Enhanced Performance of a Monolayer MoS2/WSe2 Heterojunction as a Photoelectrochemical Cathode
Corresponding Author: Yu Zhang
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 60
Abstract
Transition-metal dichalcogenide (TMD) semiconductors have attracted interest as photoelectrochemical (PEC) electrodes due to their novel band-gap structures, optoelectronic properties, and photocatalytic activities. However, the photo-harvesting efficiency still requires improvement. In this study, A TMD stacked heterojunction structure was adopted to further enhance the performance of the PEC cathode. A P-type WSe2 and an N-type MoS2 monolayer were stacked layer-by-layer to build a ultrathin vertical heterojunction using a micro-fabrication method. In situ measurement was employed to characterize the intrinsic PEC performance on a single-sheet heterostructure. Benefitting from its built-in electric field and type II band alignment, the MoS2/WSe2 bilayer heterojunction exhibited exceptional photocatalytic activity and a high incident photo-to-current conversion efficiency (IPCE). Comparing with the monolayer WSe2 cathode, the PEC current and the IPCE of the bilayer heterojunction increased by a factor of 5.6 and enhanced 50%, respectively. The intriguing performance renders the MoS2/WSe2 heterojunction attractive for application in high-performance PEC water splitting.
Highlights:
1 A vertical transition-metal dichalcogenide MoS2/WSe2 bilayer heterojunction was built by stacking a P-type WSe2 and an N-type MoS2 monolayer.
2 An in situ measurement method was employed to characterize the intrinsic photoelectrochemical performance on the microscale.
3 The photoelectrochemical current and the incident photo-to-current conversion efficiency of the MoS2/WSe2 bilayer heterojunction increased by a factor of 5.6 and enhanced 50% compared with the monolayer WSe2 cathode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
- J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5(3), 1360–1384 (2015). https://doi.org/10.1039/C4CY00974F
- X. Chia, A. Adriano, Z. Sofer, J. Luxa, M. Pumera, Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 9(5), 5164–5179 (2015). https://doi.org/10.1021/acsnano.5b00501
- X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8, 1 (2016). https://doi.org/10.1007/s40820-015-0063-3
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/b800489g
- X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015). https://doi.org/10.1039/c5cs00507h
- A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064s
- R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, Y. Sun, T.E. Mallouk, M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
- M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13(8), 3664–3670 (2013). https://doi.org/10.1021/nl401544y
- F.R.F. Fan, H.S. White, B.L. Wheeler, A.J. Bard, Semiconductor electrodes. 31. photoelectrochemistry and photovoltaic systems with n- and p-type WSe2 in aqueous solution. J. Am. Chem. Soc. 102(16), 5142–5148 (1980). https://doi.org/10.1021/ja00536a002
- X. Yu, M.S. Prévot, N. Guijarro, K. Sivula, Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun. 6, 7596 (2015). https://doi.org/10.1038/ncomms8596
- H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15(1), 709–713 (2015). https://doi.org/10.1021/nl504256y
- H.J. Chuang, X. Tan, N.J. Ghimire, M.M. Perera, B. Chamlagain et al., High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14, 3594–3611 (2014). https://doi.org/10.1021/nl501275p
- J. Li, E. Liu, Y. Ma, X. Hu, J. Wan, L. Sun, J. Fan, Synthesis of MoS2/g–C3N4, nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl. Surf. Sci. 364, 694–702 (2016). https://doi.org/10.1016/j.apsusc.2015.12.236
- Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, H. Zhang, Water splitting: Au nanoparticle modified MoS2 nanosheet based photoelectrochemical cells for water splitting. Small 10(17), 3537–3543 (2014). https://doi.org/10.1002/smll.201400124
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1021/nn2024557
- Y. Yu, S.Y. Huang, Y. Li, S.N. Steinmann, W. Yang, L. Cao, Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14(2), 553–558 (2014). https://doi.org/10.1021/nl403620g
- Y. Chen, P.D. Tran, P. Boix, Y. Ren, S.Y. Chiam, Z. Li, K. Fu, L.H. Wong, J. Barber, Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation. ACS Nano 9(4), 3829–3836 (2015). https://doi.org/10.1021/nn506819m
- L.A. King, T.R. Hellstern, J. Park, R. Sinclair, T.F. Jaramillo, Highly stable molybdenum disulfide protected silicon photocathodes for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 9(42), 36792–36798 (2017). https://doi.org/10.1021/acsami.7b10749
- T. Roy, M. Tosun, X. Cao, H. Fang, D.H. Lien et al., Dual-gated MoS2/WSe2 van der waals tunnel diodes and transistors. ACS Nano 9(2), 2071–2079 (2015). https://doi.org/10.1021/nn507278b
- A. Nourbakhsh, A. Zubair, M.S. Dresselhaus, T. Palacios, Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16(2), 1359–1366 (2016). https://doi.org/10.1021/acs.nanolett.5b04791
- H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol et al., Strong interlayer coupling in van der waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 111(17), 6198–6202 (2014). https://doi.org/10.1073/pnas.1405435111
- K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang et al., Interlayer transition and infrared photodetection in atomically thin type-ii MoTe2/MoS2 van der waals heterostructures. ACS Nano 10(3), 3852–3858 (2016). https://doi.org/10.1021/acsnano.6b00980
- A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385
- C.H. Lee, G.H. Lee, A.M.V.D. Zande, W. Chen, Y. Li et al., Atomically thin p–n junctions with van der waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). https://doi.org/10.1038/NNANO.2014.150
- K. Wang, B. Huang, M. Tian, F. Ceballos, M.W. Lin et al., Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 10(7), 6612–6622 (2016). https://doi.org/10.1021/acsnano.6b01486
- J.K. Huang, J. Pu, C.L. Hsu, M.H. Chiu, Z.Y. Juang et al., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8(1), 923–930 (2013). https://doi.org/10.1021/nn405719x
- E. Del Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M.A. Nguyen, T.E. Mallouk, M. Terrones, M.A. Pimenta, Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 8(9), 9629–9635 (2014). https://doi.org/10.1021/nn504088g
- B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, C. Zhou, Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9, 6119–6127 (2015). https://doi.org/10.1021/acsnano.5b01301
- P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner et al., Photoluminescence emission and raman response of MoS2, MoSe2, and WSe2 nanolayers. Opt. Express 21(4), 4908–4916 (2013). https://doi.org/10.1364/OE.21.004908
- H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47(4), 1067–1075 (2014). https://doi.org/10.1021/ar4002312
- B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T.C. Sum, K.P. Loh, Ultrafast charge transfer in MoS2/WSe2 p–n heterojunction. 2D Mater. 3(2), 025020 (2016). https://doi.org/10.1088/2053-1583/3/2/025020
- R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin et al., Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14(10), 5590–5597 (2014). https://doi.org/10.1021/nl502075n
- W.J. Zhao, Z. Ghorannevis, L.Q. Chu, M.L. Toh, C. Kloc et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013). https://doi.org/10.1021/nn305275h
- N. Flöry, A. Jain, P. Bharadwaj, M. Parzefall, T. Taniguchi et al., A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 107(12), 4785–4791 (2015). https://doi.org/10.1063/1.4931621
- Y. Liu, Y.X. Yu, W.D. Zhang, MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: the role of MoS2. J. Phys. Chem. C 117(25), 12949–12957 (2013). https://doi.org/10.1021/jp4009652
- Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
- M.H. Chiu, M.Y. Li, W. Zhang, W.T. Hsu, W.H. Chang, M. Terrones, H. Terrones, L.-J. Li, Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der waals stacking. ACS Nano 8(9), 9649–9656 (2014). https://doi.org/10.1021/nn504229z
- Y. Zhang, M.M. Ugeda, C. Jin, S.F. Shi, A.J. Bradley et al., Electronic structure, surface doping and optical response in epitaxial WSe2 thin films. Nano Lett. 16(4), 2485–2491 (2016). https://doi.org/10.1021/acs.nanolett.6b00059
- Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu et al., Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and non-epitaxial MoS2/WS2 heterostructures. Nano Lett. 15(1), 486–491 (2015). https://doi.org/10.1021/nl5038177
- L. Ju, B.S. Geng, J. Horng, C. Girit, M. Martin et al., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)
- J.T. Liu, T.B. Wang, X.J. Li, N.H. Liu, Enhanced absorption of monolayer MoS2 with resonant back reflector. J. Appl. Phys. 115, 193511 (2014). https://doi.org/10.1063/1.4906398
- Y.F. Liang, S.T. Huang, R. Soklaski, L. Yang, Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides. Appl. Phys. Lett. 103, 042106 (2013). https://doi.org/10.1063/1.4816517
- C. Gong, H.J. Zhang, W.H. Wang, L.G. Colombo, R.M. Wallace et al., Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013). https://doi.org/10.1063/1.4817409
- M.M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14(8), 4785–4791 (2014). https://doi.org/10.1021/nl501962c
- G.Y. Cao, A.X. Shang, C. Zhang, Y.P. Gong, S.J. Li et al., Optoelectronic investigation of monolayer MoS2/WSe2 vertical heterojunction photoconversion devices. Nano Energy 30, 260–266 (2016). https://doi.org/10.1016/j.nanoen.2016.10.022
References
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5(3), 1360–1384 (2015). https://doi.org/10.1039/C4CY00974F
X. Chia, A. Adriano, Z. Sofer, J. Luxa, M. Pumera, Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 9(5), 5164–5179 (2015). https://doi.org/10.1021/acsnano.5b00501
X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8, 1 (2016). https://doi.org/10.1007/s40820-015-0063-3
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/b800489g
X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015). https://doi.org/10.1039/c5cs00507h
A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064s
R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, Y. Sun, T.E. Mallouk, M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13(8), 3664–3670 (2013). https://doi.org/10.1021/nl401544y
F.R.F. Fan, H.S. White, B.L. Wheeler, A.J. Bard, Semiconductor electrodes. 31. photoelectrochemistry and photovoltaic systems with n- and p-type WSe2 in aqueous solution. J. Am. Chem. Soc. 102(16), 5142–5148 (1980). https://doi.org/10.1021/ja00536a002
X. Yu, M.S. Prévot, N. Guijarro, K. Sivula, Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun. 6, 7596 (2015). https://doi.org/10.1038/ncomms8596
H. Zhou, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15(1), 709–713 (2015). https://doi.org/10.1021/nl504256y
H.J. Chuang, X. Tan, N.J. Ghimire, M.M. Perera, B. Chamlagain et al., High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14, 3594–3611 (2014). https://doi.org/10.1021/nl501275p
J. Li, E. Liu, Y. Ma, X. Hu, J. Wan, L. Sun, J. Fan, Synthesis of MoS2/g–C3N4, nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl. Surf. Sci. 364, 694–702 (2016). https://doi.org/10.1016/j.apsusc.2015.12.236
Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, H. Zhang, Water splitting: Au nanoparticle modified MoS2 nanosheet based photoelectrochemical cells for water splitting. Small 10(17), 3537–3543 (2014). https://doi.org/10.1002/smll.201400124
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1021/nn2024557
Y. Yu, S.Y. Huang, Y. Li, S.N. Steinmann, W. Yang, L. Cao, Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14(2), 553–558 (2014). https://doi.org/10.1021/nl403620g
Y. Chen, P.D. Tran, P. Boix, Y. Ren, S.Y. Chiam, Z. Li, K. Fu, L.H. Wong, J. Barber, Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation. ACS Nano 9(4), 3829–3836 (2015). https://doi.org/10.1021/nn506819m
L.A. King, T.R. Hellstern, J. Park, R. Sinclair, T.F. Jaramillo, Highly stable molybdenum disulfide protected silicon photocathodes for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 9(42), 36792–36798 (2017). https://doi.org/10.1021/acsami.7b10749
T. Roy, M. Tosun, X. Cao, H. Fang, D.H. Lien et al., Dual-gated MoS2/WSe2 van der waals tunnel diodes and transistors. ACS Nano 9(2), 2071–2079 (2015). https://doi.org/10.1021/nn507278b
A. Nourbakhsh, A. Zubair, M.S. Dresselhaus, T. Palacios, Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16(2), 1359–1366 (2016). https://doi.org/10.1021/acs.nanolett.5b04791
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol et al., Strong interlayer coupling in van der waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 111(17), 6198–6202 (2014). https://doi.org/10.1073/pnas.1405435111
K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang et al., Interlayer transition and infrared photodetection in atomically thin type-ii MoTe2/MoS2 van der waals heterostructures. ACS Nano 10(3), 3852–3858 (2016). https://doi.org/10.1021/acsnano.6b00980
A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385
C.H. Lee, G.H. Lee, A.M.V.D. Zande, W. Chen, Y. Li et al., Atomically thin p–n junctions with van der waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). https://doi.org/10.1038/NNANO.2014.150
K. Wang, B. Huang, M. Tian, F. Ceballos, M.W. Lin et al., Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 10(7), 6612–6622 (2016). https://doi.org/10.1021/acsnano.6b01486
J.K. Huang, J. Pu, C.L. Hsu, M.H. Chiu, Z.Y. Juang et al., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8(1), 923–930 (2013). https://doi.org/10.1021/nn405719x
E. Del Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M.A. Nguyen, T.E. Mallouk, M. Terrones, M.A. Pimenta, Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 8(9), 9629–9635 (2014). https://doi.org/10.1021/nn504088g
B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, C. Zhou, Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9, 6119–6127 (2015). https://doi.org/10.1021/acsnano.5b01301
P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner et al., Photoluminescence emission and raman response of MoS2, MoSe2, and WSe2 nanolayers. Opt. Express 21(4), 4908–4916 (2013). https://doi.org/10.1364/OE.21.004908
H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47(4), 1067–1075 (2014). https://doi.org/10.1021/ar4002312
B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T.C. Sum, K.P. Loh, Ultrafast charge transfer in MoS2/WSe2 p–n heterojunction. 2D Mater. 3(2), 025020 (2016). https://doi.org/10.1088/2053-1583/3/2/025020
R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin et al., Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14(10), 5590–5597 (2014). https://doi.org/10.1021/nl502075n
W.J. Zhao, Z. Ghorannevis, L.Q. Chu, M.L. Toh, C. Kloc et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013). https://doi.org/10.1021/nn305275h
N. Flöry, A. Jain, P. Bharadwaj, M. Parzefall, T. Taniguchi et al., A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 107(12), 4785–4791 (2015). https://doi.org/10.1063/1.4931621
Y. Liu, Y.X. Yu, W.D. Zhang, MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: the role of MoS2. J. Phys. Chem. C 117(25), 12949–12957 (2013). https://doi.org/10.1021/jp4009652
Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
M.H. Chiu, M.Y. Li, W. Zhang, W.T. Hsu, W.H. Chang, M. Terrones, H. Terrones, L.-J. Li, Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der waals stacking. ACS Nano 8(9), 9649–9656 (2014). https://doi.org/10.1021/nn504229z
Y. Zhang, M.M. Ugeda, C. Jin, S.F. Shi, A.J. Bradley et al., Electronic structure, surface doping and optical response in epitaxial WSe2 thin films. Nano Lett. 16(4), 2485–2491 (2016). https://doi.org/10.1021/acs.nanolett.6b00059
Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu et al., Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and non-epitaxial MoS2/WS2 heterostructures. Nano Lett. 15(1), 486–491 (2015). https://doi.org/10.1021/nl5038177
L. Ju, B.S. Geng, J. Horng, C. Girit, M. Martin et al., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)
J.T. Liu, T.B. Wang, X.J. Li, N.H. Liu, Enhanced absorption of monolayer MoS2 with resonant back reflector. J. Appl. Phys. 115, 193511 (2014). https://doi.org/10.1063/1.4906398
Y.F. Liang, S.T. Huang, R. Soklaski, L. Yang, Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides. Appl. Phys. Lett. 103, 042106 (2013). https://doi.org/10.1063/1.4816517
C. Gong, H.J. Zhang, W.H. Wang, L.G. Colombo, R.M. Wallace et al., Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013). https://doi.org/10.1063/1.4817409
M.M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14(8), 4785–4791 (2014). https://doi.org/10.1021/nl501962c
G.Y. Cao, A.X. Shang, C. Zhang, Y.P. Gong, S.J. Li et al., Optoelectronic investigation of monolayer MoS2/WSe2 vertical heterojunction photoconversion devices. Nano Energy 30, 260–266 (2016). https://doi.org/10.1016/j.nanoen.2016.10.022