Direct Ink Writing of Highly Conductive MXene Frames for Tunable Electromagnetic Interference Shielding and Electromagnetic Wave-Induced Thermochromism
Corresponding Author: Zhong‑Zhen Yu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 148
Abstract
The highly integrated and miniaturized next-generation electronic products call for high-performance electromagnetic interference (EMI) shielding materials to assure the normal operation of their closely assembled components. However, the most current techniques are not adequate for the fabrication of shielding materials with programmable structure and controllable shielding efficiency. Herein, we demonstrate the direct ink writing of robust and highly conductive Ti3C2Tx MXene frames with customizable structures by using MXene/AlOOH inks for tunable EMI shielding and electromagnetic wave-induced thermochromism applications. The as-printed frames are reinforced by immersing in AlCl3/HCl solution to remove the electrically insulating AlOOH nanoparticles, as well as cross-link the MXene sheets and fuse the filament interfaces with aluminum ions. After freeze-drying, the resultant robust and porous MXene frames exhibit tunable EMI shielding efficiencies in the range of 25–80 dB with the highest electrical conductivity of 5323 S m−1. Furthermore, an electromagnetic wave-induced thermochromic MXene pattern is assembled by coating and curing with thermochromic polydimethylsiloxane on a printed MXene pattern, and its color can be changed from blue to red under the high-intensity electromagnetic irradiation. This work demonstrates a direct ink printing of customizable EMI frames and patterns for tuning EMI shielding efficiency and visualizing electromagnetic waves.
Highlights:
1 3D printing of MXene frames with tunable electromagnetic interference shielding efficiency is demonstrated.
2 Highly conductive MXene frames are reinforced by cross-linking with aluminum ions.
3 Electromagnetic wave is visualized by electromagnetic-thermochromic MXene patterns.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2d transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using mxenes for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan et al., Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175, 271–280 (2021). https://doi.org/10.1016/j.carbon.2020.12.084
- W.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019). https://doi.org/10.1002/adfm.201905898
- L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- X. Wu, B. Han, H.B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- X.Y. Wu, H.B. Zhang, Study on structure design and electromagnetic shielding properties of polymer nanocomposites. Acta Polym. Sin. 51(6), 573–583 (2020). https://doi.org/10.11777/j.issn1000-3304.2020.20015
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13(1), 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. B: Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu et al., Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11(47), 22804–22812 (2019). https://doi.org/10.1039/c9nr07988b
- S. Shi, B. Qian, X. Wu, H. Sun, H. Wang et al., Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58(50), 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- N. Zhou, C. Liu, J.A. Lewis, D. Ham, Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications. Adv. Mater. 29(15), 1605198 (2017). https://doi.org/10.1002/adma.201605198
- M. Rafiee, R.D. Farahani, D. Therriault, Multi-material 3D and 4D printing: a survey. Adv. Sci. 7(12), 1902307 (2020). https://doi.org/10.1002/advs.201902307
- V.G. Rocha, E. Saiz, I.S. Tirichenko, E. García-Tuñón, Direct ink writing advances in multi-material structures for a sustainable future. J. Mater. Chem. A 8(31), 15646–15657 (2020). https://doi.org/10.1039/d0ta04181e
- C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10(1), 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu et al., 3D Printing of freestanding mxene architectures for current-collector-free supercapacitors. Adv. Mater. 31(37), 1902725 (2019). https://doi.org/10.1002/adma.201902725
- J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14(1), 640–650 (2020). https://doi.org/10.1021/acsnano.9b07325
- Z. Fan, C. Wei, L. Yu, Z. Xia, J. Cai et al., 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 14(1), 867–876 (2020). https://doi.org/10.1021/acsnano.9b08030
- X. Li, H. Li, X. Fan, X. Shi, J. Liang, 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy. Mater. 10(14), 1903794 (2020). https://doi.org/10.1002/aenm.201903794
- J.A. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16(17), 2193–2204 (2006). https://doi.org/10.1002/adfm.200600434
- T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30(16), 1703027 (2018). https://doi.org/10.1002/adma.201703027
- T. Chen, W. Tang, J. Mu, T.J. Cui, Microwave metamaterials. Ann. Phys. 531(8), 1800445 (2019). https://doi.org/10.1002/andp.201800445
- F. Calignano, D. Manfredi, E.P. Ambrosio, S. Biamino, M. Lombardi et al., Overview on additive manufacturing technologies. Proc. IEEE Inst. Electr. Electron. Eng. 105(4), 593–612 (2017). https://doi.org/10.1109/jproc.2016.2625098
- Z. Wang, J. Ren, R. Liu, X. Sun, D. Huang et al., Three dimensional core-shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding. Compos. Part A: Appl. S. 136, 105957 (2020). https://doi.org/10.1016/j.compositesa.2020.105957
- R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(6), 77–79 (2001). https://doi.org/10.1126/science.1058847
- S.A. Nauroze, L.S. Novelino, M.M. Tentzeris, G.H. Paulino, Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing. Proc. Natl. Acad. Sci. USA 115(52), 13210–13215 (2018). https://doi.org/10.1073/pnas.1812486115
- B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei et al., Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon 113, 55–62 (2017). https://doi.org/10.1016/j.carbon.2016.11.034
- M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia et al., 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience. Adv. Mater. 31(35), 1902930 (2019). https://doi.org/10.1002/adma.201902930
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N.J. Alvarez et al., Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12(3), 2685–2694 (2018). https://doi.org/10.1021/acsnano.7b08889
- Y.Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim et al., MXene printing and patterned coating for device applications. Adv. Mater. 32(21), 1908486 (2020). https://doi.org/10.1002/adma.201908486
- H. Li, X. Li, J. Liang, Y. Chen, Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9(15), 1803987 (2019). https://doi.org/10.1002/aenm.201803987
- M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati et al., Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
- L.H. Yu, Z.D. Fan, Y.L. Shao, Z.N. Tian, J.Y. Sun et al., Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy. Mater. 9(34), 1901839 (2019). https://doi.org/10.1002/aenm.201901839
- L. Li, Q. Lin, M. Tang, A.J.E. Duncan, C. Ke, Advanced polymer designs for direct-ink-write 3D printing. Chem. Eur. J. 25(46), 10768–10781 (2019). https://doi.org/10.1002/chem.201900975
- C. Zhu, T.Y. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
- C. Zhu, J.E. Smay, Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication. J. Rheol. 55(3), 655–672 (2011). https://doi.org/10.1122/1.3573828
- S.A. Shah, T. Habib, H. Gao, P. Gao, W. Sun et al., Template-free 3D titanium carbide (Ti3C2Tx) MXene ps crumpled by capillary forces. Chem. Commun. 53(2), 400–403 (2017). https://doi.org/10.1039/c6cc07733a
- V. Natu, M. Sokol, L. Verger, M.W. Barsoum, Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122(48), 27745–27753 (2018). https://doi.org/10.1021/acs.jpcc.8b08860
- Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432H
- H. Chen, P. Ma, Y. Zhang, L. Wen Qu et al., Pristine titanium carbide mxene hydrogel matrix. ACS Nano 14(8), 10471–11047 (2020). https://doi.org/10.1021/acsnano.0c04379
- M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi et al., Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28(10), 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
- Z. Liu, Y. Zhang, H.B. Zhang, Y. Dai, J. Liu et al., Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020). https://doi.org/10.1039/c9tc06304h
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- L. Lyu, J. Liu, H. Liu, C. Liu, Y. Lu et al., An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng. Sci. 2, 26–42 (2018). https://doi.org/10.30919/es8d615
- Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma et al., Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon 139, 271–278 (2018). https://doi.org/10.1016/j.carbon.2018.06.070S
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al. Highly electrically conductive three-dimensional graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik et al., Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176, 88–105 (2021). https://doi.org/10.1016/j.carbon.2021.01.124
- X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112
- B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110D
- D.H. Park, J. Hong, I.S. Park, C.W. Lee, J.M. Kim, A colorimetric hydrocarbon sensor employing a swelling-induced mechanochromic polydiacetylene. Adv. Funct. Mater. 24(33), 5186–5193 (2014). https://doi.org/10.1002/adfm.201400779
- J. Peng, Y. Cheng, A.P. Tomsia, L. Jiang, Q. Cheng, Thermochromic artificial nacre based on montmorillonite. ACS Appl. Mater. Interfaces 9(29), 24993–24998 (2017). https://doi.org/10.1021/acsami.7b07953
- T. Habib, N. Patil, X. Zhao, E. Prehn, M. Anas et al., Heating of Ti3C2Tx MXene/polymer composites in response to radio frequency fields. Sci. Rep. 9(1), 16489 (2019). https://doi.org/10.1038/s41598-019-52972-2
- P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao et al., Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
- M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987S
- S. Zhao, H. Wang, An integrated H-type method to measure thermoelectric properties of two-dimensional materials. ES Energy Environ. 9, 59–66 (2020). https://doi.org/10.30919/esee8c262Z
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
References
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2d transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using mxenes for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan et al., Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175, 271–280 (2021). https://doi.org/10.1016/j.carbon.2020.12.084
W.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019). https://doi.org/10.1002/adfm.201905898
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
X. Wu, B. Han, H.B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
X.Y. Wu, H.B. Zhang, Study on structure design and electromagnetic shielding properties of polymer nanocomposites. Acta Polym. Sin. 51(6), 573–583 (2020). https://doi.org/10.11777/j.issn1000-3304.2020.20015
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13(1), 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. B: Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu et al., Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11(47), 22804–22812 (2019). https://doi.org/10.1039/c9nr07988b
S. Shi, B. Qian, X. Wu, H. Sun, H. Wang et al., Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58(50), 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
N. Zhou, C. Liu, J.A. Lewis, D. Ham, Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications. Adv. Mater. 29(15), 1605198 (2017). https://doi.org/10.1002/adma.201605198
M. Rafiee, R.D. Farahani, D. Therriault, Multi-material 3D and 4D printing: a survey. Adv. Sci. 7(12), 1902307 (2020). https://doi.org/10.1002/advs.201902307
V.G. Rocha, E. Saiz, I.S. Tirichenko, E. García-Tuñón, Direct ink writing advances in multi-material structures for a sustainable future. J. Mater. Chem. A 8(31), 15646–15657 (2020). https://doi.org/10.1039/d0ta04181e
C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10(1), 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu et al., 3D Printing of freestanding mxene architectures for current-collector-free supercapacitors. Adv. Mater. 31(37), 1902725 (2019). https://doi.org/10.1002/adma.201902725
J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14(1), 640–650 (2020). https://doi.org/10.1021/acsnano.9b07325
Z. Fan, C. Wei, L. Yu, Z. Xia, J. Cai et al., 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 14(1), 867–876 (2020). https://doi.org/10.1021/acsnano.9b08030
X. Li, H. Li, X. Fan, X. Shi, J. Liang, 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy. Mater. 10(14), 1903794 (2020). https://doi.org/10.1002/aenm.201903794
J.A. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16(17), 2193–2204 (2006). https://doi.org/10.1002/adfm.200600434
T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30(16), 1703027 (2018). https://doi.org/10.1002/adma.201703027
T. Chen, W. Tang, J. Mu, T.J. Cui, Microwave metamaterials. Ann. Phys. 531(8), 1800445 (2019). https://doi.org/10.1002/andp.201800445
F. Calignano, D. Manfredi, E.P. Ambrosio, S. Biamino, M. Lombardi et al., Overview on additive manufacturing technologies. Proc. IEEE Inst. Electr. Electron. Eng. 105(4), 593–612 (2017). https://doi.org/10.1109/jproc.2016.2625098
Z. Wang, J. Ren, R. Liu, X. Sun, D. Huang et al., Three dimensional core-shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding. Compos. Part A: Appl. S. 136, 105957 (2020). https://doi.org/10.1016/j.compositesa.2020.105957
R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(6), 77–79 (2001). https://doi.org/10.1126/science.1058847
S.A. Nauroze, L.S. Novelino, M.M. Tentzeris, G.H. Paulino, Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing. Proc. Natl. Acad. Sci. USA 115(52), 13210–13215 (2018). https://doi.org/10.1073/pnas.1812486115
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei et al., Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon 113, 55–62 (2017). https://doi.org/10.1016/j.carbon.2016.11.034
M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia et al., 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience. Adv. Mater. 31(35), 1902930 (2019). https://doi.org/10.1002/adma.201902930
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N.J. Alvarez et al., Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12(3), 2685–2694 (2018). https://doi.org/10.1021/acsnano.7b08889
Y.Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim et al., MXene printing and patterned coating for device applications. Adv. Mater. 32(21), 1908486 (2020). https://doi.org/10.1002/adma.201908486
H. Li, X. Li, J. Liang, Y. Chen, Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9(15), 1803987 (2019). https://doi.org/10.1002/aenm.201803987
M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati et al., Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
L.H. Yu, Z.D. Fan, Y.L. Shao, Z.N. Tian, J.Y. Sun et al., Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy. Mater. 9(34), 1901839 (2019). https://doi.org/10.1002/aenm.201901839
L. Li, Q. Lin, M. Tang, A.J.E. Duncan, C. Ke, Advanced polymer designs for direct-ink-write 3D printing. Chem. Eur. J. 25(46), 10768–10781 (2019). https://doi.org/10.1002/chem.201900975
C. Zhu, T.Y. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
C. Zhu, J.E. Smay, Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication. J. Rheol. 55(3), 655–672 (2011). https://doi.org/10.1122/1.3573828
S.A. Shah, T. Habib, H. Gao, P. Gao, W. Sun et al., Template-free 3D titanium carbide (Ti3C2Tx) MXene ps crumpled by capillary forces. Chem. Commun. 53(2), 400–403 (2017). https://doi.org/10.1039/c6cc07733a
V. Natu, M. Sokol, L. Verger, M.W. Barsoum, Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122(48), 27745–27753 (2018). https://doi.org/10.1021/acs.jpcc.8b08860
Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432H
H. Chen, P. Ma, Y. Zhang, L. Wen Qu et al., Pristine titanium carbide mxene hydrogel matrix. ACS Nano 14(8), 10471–11047 (2020). https://doi.org/10.1021/acsnano.0c04379
M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi et al., Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28(10), 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
Z. Liu, Y. Zhang, H.B. Zhang, Y. Dai, J. Liu et al., Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020). https://doi.org/10.1039/c9tc06304h
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
L. Lyu, J. Liu, H. Liu, C. Liu, Y. Lu et al., An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng. Sci. 2, 26–42 (2018). https://doi.org/10.30919/es8d615
Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma et al., Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon 139, 271–278 (2018). https://doi.org/10.1016/j.carbon.2018.06.070S
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al. Highly electrically conductive three-dimensional graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik et al., Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176, 88–105 (2021). https://doi.org/10.1016/j.carbon.2021.01.124
X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112
B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110D
D.H. Park, J. Hong, I.S. Park, C.W. Lee, J.M. Kim, A colorimetric hydrocarbon sensor employing a swelling-induced mechanochromic polydiacetylene. Adv. Funct. Mater. 24(33), 5186–5193 (2014). https://doi.org/10.1002/adfm.201400779
J. Peng, Y. Cheng, A.P. Tomsia, L. Jiang, Q. Cheng, Thermochromic artificial nacre based on montmorillonite. ACS Appl. Mater. Interfaces 9(29), 24993–24998 (2017). https://doi.org/10.1021/acsami.7b07953
T. Habib, N. Patil, X. Zhao, E. Prehn, M. Anas et al., Heating of Ti3C2Tx MXene/polymer composites in response to radio frequency fields. Sci. Rep. 9(1), 16489 (2019). https://doi.org/10.1038/s41598-019-52972-2
P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao et al., Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987S
S. Zhao, H. Wang, An integrated H-type method to measure thermoelectric properties of two-dimensional materials. ES Energy Environ. 9, 59–66 (2020). https://doi.org/10.30919/esee8c262Z
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401