.biomac.8b00242
- G.T. Yu, L. Rao, H. Wu, L.L. Yang, L.L. Bu et al., Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death. Adv. Funct. Mater. 28(37), 1801389 (2018). https://doi.org/10.1002/adfm.201801389
- L. Rao, L.L. Bu, J.H. Xu, B. Cai, G.T. Yu et al., Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 11(46), 6225–6236 (2015). https://doi.org/10.1002/smll.201502388
- L. Rao, J.H. Xu, B. Cai, H. Liu, M. Li et al., Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology 27(8), 085106 (2016). https://doi.org/10.1088/0957-4484/27/8/085106
- Y. Zhai, W. Ran, J. Su, T. Lang, J. Meng, G. Wang, P. Zhang, Y. Li, Traceable bioinspired nanoparticle for the treatment of metastatic breast cancer via NIR-trigged intracellular delivery of methylene blue and cisplatin. Adv. Mater. 30(34), 1802378 (2018). https://doi.org/10.1002/adma.201802378
- Y. Zhang, J. Zhang, W. Chen, P. Angsantikul, K.A. Spiekermann, R.H. Fang, W. Gao, L. Zhang, Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. J. Control Release 263, 185–191 (2017). https://doi.org/10.1016/j.jconrel.2017.01.016
- W. Liu, M. Ruan, Y. Wang, R. Song, X. Ji, J. Xu, J. Dai, W. Xue, Light-triggered biomimetic nanoerythrocyte for tumor-targeted lung metastatic combination therapy of malignant melanoma. Small 14(38), 1801754 (2018). https://doi.org/10.1002/smll.201801754
- J. Zhuang, M. Ying, K. Spiekermann, M. Holay, Y. Zhang et al., Biomimetic nanoemulsions for oxygen delivery in vivo. Adv. Mater. 30(49), 1804693 (2018). https://doi.org/10.1002/adma.201804693
- H. Ren, J. Liu, Y. Li, H. Wang, S. Ge, A. Yuan, Y. Hu, J. Wu, Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater. 59, 269–282 (2017). https://doi.org/10.1016/j.actbio.2017.06.035
- Z. Chai, D. Ran, L. Lu, C. Zhan, H. Ruan et al., Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano 13(5), 5591–5601 (2019). https://doi.org/10.1021/acsnano.9b00661
- T. Liu, C. Shi, L. Duan, Z. Zhang, L. Luo, S. Goel, W. Cai, T. Chen, A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis. J. Mater. Chem. B 6(29), 4756–4764 (2018). https://doi.org/10.1039/c8tb01398e
- W. He, J. Frueh, Z. Wu, Q. He, Leucocyte membrane-coated Janus microcapsules for enhanced photothermal cancer treatment. Langmuir 32(15), 3637–3644 (2016). https://doi.org/10.1021/acs.langmuir.5b04762
- L. Rao, B. Cai, L.-L. Bu, Q.-Q. Liao, S.-S. Guo, X.-Z. Zhao, W.-F. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4), 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
- J. Li, Y. Ai, L. Wang, P. Bu, C.C. Sharkey et al., Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 76, 52–65 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.046
- Y. Wang, K. Zhang, X. Qin, T. Li, J. Qiu et al., Biomimetic nanotherapies: red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv. Sci. 6(12), 1900172 (2019). https://doi.org/10.1002/advs.201900172
- H. Chen, H. Sha, L. Zhang, H. Qian, F. Chen et al., Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int. J. Nanomed. 13, 5347–5359 (2018). https://doi.org/10.2147/IJN.S165109
- X. Han, C. Wang, Z. Liu, Red blood cells as smart delivery systems. Bioconjug. Chem. 29(4), 852–860 (2018). https://doi.org/10.1021/acs.bioconjchem.7b00758
- H. Zhang, Erythrocytes in nanomedicine: an optimal blend of natural and synthetic materials. Biomater. Sci. 4(7), 1024–1031 (2016). https://doi.org/10.1039/c6bm00072j
- Z. Zhang, H. Qian, J. Huang, H. Sha, H. Zhang et al., Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int. J. Nanomed. 13, 4961–4975 (2018). https://doi.org/10.2147/IJN.S170148
- S. Fu, M. Liang, Y. Wang, L. Cui, C. Gao et al., Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl. Mater. Interfaces 11(2), 1841–1854 (2019). https://doi.org/10.1021/acsami.8b18664
- Z. Zhang, H. Qian, M. Yang, R. Li, J. Hu et al., Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int. J. Nanomed. 12, 1593–1605 (2017). https://doi.org/10.2147/IJN.S127256
- Q. Fu, P. Lv, Z. Chen, D. Ni, L. Zhang et al., Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale 7(9), 4020–4030 (2015). https://doi.org/10.1039/c4nr07027e
- X. Zhang, P. Angsantikul, M. Ying, J. Zhuang, Q. Zhang et al., Remote loading of small-molecule therapeutics into cholesterol-enriched cell-membrane-derived vesicles. Angew. Chem. Int. Ed. 56(45), 14075–14079 (2017). https://doi.org/10.1002/anie.201707598
- Z. Chai, X. Hu, X. Wei, C. Zhan, L. Lu et al., A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control Release 264, 102–111 (2017). https://doi.org/10.1016/j.jconrel.2017.08.027
- C. Wang, Y. Ye, W. Sun, J. Yu, J. Wang et al., Red blood cells for glucose-responsive insulin delivery. Adv. Mater. 29(18), 1606617 (2017). https://doi.org/10.1002/adma.201606617
- P. Xue, R. Yang, L. Sun, Q. Li, L. Zhang, Z. Xu, Y. Kang, Indocyanine green-conjugated magnetic prussian blue nanoparticles for synchronous photothermal/photodynamic tumor therapy. Nano-Micro Lett. 10(4), 74 (2018). https://doi.org/10.1007/s40820-018-0227-z
- Q. Pei, X. Hu, X. Zheng, S. Liu, Y. Li, X. Jing, Z. Xie, Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 12(2), 1630–1641 (2018). https://doi.org/10.1021/acsnano.7b08219
- M. Xuan, J. Shao, J. Zhao, Q. Li, L. Dai, J. Li, Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: applications in cancer therapy. Angew. Chem. Int. Ed. 57(21), 6049–6053 (2018). https://doi.org/10.1002/anie.201712996
- L. Rao, B. Cai, L.L. Bu, Q.Q. Liao, S.S. Guo et al., Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4), 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
- T. Jiang, B. Zhang, S. Shen, Y. Tuo, Z. Luo, Y. Hu, Z. Pang, X. Jiang, Tumor microenvironment modulation by cyclopamine improved photothermal therapy of biomimetic gold nanorods for pancreatic ductal adenocarcinomas. ACS Appl. Mater. Interfaces 9(37), 31497–31508 (2017). https://doi.org/10.1021/acsami.7b09458
- D.-M. Zhu, W. Xie, Y.-S. Xiao, M. Suo, M.-H. Zan et al., Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology 29(8), 084002 (2018). https://doi.org/10.1088/1361-6528/aa9ca1
- H. Ren, J. Liu, Y. Li, H. Wang, S. Ge, A. Yuan, Y. Hu, J. Wu, Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater. 59, 269–282 (2017). https://doi.org/10.1016/j.actbio.2017.06.035
- P.A. Gentry, The mammalian blood platelet: its role in haemostasis, inflammation and tissue repair. J. Comp. Pathol. 107(3), 243–270 (1992). https://doi.org/10.1016/0021-9975(92)90002-c
- Q. Hu, H.N. Bomba, Z. Gu, Engineering platelet-mimicking drug delivery vehicles. Front. Chem. Sci. Eng. 11(4), 624–632 (2017). https://doi.org/10.1007/s11705-017-1614-6
- J.N. Thon, J.E. Italiano, Platelets: production, morphology and ultrastructure. Handb. Exp. Pharmacol. 210, 3–22 (2012). https://doi.org/10.1007/978-3-642-29423-5_1
- Y. Lu, Q. Hu, C. Jiang, Z. Gu, Platelet for drug delivery. Curr. Opin. Biotechnol. 58, 81–91 (2019). https://doi.org/10.1016/j.copbio.2018.11.010
- S.M. Moghimi, A.C. Hunter, D. Peer, Platelet mimicry: the emperor’s new clothes? Nanomed. Nanotechnol. Biol. Med. 12(1), 245–248 (2016). https://doi.org/10.1016/j.nano.2015.09.005
- Q. Hu, W. Sun, C. Qian, C. Wang, H.N. Bomba, Z. Gu, Anticancer platelet-mimicking nanovehicles. Adv. Mater. 27(44), 7043–7050 (2015). https://doi.org/10.1002/adma.201503323
- T.G. Walsh, P. Metharom, M.C. Berndt, The functional role of platelets in the regulation of angiogenesis. Platelets 26(3), 199–211 (2015). https://doi.org/10.3109/09537104.2014.909022
- S.R. Hyslop, E.C. Josefsson, Undercover agents: targeting tumours with modified platelets. Trends Cancer 3(3), 235–246 (2017). https://doi.org/10.1016/j.trecan.2017.01.006
- L. Jing, H. Qu, D. Wu, C. Zhu, Y. Yang et al., Platelet-camouflaged nanococktail: simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics 8(10), 2683–2695 (2018). https://doi.org/10.7150/thno.23654
- M. Ying, J. Zhuang, X. Wei, X. Zhang, Y. Zhang et al., Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv. Funct. Mater. 28(22), 1801032 (2018). https://doi.org/10.1002/adfm.201801032
- C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana et al., Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571), 118–121 (2015). https://doi.org/10.1038/nature15373
- B. Wang, G. Chen, G. Urabe, R. Xie, Y. Wang et al., A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanoclusters. Biomaterials 178, 293–301 (2018). https://doi.org/10.1016/j.biomaterials.2018.06.025
- Y. Song, Z. Huang, X. Liu, Z. Pang, J. Chen et al., Platelet membrane-coated nanoparticle-mediated targeting delivery of rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (apoE(−/−)) mice. Nanomedicine 15(1), 13–24 (2019). https://doi.org/10.1016/j.nano.2018.08.002
- L. Xu, F. Gao, F. Fan, L. Yang, Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials 159, 59–67 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.028
- L. Rao, L.-L. Bu, Q.-F. Meng, B. Cai, W.-W. Deng et al., Antitumor platelet-mimicking magnetic nanoparticles. Adv. Funct. Mater. 27(9), 1604774 (2017). https://doi.org/10.1002/adfm.201604774
- H. Zuo, J. Tao, H. Shi, J. He, Z. Zhou, C. Zhang, Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy. Acta Biomater. 80, 296–307 (2018). https://doi.org/10.1016/j.actbio.2018.09.017
- K. Jin, Z. Luo, B. Zhang, Z. Pang, Biomimetic nanoparticles for inflammation targeting. Acta Pharmaceutica Sinica B 8(1), 23–33 (2018). https://doi.org/10.1016/j.apsb.2017.12.002
- R. Li, Y. He, S. Zhang, J. Qin, J. Wang, Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharmaceutica Sinica B 8(1), 14–22 (2018). https://doi.org/10.1016/j.apsb.2017.11.009
- J. Si, S. Shao, Y. Shen, K. Wang, Macrophages as active nanocarriers for targeted early and adjuvant cancer chemotherapy. Small 12(37), 5108–5119 (2016). https://doi.org/10.1002/smll.201601282
- W.J. Halliday, S. Miller, Leukocyte adherence inhibition: a simple test for cell-mediated tumour immunity and serum blocking factors. Int. J. Cancer 9(3), 477–483 (1972). https://doi.org/10.1002/ijc.2910090304
- A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos et al., Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8(1), 61–68 (2013). https://doi.org/10.1038/nnano.2012.212
- W.J. Goh, C.K. Lee, S. Zou, E.C.Y. Woon, B. Czarny, G. Pastorin, Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy. Int. J. Nanomed. 12, 2759–2767 (2017). https://doi.org/10.2147/ijn.s131786
- S. Krishnamurthy, M.K. Gnanasammandhan, C. Xie, K. Huang, M.Y. Cui, J.M. Chan, Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale 8(13), 6981–6985 (2016). https://doi.org/10.1039/c5nr07588b
- L. Zhang, R. Li, H. Chen, J. Wei, H. Qian et al., Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int. J. Nanomed. 12, 2129–2142 (2017). https://doi.org/10.2147/ijn.s126016
- A. Pitchaimani, N. Tuyen Duong Thanh, S. Aryal, Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 160, 124–137 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.018
- Y. Zhang, K. Gai, C. Li, Q. Guo, Q. Chen et al., Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 18(3), 1908–1915 (2018). https://doi.org/10.1021/acs.nanolett.7b05263
- C. Ju, Y. Wen, L. Zhang, Q. Wang, L. Xue, J. Shen, C. Zhang, Neoadjuvant chemotherapy based on abraxane/human neutrophils cytopharmaceuticals with radiotherapy for gastric cancer. Small 15(5), 1804191 (2019). https://doi.org/10.1002/smll.201804191
- G. Deng, Z. Sun, S. Li, X. Peng, W. Li et al., Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano 12(12), 12096–12108 (2018). https://doi.org/10.1021/acsnano.8b05292
- M. Xuan, J. Shao, L. Dai, J. Li, Q. He, Macrophage cell membrane camouflaged au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces 8(15), 9610–9618 (2016). https://doi.org/10.1021/acsami.6b00853
- Q.-F. Meng, L. Rao, M. Zan, M. Chen, G.-T. Yu et al., Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology 29(13), 134004 (2018). https://doi.org/10.1088/1361-6528/aaa7c7
- W. Lv, J. Xu, X. Wang, X. Li, Q. Xu, H. Xin, Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 12(6), 5417–5426 (2018). https://doi.org/10.1021/acsnano.8b00477
- H. Zhao, L. Li, J. Zhang, C. Zheng, K. Ding, H. Xiao, L. Wang, Z. Zhang, C-C chemokine ligand 2 (CCL2) recruits macrophage-membrane-camouflaged hollow bismuth selenide nanoparticles to facilitate photothermal sensitivity and inhibit lung metastasis of breast cancer. ACS Appl. Mater. Interfaces 10(37), 31124–31135 (2018). https://doi.org/10.1021/acsami.8b11645
- L. Zhang, Y. Zhang, Y. Xue, Y. Wu, Q. Wang, L. Xue, Z. Su, C. Zhang, Transforming weakness into strength: photothermal-therapy-induced inflammation enhanced cytopharmaceutical chemotherapy as a combination anticancer treatment. Adv. Mater. 31(5), e1805936 (2019). https://doi.org/10.1002/adma.201805936
- Q. Zhang, D. Dehaini, Y. Zhang, J. Zhou, X. Chen et al., Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13(12), 1182–1190 (2018). https://doi.org/10.1038/s41565-018-0254-4
- J. Xia, Y. Cheng, H. Zhang, R. Li, Y. Hu, B. Liu, The role of adhesions between homologous cancer cells in tumor progression and targeted therapy. Expert Rev. Anticancer Ther. 17(6), 517–526 (2017). https://doi.org/10.1080/14737140.2017.1322511
- R.J.C. Bose, R. Paulmurugan, J. Moon, S.-H. Lee, H. Park, Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discov. Today 23(4), 891–899 (2018). https://doi.org/10.1016/j.drudis.2018.02.001
- J.-Y. Zhu, D.-W. Zheng, M.-K. Zhang, W.-Y. Yu, W.-X. Qiu, J.-J. Hu, J. Feng, X.-Z. Zhang, Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 16(9), 5895–5901 (2016). https://doi.org/10.1021/acs.nanolett.6b02786
- N. Kamaly, Z. Xiao, P.M. Valencia, A.F. Radovic-Moreno, O.C. Farokhzad, Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41(7), 2971–3010 (2012). https://doi.org/10.1039/c2cs15344k
- R.H. Fang, C.-M.J. Hu, B.T. Luk, W. Gao, J.A. Copp, Y. Tai, D.E. O’Connor, L. Zhang, Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14(4), 2181–2188 (2014). https://doi.org/10.1021/nl500618u
- S. Zhao, S. Sun, K. Jiang, Y. Wang, Y. Liu, S. Wu, Z. Li, Q. Shu, H. Lin, In situ synthesis of fluorescent mesoporous silica-carbon dot nanohybrids featuring folate receptor-overexpressing cancer cell targeting and drug delivery. Nano-Micro Lett. 11(1), 32 (2019). https://doi.org/10.1007/s40820-019-0263-3
- H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen et al., Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 28(43), 9581–9588 (2016). https://doi.org/10.1002/adma.201602173
- V. Balasubramanian, A. Correia, H. Zhang, F. Fontana, E. Makila, J. Salonen, J. Hirvonen, H.A. Santos, Biomimetic engineering using cancer cell membranes for designing compartmentalized nanoreactors with organelle-like functions. Adv. Mater. 29(11), 1605375 (2017). https://doi.org/10.1002/adma.201605375
- C.M. Liu, G.B. Chen, H.H. Chen, J.B. Zhang, H.Z. Li et al., Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf. B 175, 477–486 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.038
- J. Zhu, M. Zhang, D. Zheng, S. Hong, J. Feng, X.-Z. Zhang, A universal approach to render nanomedicine with biological identity derived from cell membranes. Biomacromol 19(6), 2043–2052 (2018). https://doi.org/10.1021/acs.biomac.8b00242
- S.Y. Li, H. Cheng, B.R. Xie, W.X. Qiu, J.Y. Zeng et al., Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7), 7006–7018 (2017). https://doi.org/10.1021/acsnano.7b02533
- Z. Yu, P. Zhou, W. Pan, N. Li, B. Tang, A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 9(1), 5044 (2018). https://doi.org/10.1038/s41467-018-07197-8
- Y.J. Li, C.X. Yang, X.P. Yan, Biomimetic persistent luminescent nanoplatform for autofluorescence-free metastasis tracking and chemophotodynamic therapy. Anal. Chem. 90(6), 4188–4195 (2018). https://doi.org/10.1021/acs.analchem.8b00311
- Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian et al., Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10(11), 10049–10057 (2016). https://doi.org/10.1021/acsnano.6b04695
- N. Zhang, M. Li, X. Sun, H. Jia, W. Liu, Nir-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials 159, 25–36 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.007
- A.V. Kroll, R.H. Fang, Y. Jiang, J. Zhou, X. Wei et al., Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv. Mater. 29(47), 1703969 (2017). https://doi.org/10.1002/adma.201703969
- N. Yang, Y. Ding, Y. Zhang, B. Wang, X. Zhao et al., Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl. Mater. Interfaces 10(27), 22963–22973 (2018). https://doi.org/10.1021/acsami.8b05363
- R.J. Bose, B.J. Kim, Y. Arai, I.B. Han, J.J. Moon, R. Paulmurugan, H. Park, S.H. Lee, Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials 185, 360–370 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.018
- N. Erez, M. Truitt, P. Olson, D. Hanahan, Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an nf-kappa b-dependent manner. Cancer Cell 17(2), 135–147 (2010). https://doi.org/10.1016/j.ccr.2009.12.041
- J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12(8), 8520–8530 (2018). https://doi.org/10.1021/acsnano.8b04066
- J. Tan, L. Liu, B. Li, Q. Xie, J. Sun, H. Pu, L. Zhang, Pancreatic stem cells differentiate into insulin-secreting cells on fibroblast-modified PLGA membranes. Mater. Sci. Eng. C Mater. Biol. Appl. 97, 593–601 (2019). https://doi.org/10.1016/j.msec.2018.12.062
- C.C. Lin, K.S. Anseth, Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc. Natl. Acad. Sci. U.S.A. 108(16), 6380–6385 (2011). https://doi.org/10.1073/pnas.1014026108
- W. Gao, R.H. Fang, S. Thamphiwatana, B.T. Luk, J. Li et al., Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 15(2), 1403–1409 (2015). https://doi.org/10.1021/nl504798g
- A. Poetsch, D. Wolters, Bacterial membrane proteomics. Proteomics 8(19), 4100–4122 (2008). https://doi.org/10.1002/pmic.200800273
- A.-N. Zhang, W. Wu, C. Zhang, Q.-Y. Wang, Z.-N. Zhuang, H. Cheng, X.-Z. Zhang, A versatile bacterial membrane-binding chimeric peptide with enhanced photodynamic antimicrobial activity. J. Mater. Chem. B 7(7), 1087–1095 (2019). https://doi.org/10.1039/c8tb03094d
- Y. Liu, X. Wang, B. Ouyang, X. Liu, Y. Du et al., Erythrocyte–platelet hybrid membranes coating polypyrrol nanoparticles for enhanced delivery and photothermal therapy. J. Mater. Chem. B 6(43), 7033–7041 (2018). https://doi.org/10.1039/c8tb02143k
- D. Wang, H. Dong, M. Li, Y. Cao, F. Yang et al., Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 12(6), 5241–5252 (2018). https://doi.org/10.1021/acsnano.7b08355
- Q. Jiang, Y. Liu, R. Guo, X. Yao, S. Sung, Z. Pang, W. Yang, Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 192, 292–308 (2019). https://doi.org/10.1016/j.biomaterials.2018.11.021
- H. He, C. Guo, J. Wang, W.J. Korzun, X.Y. Wang, S. Ghosh, H. Yang, Leutusome: a biomimetic nanoplatform integrating plasma membrane components of leukocytes and tumor cells for remarkably enhanced solid tumor homing. Nano Lett. 18(10), 6164–6174 (2018). https://doi.org/10.1021/acs.nanolett.8b01892
- L. Rao, Q.-F. Meng, Q. Huang, Z. Wang, G.-T. Yu et al., Platelet-leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv. Funct. Mater. 28(34), 1803531 (2018). https://doi.org/10.1002/adfm.201803531
- P. Angsantikul, R.H. Fang, L. Zhang, Toxoid vaccination against bacterial infection using cell membrane-coated nanoparticles. Bioconjug. Chem. 29(3), 604–612 (2018). https://doi.org/10.1021/acs.bioconjchem.7b00692
- C.M. Hu, R.H. Fang, J. Copp, B.T. Luk, L. Zhang, A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8(5), 336–340 (2013). https://doi.org/10.1038/nnano.2013.54
- Y. Chen, Y. Zhang, M. Chen, J. Zhuang, R.H. Fang, W. Gao, L. Zhang, Biomimetic nanosponges suppress in vivo lethality induced by the whole secreted proteins of pathogenic bacteria. Small 15(6), 1804994 (2019). https://doi.org/10.1002/smll.201804994
- M.S. Chen, Y. Zhang, L. Zhang, Fabrication and characterization of a 3D bioprinted nanoparticle-hydrogel hybrid device for biomimetic detoxification. Nanoscale 9(38), 14506–14511 (2017). https://doi.org/10.1039/c7nr05322c
- J. Li, P. Angsantikul, W. Liu, B.E.-F. de Avila, X. Chang et al., Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats. Adv. Mater. 30(2), 1704800 (2018). https://doi.org/10.1002/adma.201704800
- B.E.-F.D. d Ávila, P. Angsantikul, D.E. Ramírez-Herrera, F. Soto, H. Teymourian, D. Dehaini, Y. Chen, L. Zhang, J. Wang, Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 3(18), aat0485 (2018). https://doi.org/10.1126/scirobotics.aat0485
- H. Ye, K. Wang, M. Wang, R. Liu, H. Song et al., Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 206, 1–12 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.024
- S. Krishnamurthy, M.K. Gnanasammandhan, C. Xie, K. Huang, M.Y. Cui, J.M. Chan, Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale 8(13), 6981–6985 (2016). https://doi.org/10.1039/c5nr07588b
- Y. Huang, C. Mei, Y. Tian, T. Nie, Z. Liu, T. Chen, Bioinspired tumor-homing nanosystem for precise cancer therapy via reprogramming of tumor-associated macrophages. NPG Asia Mater. 10(10), 1002–1015 (2018). https://doi.org/10.1038/s41427-018-0091-9
- J. Su, H. Sun, Q. Meng, Q. Yin, P. Zhang, Z. Zhang, H. Yu, Y. Li, Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater. 26(41), 7495–7506 (2016). https://doi.org/10.1002/adfm.201603381
- J.N. Ma, S.Q. Zhang, J. Liu, F.Y. Liu, F. Du et al., Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small 15(35), 1902011 (2019). https://doi.org/10.1002/smll.201902011
- C. Tapeinos, F. Tomatis, M. Battaglini, A. Larranaga, A. Marino et al., Cell membrane-coated magnetic nanocubes with a homotypic targeting ability increase intracellular temperature due to ROS scavenging and act as a versatile theranostic system for glioblastoma multiforme. Adv. Healthc. Mater. 8(18), 1900612 (2019). https://doi.org/10.1002/adhm.201900612
References
S.S. Agasti, S. Rana, M.H. Park, C.K. Kim, C.C. You, V.M. Rotello, Nanoparticles for detection and diagnosis. Adv. Drug Deliv. Rev. 62(3), 316–328 (2010). https://doi.org/10.1016/j.addr.2009.11.004
R.H. Fang, L. Zhang, Nanoparticle-based modulation of the immune system. Annu. Rev. Chem. Biomol. Eng. 7, 305–326 (2016). https://doi.org/10.1146/annurev-chembioeng-080615-034446
S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, P. Chen, Biocompatibility of engineered nanoparticles for drug delivery. J. Control Release 166(2), 182–194 (2013). https://doi.org/10.1016/j.jconrel.2012.12.013
T. Doane, C. Burda, Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 65(5), 607–621 (2013). https://doi.org/10.1016/j.addr.2012.05.012
S. Shi, F. Chen, S. Goel, S.A. Graves, H. Luo, C.P. Theuer, J.W. Engle, W. Cai, In vivo tumor-targeted dual-modality pet/optical imaging with a yolk/shell-structured silica nanosystem. Nano-Micro Lett. 10(4), 65 (2018). https://doi.org/10.1007/s40820-018-0216-2
S. Shrivastava, D. Dash, Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano-Micro Lett. 2(3), 164–168 (2010). https://doi.org/10.5101/nml.v2i3.p164-168
M.E. Peralta, S.A. Jadhav, G. Magnacca, D. Scalarone, D.O. Martire, M.E. Parolo, L. Carlos, Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J. Colloid Interf. Sci. 544, 198–205 (2019). https://doi.org/10.1016/j.jcis.2019.02.086
J.Q. Peng, S. Fumoto, T. Suga, H. Miyamoto, N. Kuroda, S. Kawakami, K. Nishida, Targeted co-delivery of protein and drug to a tumor in vivo by sophisticated RGD-modified lipid-calcium carbonate nanoparticles. J. Control Release 302, 42–53 (2019). https://doi.org/10.1016/j.jconrel.2019.03.021
P. Davoodi, L.Y. Lee, Q. Xu, V. Sunil, Y. Sun, S. Soh, C.H. Wang, Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 132, 104–138 (2018). https://doi.org/10.1016/j.addr.2018.07.002
A.C. Anselmo, S. Mitragotri, Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J. Control Release 190, 531–541 (2014). https://doi.org/10.1016/j.jconrel.2014.03.050
A. Parodi, R. Molinaro, M. Sushnitha, M. Evangelopoulos, J.O. Martinez, N. Arrighetti, C. Corbo, E. Tasciotti, Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 147, 155–168 (2017). https://doi.org/10.1016/j.biomaterials.2017.09.020
J.L. Wang, X.J. Du, J.X. Yang, S. Shen, H.J. Li et al., The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials 182, 104–113 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.022
F.M. Veronese, G. Pasut, Pegylation, successful approach to drug delivery. Drug Discov. Today 10(21), 1451–1458 (2005). https://doi.org/10.1016/s1359-6446(05)03575-0
T. Shimizu, A.S. Abu Lila, R. Fujita, M. Awata, M. Kawanishi, Y. Hashimoto, K. Okuhira, Y. Ishima, T. Ishida, A hydroxyl peg version of pegylated liposomes and its impact on anti-PEG IGm induction and on the accelerated clearance of pegylated liposomes. Eur. J. Pharm. Biopharm. 127, 142–149 (2018). https://doi.org/10.1016/j.ejpb.2018.02.019
K. Shiraishi, M. Hamano, H. Ma, K. Kawano, Y. Maitani, T. Aoshi, K.J. Ishii, M. Yokoyama, Hydrophobic blocks of PEG-conjugates play a significant role in the accelerated blood clearance (ABC) phenomenon. J. Control Release 165(3), 183–190 (2013). https://doi.org/10.1016/j.jconrel.2012.11.016
X. Wan, J. Zhang, W. Yu, L. Shen, S. Ji, T. Hu, Effect of protein immunogenicity and peg size and branching on the anti-PEG immune response to pegylated proteins. Process Biochem. 52, 183–191 (2017). https://doi.org/10.1016/j.procbio.2016.09.029
M.Y. Thanuja, C. Anupama, S.H. Ranganath, Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv. Drug Deliv. Rev. 132, 57–80 (2018). https://doi.org/10.1016/j.addr.2018.06.012
C. Sabu, C. Rejo, S. Kotta, K. Pramod, Bioinspired and biomimetic systems for advanced drug and gene delivery. J. Control Release 287, 142–155 (2018). https://doi.org/10.1016/j.jconrel.2018.08.033
R.A. Meyer, J.C. Sunshine, J.J. Green, Biomimetic particles as therapeutics. Trends Biotechnol. 33(9), 514–524 (2015). https://doi.org/10.1016/j.tibtech.2015.07.001
R.H. Fang, Y. Jiang, J.C. Fang, L. Zhang, Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128, 69–83 (2017). https://doi.org/10.1016/j.biomaterials.2017.02.041
R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30(23), e1706759 (2018). https://doi.org/10.1002/adma.201706759
Q. Xia, Y. Zhang, Z. Li, X. Hou, N. Feng, Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharmaceutica Sinica B 9(4), 675–689 (2019). https://doi.org/10.1016/j.apsb.2019.01.011
H.H. Wu, Y. Zhou, Y. Tabata, J.Q. Gao, Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J. Control Release 294, 102–113 (2019). https://doi.org/10.1016/j.jconrel.2018.12.019
C.M. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L. Zhang, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 108(27), 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
A.V. Kroll, R.H. Fang, L. Zhang, Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug. Chem. 28(1), 23–32 (2017). https://doi.org/10.1021/acs.bioconjchem.6b00569
K. Simons, W.L. Vaz, Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004). https://doi.org/10.1146/annurev.biophys.32.110601.141803
Y. Zhai, J. Su, W. Ran, P. Zhang, Q. Yin, Z. Zhang, H. Yu, Y. Li, Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 7(10), 2575–2592 (2017). https://doi.org/10.7150/thno.20118
X. Wei, J. Gao, R.H. Fang, B.T. Luk, A.V. Kroll et al., Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 111, 116–123 (2016). https://doi.org/10.1016/j.biomaterials.2016.10.003
L. Rao, L.-L. Bu, J.-H. Xu, B. Cai, G.-T. Yu et al., Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 11(46), 6225–6236 (2015). https://doi.org/10.1002/smll.201502388
T. Kang, Q. Zhu, D. Wei, J. Feng, J. Yao et al., Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11(2), 1397–1411 (2017). https://doi.org/10.1021/acsnano.6b06477
C. Gao, Z. Lin, Z. Wu, X. Lin, Q. He, Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl. Mater. Interfaces. 8(50), 34252–34260 (2016). https://doi.org/10.1021/acsami.6b12865
H. Cao, Z. Dan, X. He, Z. Zhang, H. Yu, Q. Yin, Y. Li, Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10(8), 7738–7748 (2016). https://doi.org/10.1021/acsnano.6b03148
R. Yang, J. Xu, L. Xu, X. Sun, Q. Chen, Y. Zhao, R. Peng, Z. Liu, Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 12(6), 5121–5129 (2018). https://doi.org/10.1021/acsnano.7b09041
L. Rao, Z. He, Q.F. Meng, Z. Zhou, L.L. Bu et al., Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J. Biomed. Mater. Res. A 105(2), 521–530 (2017). https://doi.org/10.1002/jbm.a.35927
V. Vijayan, S. Uthaman, I.K. Park, in Cell membrane coated nanoparticles: an emerging biomimetic nanoplatform for targeted bioimaging and therapy, ed. by NOH I (Springer, Singapore Pte Ltd, Singapore, 2018), pp. 45–59
Z. Fan, P.Y. Li, J. Deng, S.C. Bady, H. Cheng, Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res. 11(10), 5573–5583 (2018). https://doi.org/10.1007/s12274-018-2084-y
A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos et al., Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8(1), 61–68 (2013). https://doi.org/10.1038/nnano.2012.212
L. Rao, Q.-F. Meng, Q. Huang, P. Liu, L.-L. Bu et al., Photocatalytic degradation of cell membrane coatings for controlled drug release. Adv. Healthc. Mater. 5(12), 1420–1427 (2016). https://doi.org/10.1002/adhm.201600303
J. Su, H. Sun, Q. Meng, P. Zhang, Q. Yin, Y. Li, Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 7(3), 523–537 (2017). https://doi.org/10.7150/thno.17259
Q. Xu, J. Wan, N. Bie, X. Song, X. Yang et al., A biomimetic gold nanocages-based nanoplatform for efficient tumor ablation and reduced inflammation. Theranostics 8(19), 5362–5378 (2018). https://doi.org/10.7150/thno.27631
X. Ren, R. Zheng, X. Fang, X. Wang, X. Zhang, W. Yang, X. Sha, Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 92, 13–24 (2016). https://doi.org/10.1016/j.biomaterials.2016.03.026
L. Rao, Q.F. Meng, L.L. Bu, B. Cai, Q. Huang et al., Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 9(3), 2159–2168 (2017). https://doi.org/10.1021/acsami.6b14450
W.L. Liu, M.Z. Zou, T. Liu, J.Y. Zeng, X. Li et al., Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells. Adv. Mater. 31(18), 1900499 (2019). https://doi.org/10.1002/adma.201900499
Z. Fan, J. Deng, P.Y. Li, D.R. Chery, Y. Su et al., A new class of biological materials: cell membrane-derived hydrogel scaffolds. Biomaterials 197, 244–254 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.020
X. Liang, X. Ye, C. Wang, C. Xing, Q. Miao et al., Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control Release 296, 150–161 (2019). https://doi.org/10.1016/j.jconrel.2019.01.027
D. Dehaini, X. Wei, R.H. Fang, S. Masson, P. Angsantikul et al., Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 29(16), 1606209 (2017). https://doi.org/10.1002/adma.201606209
M. Mathiyazhakan, C. Wiraja, C. Xu, A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett. 10(1), 10 (2018). https://doi.org/10.1007/s40820-017-0166-0
V. Vijayan, S. Uthaman, I.K. Park, Cell membrane coated nanoparticles: an emerging biomimetic nanoplatform for targeted bioimaging and therapy. Adv. Exp. Med. Biol. 1064, 45–59 (2018). https://doi.org/10.1007/978-981-13-0445-3_3
S.Y. Li, H. Cheng, W.X. Qiu, L. Zhang, S.S. Wan, J.Y. Zeng, X.Z. Zhang, Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 142, 149–161 (2017). https://doi.org/10.1016/j.biomaterials.2017.07.026
C. Gao, Z. Lin, B. Jurado-Sanchez, X. Lin, Z. Wu, Q. He, Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30), 4056–4062 (2016). https://doi.org/10.1002/smll.201600624
W. Chen, J. Ouyang, X. Yi, Y. Xu, C. Niu et al., Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 30(3), 1703458 (2018). https://doi.org/10.1002/adma.201703458
Y. Chen, M. Chen, Y. Zhang, J.H. Lee, T. Escajadillo et al., Broad-spectrum neutralization of pore-forming toxins with human erythrocyte membrane-coated nanosponges. Adv. Healthc. Mater. 7(13), e1701366 (2018). https://doi.org/10.1002/adhm.201701366
H.W. Chen, Z.S. Fang, Y.T. Chen, Y.I. Chen, B.Y. Yao et al., Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection. ACS Appl. Mater. Interfaces 9(46), 39953–39961 (2017). https://doi.org/10.1021/acsami.7b09931
X. Wei, G. Zhang, D. Ran, N. Krishnan, R.H. Fang, W. Gao, S.A. Spector, L. Zhang, T-cell-mimicking nanoparticles can neutralize HIV infectivity. Adv. Mater. 30(45), e1802233 (2018). https://doi.org/10.1002/adma.201802233
S. Thamphiwatana, P. Angsantikul, T. Escajadillo, Q. Zhang, J. Olson et al., Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc. Natl. Acad. Sci. U.S.A. 114(43), 11488–11493 (2017). https://doi.org/10.1073/pnas.1714267114
Y. Han, H. Pan, W. Li, Z. Chen, A. Ma et al., T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv. Sci. 6(15), 1900251 (2019). https://doi.org/10.1002/advs.201900251
J. Jin, B. Krishnamachary, J.D. Barnett, S. Chatterjee, D. Chang et al., Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce t-cells. ACS Appl. Mater. Interfaces 11(8), 7850–7861 (2019). https://doi.org/10.1021/acsami.8b22309
F. Gao, L. Xu, B. Yang, F. Fan, L. Yang, Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier. ACS Infect. Dis. 5(2), 218–227 (2019). https://doi.org/10.1021/acsinfecdis.8b00212
J. Xie, Q. Shen, K. Huang, T. Zheng, L. Cheng et al., Oriented assembly of cell-mimicking nanoparticles via a molecular affinity strategy for targeted drug delivery. ACS Nano 13(5), 5268–5277 (2019). https://doi.org/10.1021/acsnano.8b09681
J.M. Liu, D.D. Zhang, G.Z. Fang, S. Wang, Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. Biomaterials 165, 39–47 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.042
J. Zhang, Y. Miao, W. Ni, H. Xiao, J. Zhang, Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma. Artif. Cells Nanomed. Biotechnol. 47(1), 2298–2305 (2019). https://doi.org/10.1080/21691401.2019.1622554
J. Yang, Y. Teng, Y. Fu, C. Zhang, Chlorins e6 loaded silica nanoparticles coated with gastric cancer cell membrane for tumor specific photodynamic therapy of gastric cancer. Int. J. Nanomed. 14, 5061–5071 (2019). https://doi.org/10.2147/IJN.S202910
H. Ding, Y. Lv, D. Ni, J. Wang, Z. Tian, W. Wei, G. Ma, Erythrocyte membrane-coated NIR-triggered biomimetic nanovectors with programmed delivery for photodynamic therapy of cancer. Nanoscale 7(21), 9806–9815 (2015). https://doi.org/10.1039/c5nr02470f
L. Rao, L.-L. Bu, B. Cai, J.-H. Xu, A. Li et al., Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 28(18), 3460–3466 (2016). https://doi.org/10.1002/adma.201506086
J.-G. Piao, L. Wang, F. Gao, Y.-Z. You, Y. Xiong, L. Yang, Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8(10), 10414–10425 (2014). https://doi.org/10.1021/nn503779d
W. Gao, C.M. Hu, R.H. Fang, B.T. Luk, J. Su, L. Zhang, Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. 25(26), 3549–3553 (2013). https://doi.org/10.1002/adma.201300638
L. Rao, L.L. Bu, L. Ma, W. Wang, H. Liu et al., Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem. Int. Ed. 57(4), 986–991 (2018). https://doi.org/10.1002/anie.201709457
W. Gao, R.H. Fang, S. Thamphiwatana, B.T. Luk, J. Li et al., Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 15(2), 1403–1409 (2015). https://doi.org/10.1021/nl504798g
J. Zhu, M. Zhang, D. Zheng, S. Hong, J. Feng, X.Z. Zhang, A universal approach to render nanomedicine with biological identity derived from cell membranes. Biomacromol 19(6), 2043–2052 (2018). https://doi.org/10.1021/acs.biomac.8b00242
G.T. Yu, L. Rao, H. Wu, L.L. Yang, L.L. Bu et al., Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death. Adv. Funct. Mater. 28(37), 1801389 (2018). https://doi.org/10.1002/adfm.201801389
L. Rao, L.L. Bu, J.H. Xu, B. Cai, G.T. Yu et al., Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 11(46), 6225–6236 (2015). https://doi.org/10.1002/smll.201502388
L. Rao, J.H. Xu, B. Cai, H. Liu, M. Li et al., Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology 27(8), 085106 (2016). https://doi.org/10.1088/0957-4484/27/8/085106
Y. Zhai, W. Ran, J. Su, T. Lang, J. Meng, G. Wang, P. Zhang, Y. Li, Traceable bioinspired nanoparticle for the treatment of metastatic breast cancer via NIR-trigged intracellular delivery of methylene blue and cisplatin. Adv. Mater. 30(34), 1802378 (2018). https://doi.org/10.1002/adma.201802378
Y. Zhang, J. Zhang, W. Chen, P. Angsantikul, K.A. Spiekermann, R.H. Fang, W. Gao, L. Zhang, Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. J. Control Release 263, 185–191 (2017). https://doi.org/10.1016/j.jconrel.2017.01.016
W. Liu, M. Ruan, Y. Wang, R. Song, X. Ji, J. Xu, J. Dai, W. Xue, Light-triggered biomimetic nanoerythrocyte for tumor-targeted lung metastatic combination therapy of malignant melanoma. Small 14(38), 1801754 (2018). https://doi.org/10.1002/smll.201801754
J. Zhuang, M. Ying, K. Spiekermann, M. Holay, Y. Zhang et al., Biomimetic nanoemulsions for oxygen delivery in vivo. Adv. Mater. 30(49), 1804693 (2018). https://doi.org/10.1002/adma.201804693
H. Ren, J. Liu, Y. Li, H. Wang, S. Ge, A. Yuan, Y. Hu, J. Wu, Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater. 59, 269–282 (2017). https://doi.org/10.1016/j.actbio.2017.06.035
Z. Chai, D. Ran, L. Lu, C. Zhan, H. Ruan et al., Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano 13(5), 5591–5601 (2019). https://doi.org/10.1021/acsnano.9b00661
T. Liu, C. Shi, L. Duan, Z. Zhang, L. Luo, S. Goel, W. Cai, T. Chen, A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis. J. Mater. Chem. B 6(29), 4756–4764 (2018). https://doi.org/10.1039/c8tb01398e
W. He, J. Frueh, Z. Wu, Q. He, Leucocyte membrane-coated Janus microcapsules for enhanced photothermal cancer treatment. Langmuir 32(15), 3637–3644 (2016). https://doi.org/10.1021/acs.langmuir.5b04762
L. Rao, B. Cai, L.-L. Bu, Q.-Q. Liao, S.-S. Guo, X.-Z. Zhao, W.-F. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4), 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
J. Li, Y. Ai, L. Wang, P. Bu, C.C. Sharkey et al., Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 76, 52–65 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.046
Y. Wang, K. Zhang, X. Qin, T. Li, J. Qiu et al., Biomimetic nanotherapies: red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv. Sci. 6(12), 1900172 (2019). https://doi.org/10.1002/advs.201900172
H. Chen, H. Sha, L. Zhang, H. Qian, F. Chen et al., Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int. J. Nanomed. 13, 5347–5359 (2018). https://doi.org/10.2147/IJN.S165109
X. Han, C. Wang, Z. Liu, Red blood cells as smart delivery systems. Bioconjug. Chem. 29(4), 852–860 (2018). https://doi.org/10.1021/acs.bioconjchem.7b00758
H. Zhang, Erythrocytes in nanomedicine: an optimal blend of natural and synthetic materials. Biomater. Sci. 4(7), 1024–1031 (2016). https://doi.org/10.1039/c6bm00072j
Z. Zhang, H. Qian, J. Huang, H. Sha, H. Zhang et al., Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int. J. Nanomed. 13, 4961–4975 (2018). https://doi.org/10.2147/IJN.S170148
S. Fu, M. Liang, Y. Wang, L. Cui, C. Gao et al., Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl. Mater. Interfaces 11(2), 1841–1854 (2019). https://doi.org/10.1021/acsami.8b18664
Z. Zhang, H. Qian, M. Yang, R. Li, J. Hu et al., Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int. J. Nanomed. 12, 1593–1605 (2017). https://doi.org/10.2147/IJN.S127256
Q. Fu, P. Lv, Z. Chen, D. Ni, L. Zhang et al., Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale 7(9), 4020–4030 (2015). https://doi.org/10.1039/c4nr07027e
X. Zhang, P. Angsantikul, M. Ying, J. Zhuang, Q. Zhang et al., Remote loading of small-molecule therapeutics into cholesterol-enriched cell-membrane-derived vesicles. Angew. Chem. Int. Ed. 56(45), 14075–14079 (2017). https://doi.org/10.1002/anie.201707598
Z. Chai, X. Hu, X. Wei, C. Zhan, L. Lu et al., A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control Release 264, 102–111 (2017). https://doi.org/10.1016/j.jconrel.2017.08.027
C. Wang, Y. Ye, W. Sun, J. Yu, J. Wang et al., Red blood cells for glucose-responsive insulin delivery. Adv. Mater. 29(18), 1606617 (2017). https://doi.org/10.1002/adma.201606617
P. Xue, R. Yang, L. Sun, Q. Li, L. Zhang, Z. Xu, Y. Kang, Indocyanine green-conjugated magnetic prussian blue nanoparticles for synchronous photothermal/photodynamic tumor therapy. Nano-Micro Lett. 10(4), 74 (2018). https://doi.org/10.1007/s40820-018-0227-z
Q. Pei, X. Hu, X. Zheng, S. Liu, Y. Li, X. Jing, Z. Xie, Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 12(2), 1630–1641 (2018). https://doi.org/10.1021/acsnano.7b08219
M. Xuan, J. Shao, J. Zhao, Q. Li, L. Dai, J. Li, Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: applications in cancer therapy. Angew. Chem. Int. Ed. 57(21), 6049–6053 (2018). https://doi.org/10.1002/anie.201712996
L. Rao, B. Cai, L.L. Bu, Q.Q. Liao, S.S. Guo et al., Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4), 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
T. Jiang, B. Zhang, S. Shen, Y. Tuo, Z. Luo, Y. Hu, Z. Pang, X. Jiang, Tumor microenvironment modulation by cyclopamine improved photothermal therapy of biomimetic gold nanorods for pancreatic ductal adenocarcinomas. ACS Appl. Mater. Interfaces 9(37), 31497–31508 (2017). https://doi.org/10.1021/acsami.7b09458
D.-M. Zhu, W. Xie, Y.-S. Xiao, M. Suo, M.-H. Zan et al., Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology 29(8), 084002 (2018). https://doi.org/10.1088/1361-6528/aa9ca1
H. Ren, J. Liu, Y. Li, H. Wang, S. Ge, A. Yuan, Y. Hu, J. Wu, Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater. 59, 269–282 (2017). https://doi.org/10.1016/j.actbio.2017.06.035
P.A. Gentry, The mammalian blood platelet: its role in haemostasis, inflammation and tissue repair. J. Comp. Pathol. 107(3), 243–270 (1992). https://doi.org/10.1016/0021-9975(92)90002-c
Q. Hu, H.N. Bomba, Z. Gu, Engineering platelet-mimicking drug delivery vehicles. Front. Chem. Sci. Eng. 11(4), 624–632 (2017). https://doi.org/10.1007/s11705-017-1614-6
J.N. Thon, J.E. Italiano, Platelets: production, morphology and ultrastructure. Handb. Exp. Pharmacol. 210, 3–22 (2012). https://doi.org/10.1007/978-3-642-29423-5_1
Y. Lu, Q. Hu, C. Jiang, Z. Gu, Platelet for drug delivery. Curr. Opin. Biotechnol. 58, 81–91 (2019). https://doi.org/10.1016/j.copbio.2018.11.010
S.M. Moghimi, A.C. Hunter, D. Peer, Platelet mimicry: the emperor’s new clothes? Nanomed. Nanotechnol. Biol. Med. 12(1), 245–248 (2016). https://doi.org/10.1016/j.nano.2015.09.005
Q. Hu, W. Sun, C. Qian, C. Wang, H.N. Bomba, Z. Gu, Anticancer platelet-mimicking nanovehicles. Adv. Mater. 27(44), 7043–7050 (2015). https://doi.org/10.1002/adma.201503323
T.G. Walsh, P. Metharom, M.C. Berndt, The functional role of platelets in the regulation of angiogenesis. Platelets 26(3), 199–211 (2015). https://doi.org/10.3109/09537104.2014.909022
S.R. Hyslop, E.C. Josefsson, Undercover agents: targeting tumours with modified platelets. Trends Cancer 3(3), 235–246 (2017). https://doi.org/10.1016/j.trecan.2017.01.006
L. Jing, H. Qu, D. Wu, C. Zhu, Y. Yang et al., Platelet-camouflaged nanococktail: simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics 8(10), 2683–2695 (2018). https://doi.org/10.7150/thno.23654
M. Ying, J. Zhuang, X. Wei, X. Zhang, Y. Zhang et al., Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv. Funct. Mater. 28(22), 1801032 (2018). https://doi.org/10.1002/adfm.201801032
C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana et al., Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571), 118–121 (2015). https://doi.org/10.1038/nature15373
B. Wang, G. Chen, G. Urabe, R. Xie, Y. Wang et al., A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanoclusters. Biomaterials 178, 293–301 (2018). https://doi.org/10.1016/j.biomaterials.2018.06.025
Y. Song, Z. Huang, X. Liu, Z. Pang, J. Chen et al., Platelet membrane-coated nanoparticle-mediated targeting delivery of rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (apoE(−/−)) mice. Nanomedicine 15(1), 13–24 (2019). https://doi.org/10.1016/j.nano.2018.08.002
L. Xu, F. Gao, F. Fan, L. Yang, Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials 159, 59–67 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.028
L. Rao, L.-L. Bu, Q.-F. Meng, B. Cai, W.-W. Deng et al., Antitumor platelet-mimicking magnetic nanoparticles. Adv. Funct. Mater. 27(9), 1604774 (2017). https://doi.org/10.1002/adfm.201604774
H. Zuo, J. Tao, H. Shi, J. He, Z. Zhou, C. Zhang, Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy. Acta Biomater. 80, 296–307 (2018). https://doi.org/10.1016/j.actbio.2018.09.017
K. Jin, Z. Luo, B. Zhang, Z. Pang, Biomimetic nanoparticles for inflammation targeting. Acta Pharmaceutica Sinica B 8(1), 23–33 (2018). https://doi.org/10.1016/j.apsb.2017.12.002
R. Li, Y. He, S. Zhang, J. Qin, J. Wang, Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharmaceutica Sinica B 8(1), 14–22 (2018). https://doi.org/10.1016/j.apsb.2017.11.009
J. Si, S. Shao, Y. Shen, K. Wang, Macrophages as active nanocarriers for targeted early and adjuvant cancer chemotherapy. Small 12(37), 5108–5119 (2016). https://doi.org/10.1002/smll.201601282
W.J. Halliday, S. Miller, Leukocyte adherence inhibition: a simple test for cell-mediated tumour immunity and serum blocking factors. Int. J. Cancer 9(3), 477–483 (1972). https://doi.org/10.1002/ijc.2910090304
A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos et al., Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8(1), 61–68 (2013). https://doi.org/10.1038/nnano.2012.212
W.J. Goh, C.K. Lee, S. Zou, E.C.Y. Woon, B. Czarny, G. Pastorin, Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy. Int. J. Nanomed. 12, 2759–2767 (2017). https://doi.org/10.2147/ijn.s131786
S. Krishnamurthy, M.K. Gnanasammandhan, C. Xie, K. Huang, M.Y. Cui, J.M. Chan, Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale 8(13), 6981–6985 (2016). https://doi.org/10.1039/c5nr07588b
L. Zhang, R. Li, H. Chen, J. Wei, H. Qian et al., Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int. J. Nanomed. 12, 2129–2142 (2017). https://doi.org/10.2147/ijn.s126016
A. Pitchaimani, N. Tuyen Duong Thanh, S. Aryal, Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 160, 124–137 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.018
Y. Zhang, K. Gai, C. Li, Q. Guo, Q. Chen et al., Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 18(3), 1908–1915 (2018). https://doi.org/10.1021/acs.nanolett.7b05263
C. Ju, Y. Wen, L. Zhang, Q. Wang, L. Xue, J. Shen, C. Zhang, Neoadjuvant chemotherapy based on abraxane/human neutrophils cytopharmaceuticals with radiotherapy for gastric cancer. Small 15(5), 1804191 (2019). https://doi.org/10.1002/smll.201804191
G. Deng, Z. Sun, S. Li, X. Peng, W. Li et al., Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano 12(12), 12096–12108 (2018). https://doi.org/10.1021/acsnano.8b05292
M. Xuan, J. Shao, L. Dai, J. Li, Q. He, Macrophage cell membrane camouflaged au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces 8(15), 9610–9618 (2016). https://doi.org/10.1021/acsami.6b00853
Q.-F. Meng, L. Rao, M. Zan, M. Chen, G.-T. Yu et al., Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology 29(13), 134004 (2018). https://doi.org/10.1088/1361-6528/aaa7c7
W. Lv, J. Xu, X. Wang, X. Li, Q. Xu, H. Xin, Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 12(6), 5417–5426 (2018). https://doi.org/10.1021/acsnano.8b00477
H. Zhao, L. Li, J. Zhang, C. Zheng, K. Ding, H. Xiao, L. Wang, Z. Zhang, C-C chemokine ligand 2 (CCL2) recruits macrophage-membrane-camouflaged hollow bismuth selenide nanoparticles to facilitate photothermal sensitivity and inhibit lung metastasis of breast cancer. ACS Appl. Mater. Interfaces 10(37), 31124–31135 (2018). https://doi.org/10.1021/acsami.8b11645
L. Zhang, Y. Zhang, Y. Xue, Y. Wu, Q. Wang, L. Xue, Z. Su, C. Zhang, Transforming weakness into strength: photothermal-therapy-induced inflammation enhanced cytopharmaceutical chemotherapy as a combination anticancer treatment. Adv. Mater. 31(5), e1805936 (2019). https://doi.org/10.1002/adma.201805936
Q. Zhang, D. Dehaini, Y. Zhang, J. Zhou, X. Chen et al., Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13(12), 1182–1190 (2018). https://doi.org/10.1038/s41565-018-0254-4
J. Xia, Y. Cheng, H. Zhang, R. Li, Y. Hu, B. Liu, The role of adhesions between homologous cancer cells in tumor progression and targeted therapy. Expert Rev. Anticancer Ther. 17(6), 517–526 (2017). https://doi.org/10.1080/14737140.2017.1322511
R.J.C. Bose, R. Paulmurugan, J. Moon, S.-H. Lee, H. Park, Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discov. Today 23(4), 891–899 (2018). https://doi.org/10.1016/j.drudis.2018.02.001
J.-Y. Zhu, D.-W. Zheng, M.-K. Zhang, W.-Y. Yu, W.-X. Qiu, J.-J. Hu, J. Feng, X.-Z. Zhang, Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 16(9), 5895–5901 (2016). https://doi.org/10.1021/acs.nanolett.6b02786
N. Kamaly, Z. Xiao, P.M. Valencia, A.F. Radovic-Moreno, O.C. Farokhzad, Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41(7), 2971–3010 (2012). https://doi.org/10.1039/c2cs15344k
R.H. Fang, C.-M.J. Hu, B.T. Luk, W. Gao, J.A. Copp, Y. Tai, D.E. O’Connor, L. Zhang, Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14(4), 2181–2188 (2014). https://doi.org/10.1021/nl500618u
S. Zhao, S. Sun, K. Jiang, Y. Wang, Y. Liu, S. Wu, Z. Li, Q. Shu, H. Lin, In situ synthesis of fluorescent mesoporous silica-carbon dot nanohybrids featuring folate receptor-overexpressing cancer cell targeting and drug delivery. Nano-Micro Lett. 11(1), 32 (2019). https://doi.org/10.1007/s40820-019-0263-3
H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen et al., Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 28(43), 9581–9588 (2016). https://doi.org/10.1002/adma.201602173
V. Balasubramanian, A. Correia, H. Zhang, F. Fontana, E. Makila, J. Salonen, J. Hirvonen, H.A. Santos, Biomimetic engineering using cancer cell membranes for designing compartmentalized nanoreactors with organelle-like functions. Adv. Mater. 29(11), 1605375 (2017). https://doi.org/10.1002/adma.201605375
C.M. Liu, G.B. Chen, H.H. Chen, J.B. Zhang, H.Z. Li et al., Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf. B 175, 477–486 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.038
J. Zhu, M. Zhang, D. Zheng, S. Hong, J. Feng, X.-Z. Zhang, A universal approach to render nanomedicine with biological identity derived from cell membranes. Biomacromol 19(6), 2043–2052 (2018). https://doi.org/10.1021/acs.biomac.8b00242
S.Y. Li, H. Cheng, B.R. Xie, W.X. Qiu, J.Y. Zeng et al., Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7), 7006–7018 (2017). https://doi.org/10.1021/acsnano.7b02533
Z. Yu, P. Zhou, W. Pan, N. Li, B. Tang, A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 9(1), 5044 (2018). https://doi.org/10.1038/s41467-018-07197-8
Y.J. Li, C.X. Yang, X.P. Yan, Biomimetic persistent luminescent nanoplatform for autofluorescence-free metastasis tracking and chemophotodynamic therapy. Anal. Chem. 90(6), 4188–4195 (2018). https://doi.org/10.1021/acs.analchem.8b00311
Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian et al., Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10(11), 10049–10057 (2016). https://doi.org/10.1021/acsnano.6b04695
N. Zhang, M. Li, X. Sun, H. Jia, W. Liu, Nir-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials 159, 25–36 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.007
A.V. Kroll, R.H. Fang, Y. Jiang, J. Zhou, X. Wei et al., Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv. Mater. 29(47), 1703969 (2017). https://doi.org/10.1002/adma.201703969
N. Yang, Y. Ding, Y. Zhang, B. Wang, X. Zhao et al., Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl. Mater. Interfaces 10(27), 22963–22973 (2018). https://doi.org/10.1021/acsami.8b05363
R.J. Bose, B.J. Kim, Y. Arai, I.B. Han, J.J. Moon, R. Paulmurugan, H. Park, S.H. Lee, Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials 185, 360–370 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.018
N. Erez, M. Truitt, P. Olson, D. Hanahan, Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an nf-kappa b-dependent manner. Cancer Cell 17(2), 135–147 (2010). https://doi.org/10.1016/j.ccr.2009.12.041
J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12(8), 8520–8530 (2018). https://doi.org/10.1021/acsnano.8b04066
J. Tan, L. Liu, B. Li, Q. Xie, J. Sun, H. Pu, L. Zhang, Pancreatic stem cells differentiate into insulin-secreting cells on fibroblast-modified PLGA membranes. Mater. Sci. Eng. C Mater. Biol. Appl. 97, 593–601 (2019). https://doi.org/10.1016/j.msec.2018.12.062
C.C. Lin, K.S. Anseth, Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc. Natl. Acad. Sci. U.S.A. 108(16), 6380–6385 (2011). https://doi.org/10.1073/pnas.1014026108
W. Gao, R.H. Fang, S. Thamphiwatana, B.T. Luk, J. Li et al., Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 15(2), 1403–1409 (2015). https://doi.org/10.1021/nl504798g
A. Poetsch, D. Wolters, Bacterial membrane proteomics. Proteomics 8(19), 4100–4122 (2008). https://doi.org/10.1002/pmic.200800273
A.-N. Zhang, W. Wu, C. Zhang, Q.-Y. Wang, Z.-N. Zhuang, H. Cheng, X.-Z. Zhang, A versatile bacterial membrane-binding chimeric peptide with enhanced photodynamic antimicrobial activity. J. Mater. Chem. B 7(7), 1087–1095 (2019). https://doi.org/10.1039/c8tb03094d
Y. Liu, X. Wang, B. Ouyang, X. Liu, Y. Du et al., Erythrocyte–platelet hybrid membranes coating polypyrrol nanoparticles for enhanced delivery and photothermal therapy. J. Mater. Chem. B 6(43), 7033–7041 (2018). https://doi.org/10.1039/c8tb02143k
D. Wang, H. Dong, M. Li, Y. Cao, F. Yang et al., Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 12(6), 5241–5252 (2018). https://doi.org/10.1021/acsnano.7b08355
Q. Jiang, Y. Liu, R. Guo, X. Yao, S. Sung, Z. Pang, W. Yang, Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 192, 292–308 (2019). https://doi.org/10.1016/j.biomaterials.2018.11.021
H. He, C. Guo, J. Wang, W.J. Korzun, X.Y. Wang, S. Ghosh, H. Yang, Leutusome: a biomimetic nanoplatform integrating plasma membrane components of leukocytes and tumor cells for remarkably enhanced solid tumor homing. Nano Lett. 18(10), 6164–6174 (2018). https://doi.org/10.1021/acs.nanolett.8b01892
L. Rao, Q.-F. Meng, Q. Huang, Z. Wang, G.-T. Yu et al., Platelet-leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv. Funct. Mater. 28(34), 1803531 (2018). https://doi.org/10.1002/adfm.201803531
P. Angsantikul, R.H. Fang, L. Zhang, Toxoid vaccination against bacterial infection using cell membrane-coated nanoparticles. Bioconjug. Chem. 29(3), 604–612 (2018). https://doi.org/10.1021/acs.bioconjchem.7b00692
C.M. Hu, R.H. Fang, J. Copp, B.T. Luk, L. Zhang, A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8(5), 336–340 (2013). https://doi.org/10.1038/nnano.2013.54
Y. Chen, Y. Zhang, M. Chen, J. Zhuang, R.H. Fang, W. Gao, L. Zhang, Biomimetic nanosponges suppress in vivo lethality induced by the whole secreted proteins of pathogenic bacteria. Small 15(6), 1804994 (2019). https://doi.org/10.1002/smll.201804994
M.S. Chen, Y. Zhang, L. Zhang, Fabrication and characterization of a 3D bioprinted nanoparticle-hydrogel hybrid device for biomimetic detoxification. Nanoscale 9(38), 14506–14511 (2017). https://doi.org/10.1039/c7nr05322c
J. Li, P. Angsantikul, W. Liu, B.E.-F. de Avila, X. Chang et al., Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats. Adv. Mater. 30(2), 1704800 (2018). https://doi.org/10.1002/adma.201704800
B.E.-F.D. d Ávila, P. Angsantikul, D.E. Ramírez-Herrera, F. Soto, H. Teymourian, D. Dehaini, Y. Chen, L. Zhang, J. Wang, Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 3(18), aat0485 (2018). https://doi.org/10.1126/scirobotics.aat0485
H. Ye, K. Wang, M. Wang, R. Liu, H. Song et al., Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 206, 1–12 (2019). https://doi.org/10.1016/j.biomaterials.2019.03.024
S. Krishnamurthy, M.K. Gnanasammandhan, C. Xie, K. Huang, M.Y. Cui, J.M. Chan, Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale 8(13), 6981–6985 (2016). https://doi.org/10.1039/c5nr07588b
Y. Huang, C. Mei, Y. Tian, T. Nie, Z. Liu, T. Chen, Bioinspired tumor-homing nanosystem for precise cancer therapy via reprogramming of tumor-associated macrophages. NPG Asia Mater. 10(10), 1002–1015 (2018). https://doi.org/10.1038/s41427-018-0091-9
J. Su, H. Sun, Q. Meng, Q. Yin, P. Zhang, Z. Zhang, H. Yu, Y. Li, Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater. 26(41), 7495–7506 (2016). https://doi.org/10.1002/adfm.201603381
J.N. Ma, S.Q. Zhang, J. Liu, F.Y. Liu, F. Du et al., Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small 15(35), 1902011 (2019). https://doi.org/10.1002/smll.201902011
C. Tapeinos, F. Tomatis, M. Battaglini, A. Larranaga, A. Marino et al., Cell membrane-coated magnetic nanocubes with a homotypic targeting ability increase intracellular temperature due to ROS scavenging and act as a versatile theranostic system for glioblastoma multiforme. Adv. Healthc. Mater. 8(18), 1900612 (2019). https://doi.org/10.1002/adhm.201900612