Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries
Corresponding Author: Quan‑Hong Yang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 5
Abstract
Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.
Highlights:
1 Assembly strategies that reinforce the roles of carbon architectures as active materials, electrochemical reaction frameworks, and current collectors in high-energy and high-power lithium-ion batteries are summarized.
2 To enhance structural stability and volumetric performance, the rational design of carbon architectures for high-capacity noncarbons in terms of the interface, network skeleton, void space, and densification, is discussed in detail.
3 Designing carbon cages that protect the electroactive noncarbon is highlighted as a promising strategy that solves the challenges associated with future high-capacity noncarbon anode construction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
- M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
- V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011). https://doi.org/10.1039/c1ee01598b
- K. Kang, Y.S. Meng, J. Bg, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). https://doi.org/10.1126/science.1122152
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7(1), 14–18 (2014). https://doi.org/10.1039/C3EE42613K
- S.A. Freunberger, True performance metrics in beyond-intercalation batteries. Nat. Energy 2, 17091 (2017). https://doi.org/10.1038/nenergy.2017.91
- J. Zhang, Y. Bai, X.G. Sun, Y. Li, B. Guo et al., Superior conductive solid-like electrolytes: nanoconfining liquids within the hollow structures. Nano Lett. 15(5), 3398–3402 (2015). https://doi.org/10.1021/acs.nanolett.5b00739
- J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013). https://doi.org/10.1021/nl403461n
- N. Mahmood, Y. Hou, Electrode nanostructures in lithium-based batteries. Adv. Sci. 1(1), 1400012 (2014). https://doi.org/10.1002/advs.201400012
- W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016). https://doi.org/10.1016/j.ensm.2015.10.002
- C. Zhang, W. Lv, Y. Tao, Q.H. Yang, Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8(5), 1390–1403 (2015). https://doi.org/10.1039/C5EE00389J
- M.J. Lee, E. Lho, P. Bai, S. Chae, J. Li, J. Cho, Low-temperature carbon coating of nanosized Li1.015Al0.06Mn1.925O4 and high-density electrode for high-power Li-ion batteries. Nano Lett. 17(6), 3744–3751 (2017). https://doi.org/10.1021/acs.nanolett.7b01076
- Y.M. Chen, X.Y. Yu, Z. Li, U. Paik, X.W. Lou, Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci. Adv. 2(7), e1600021 (2016). https://doi.org/10.1126/sciadv.1600021
- G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, L. Wang, Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9(2), 1592–1599 (2015). https://doi.org/10.1021/nn506252u
- H. Xia, Q. Xu, J. Zhang, Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 10, 66 (2018). https://doi.org/10.1007/s40820-018-0219-z
- M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016). https://doi.org/10.1038/natrevmats.2016.33
- R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H.M. Cheng, The regulating role of carbon nanotubes and graphene in lithium–ion and lithium–sulfur batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201800863
- Z. Li, S. Wu, W. Lv, J.J. Shao, F. Kang, Q.H. Yang, Graphene emerges as a versatile template for materials preparation. Small 12(20), 2674–2688 (2016). https://doi.org/10.1002/smll.201503722
- Y. Zhao, L.P. Wang, M.T. Sougrati, Z.X. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z.C. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7(9), 1601424 (2017). https://doi.org/10.1002/aenm.201601424
- W. Li, L. Zeng, Y. Wu, Y. Yu, Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Sci. China Mater. 59(4), 287–321 (2016). https://doi.org/10.1007/s40843-016-5039-6
- Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001
- J.-J. Shao, W. Lv, Q.H. Yang, Self-assembly of graphene oxide at interfaces. Adv. Mater. 26(32), 5586–5612 (2014). https://doi.org/10.1002/adma.201400267
- L. Zhang, G. Zhang, H.B. Wu, L. Yu, X.W. Lou, Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 25(18), 2589–2593 (2013). https://doi.org/10.1002/adma.201300105
- A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9(3), 1002–1006 (2009). https://doi.org/10.1021/nl803081j
- N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012). https://doi.org/10.1021/nl3014814
- N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
- Z. Li, J. Ding, H.L. Wang, K. Cui, T. Stephenson, D. Karpuzov, D. Mitlin, High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 15, 369–378 (2015). https://doi.org/10.1016/j.nanoen.2015.04.018
- B. Wang, W. Li, T. Wu, J. Guo, Z. Wen, Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy Storage Mater. 15, 139–147 (2018). https://doi.org/10.1016/j.ensm.2018.03.025
- G.L. Xia, J.W. Su, M.S. Li, P. Jiang, Y. Yang, Q. Chen, A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J. Mater. Chem. A 5(21), 10321–10327 (2017). https://doi.org/10.1039/c7ta02600e
- J. Yao, K. Zhang, W. Wang, X. Zuo, Q. Yang, H. Tang, M. Wu, G. Li, Functional integration and self-template synthesis of hollow core-shell carbon mesoporous spheres/Fe3O4/nitrogen-doped graphene to enhance catalytic activity in DSSCs. Nanoscale 10(17), 7946–7956 (2018). https://doi.org/10.1039/c8nr01095a
- L. Dang, C. Wei, H. Ma, Q. Lu, F. Gao, Three-dimensional honeycomb-like networks of birnessite mang anese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances. Nanoscale 7(17), 8101–8109 (2015). https://doi.org/10.1039/c5nr00576k
- Z. Wan, J. Shao, J. Yun, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries. Small 10(23), 4975–4981 (2014). https://doi.org/10.1002/smll.201401286
- L. Yu, H.B. Wu, X.W.D. Lou, Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 50(2), 293–301 (2017). https://doi.org/10.1021/acs.accounts.6b00480
- L. Jabbour, M. Destro, C. Gerbaldi, D. Chaussy, N. Penazzi, D. Beneventi, Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J. Mater. Chem. 22(7), 3227–3233 (2012). https://doi.org/10.1039/c2jm15117k
- R. Wang, C. Xu, J. Sun, L. Gao, C. Lin, Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries. J. Mater. Chem. A 1(5), 1794–1800 (2013). https://doi.org/10.1039/c2ta00753c
- Z. Wang, C. Xu, P. Tammela, J. Huo, M. Strømme, K. Edström, T. Gustafsson, L. Nyholm, Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J. Mater. Chem. A 3(27), 14109–14115 (2015). https://doi.org/10.1039/c5ta02136g
- R.V. Salvatierra, A.R.O. Raji, S.K. Lee, Y.S. Ji, L. Li, J.M. Tour, Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv. Energy Mater. 6(24), 1600918 (2016). https://doi.org/10.1002/aenm.201600918
- L. Gao, Y. Jin, X. Liu, M. Xu, X. Lai, J. Shui, A rationally assembled graphene nanoribbon/graphene framework for high volumetric energy and power density Li-ion batteries. Nanoscale 10(16), 7676–7684 (2018). https://doi.org/10.1039/c8nr00692j
- Y. Ge, C. Wang, Y. Zhao, Y. Liu, Y. Chao, T. Zheng, G.G. Wallace, An electrosynthesized 3D porous molybdenum sulfide/graphene film with enhanced electrochemical performance for lithium storage. Small 14(9), 1703096 (2018). https://doi.org/10.1002/smll.201703096
- Y. Yang, J. Huang, J. Zeng, J. Xiong, J. Zhao, Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode. ACS Appl. Mater. Interfaces. 9(38), 32801–32811 (2017). https://doi.org/10.1021/acsami.7b10683
- C. Niu, J. Meng, X. Wang, C. Han, M. Yan et al., General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7402 (2015). https://doi.org/10.1038/ncomms8402
- M. Wang, L. He, Y. Yin, Magnetic field guided colloidal assembly. Mater. Today 16(4), 110–116 (2013). https://doi.org/10.1016/j.mattod.2013.04.008
- D. Toulemon, M.V. Rastei, D. Schmool, J.S. Garitaonandia, L. Lezama, X. Cattoen, S. Begin-Colin, B.P. Pichon, Enhanced collective magnetic properties induced by the controlled assembly of iron oxide nanoparticles in chains. Adv. Funct. Mater. 26(15), 2454–2462 (2016). https://doi.org/10.1002/adfm.201505086
- R. Du, Q. Zhao, Z. Zheng, W. Hu, J. Zhang, 3D self-supporting porous magnetic assemblies for water remediation and beyond. Adv. Energy Mater. 6(17), 1600473 (2016). https://doi.org/10.1002/aenm.201600473
- F. Xu, C.-a.M. Wu, V. Rengarajan, T.D. Finley, H.O. Keles, Y.R. Sung, B. Li, U.A. Gurkan, U. Demirci, Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater. 23(37), 4254–4260 (2011). https://doi.org/10.1002/adma.201101962
- R.M. Erb, R. Libanori, N. Rothfuchs, A.R. Studart, Composites reinforced in three dimensions by using low magnetic fields. Science 335(6065), 199–204 (2012). https://doi.org/10.1126/science.1210822
- MathSciNet
- Article
- MATH
- H.L. Ferrand, S. Bolisetty, A.F. Demirors, R. Libanori, A.R. Studart, R. Mezzenga, Magnetic assembly of transparent and conducting graphene-based functional composites. Nat. Commun. 7, 12078 (2016). https://doi.org/10.1038/ncomms12078
- K. Zhang, W. Zhao, J.T. Lee, G. Jang, X. Shi, J.H. Park, A magnetic field assisted self-assembly strategy towards strongly coupled Fe3O4 nanocrystal/rGO paper for high-performance lithium ion batteries. J. Mater. Chem. A 2(25), 9636–9644 (2014). https://doi.org/10.1039/c4ta00821a
- M. Kawamori, T. Asai, Y. Shirai, S. Yagi, M. Oishi, T. Ichitsubo, E. Matsubara, Three-dimensional nanoelectrode by metal nanowire nonwoven clothes. Nano Lett. 14(4), 1932–1937 (2014). https://doi.org/10.1021/nl404753e
- J. Qin, Q. Zhang, Z. Cao, X. Li, C. Hu, B. Wei, MnOx-SWCNT macro-films as flexible binder-free anodes for high-performance Li-ion batteries. Nano Energy 2(5), 733–741 (2013). https://doi.org/10.1016/j.nanoen.2012.12.009
- Q. Zhang, S. Tan, R.G. Mendes, Z. Sun, Y. Chen et al., Extremely weak van der waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. Adv. Mater. 28(13), 2616–2623 (2016). https://doi.org/10.1002/adma.201505498
- A. Gohier, B. Laik, K.H. Kim, J.L. Maurice, J.P. Pereira-Ramos, C.S. Cojocaru, P.T. Van, High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 24(19), 2592–2597 (2012). https://doi.org/10.1002/adma.201104923
- S. Huang, L.Z. Cheong, D. Wang, C. Shen, Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces. 9(28), 23672–23678 (2017). https://doi.org/10.1021/acsami.7b04361
- G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu et al., Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nat. Energy 2, 17090 (2017). https://doi.org/10.1038/nenergy.2017.90
- L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
- A.D. Roberts, X. Li, H.F. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014). https://doi.org/10.1039/c4cs00071d
- K.N. Wood, R. O’Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7(4), 1212–1249 (2014). https://doi.org/10.1039/c3ee44078h
- J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart, Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
- C. Li, G. Shi, Functional gels based on chemically modified graphenes. Adv. Mater. 26(24), 3992–4012 (2014). https://doi.org/10.1002/adma.201306104
- X. Wang, L. Lv, Z. Cheng, J. Gao, L. Dong, C. Hu, L. Qu, High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv. Energy Mater. 6(6), 1502100 (2016). https://doi.org/10.1002/aenm.201502100
- J. Dong, Y. Xue, C. Zhang, Q. Weng, P. Dai et al., Improved Li+ storage through homogeneous N-doping within highly branched tubular graphitic foam. Adv. Mater. 29(6), 1603692 (2017). https://doi.org/10.1002/adma.201603692
- U. Kasavajjula, C. Wang, A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163(2), 1003–1039 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.084
- B. Wang, B. Luo, X. Li, L. Zhi, The dimensionality of Sn anodes in Li-ion batteries. Mater. Today 15(12), 544–552 (2012). https://doi.org/10.1016/S1369-7021(13)70012-9
- C.K. Chan, X.F. Zhang, Y. Cui, High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8(1), 307–309 (2008). https://doi.org/10.1021/nl0727157
- Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8(1), 265–270 (2008). https://doi.org/10.1021/nl0725906
- G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). https://doi.org/10.1021/cm101532x
- S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2009). https://doi.org/10.1021/nl802484w
- M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). https://doi.org/10.1021/cr3001884
- K. Chang, W. Chen, l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011). https://doi.org/10.1021/nn200659w
- R. Bhandavat, L. David, G. Singh, Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3(11), 1523–1530 (2012). https://doi.org/10.1021/jz300480w
- Y.M. Zhao, Y.P. Cui, J. Shi, W. Liu, Z.C. Shi, S.G. Chen, X. Wang, H.L. Wang, Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J. Mater. Chem. A 5(29), 15243–15252 (2017). https://doi.org/10.1039/C7TA04154C
- J. Han, W. Wei, C. Zhang, Y. Tao, W. Lv, G. Ling, F. Kang, Q.H. Yang, Engineering graphenes from the nano- to the macroscale for electrochemical energy storage. Electrochem. Energ. Rev. 1(2), 139–168 (2018). https://doi.org/10.1007/s41918-018-0006-z
- X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/C7CS00871F
- T.R. Tang, Q. Yun, W. Lv, Y.B. He, C. You, F. Su, L. Ke, B. Li, F. Kang, Q.H. Yang, How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2 -based lithium-ion batteries. Carbon 103, 356–362 (2016). https://doi.org/10.1016/j.carbon.2016.03.032
- Y. Zhang, W. Bai, J. Ren, W. Weng, H. Lin, Z. Zhang, H. Peng, Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A 2(29), 11054–11059 (2014). https://doi.org/10.1039/c4ta01878h
- C. Wang, J. Wang, H. Chen, M. Wen, K. Xing, S. Chen, Q. Wu, An interlayer nanostructure of rGO/Sn2Fe-NRs array/rGO with high capacity for lithium ion battery anodes. Sci. China Mater. 59(11), 927–937 (2016). https://doi.org/10.1007/s40843-016-5086-7
- J. Zhu, Q. Wu, J. Key, M. Wu, P.K. Shen, Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: one-step synthesis and enhanced Li-ion battery anode performance. Energy Storage Mater. 15, 75–81 (2018). https://doi.org/10.1016/j.ensm.2018.03.014
- H. He, D. Kong, B. Wang, W. Fu, X. Qiu, Q.H. Yang, L. Zhi, Carbon-network-integrated SnSiOx+2 Nanofiber sheathed by ultrathin graphitic carbon for highly reversible lithium storage. Adv. Energy Mater. 6(10), 1502495 (2016). https://doi.org/10.1002/aenm.201502495
- F.Y. Su, C. You, Y.B. He, W. Lv, W. Cui, F. Jin, B. Li, Q.H. Yang, F. Kang, Flexible and planar graphene conductive additives for lithium-ion batteries. J. Mater. Chem. 20(43), 9644–9650 (2010). https://doi.org/10.1039/C0JM01633K
- F.Y. Su, Y.B. He, B. Li, X.-C. Chen, C.H. You, W. Wei, W. Lv, Q.H. Yang, F. Kang, Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1(3), 429–439 (2012). https://doi.org/10.1016/j.nanoen.2012.02.004
- J. Ryu, T. Chen, T. Bok, G. Song, J. Ma et al., Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nat. Commun. 9(1), 2924 (2018). https://doi.org/10.1038/s41467-018-05398-9
- S. Jing, H. Jiang, Y. Hu, J. Shen, C. Li, Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 25(33), 5395–5401 (2015). https://doi.org/10.1002/adfm.201502330
- D. Kong, H. He, Q. Song, B. Wang, W. Lv, Q.H. Yang, L. Zhi, Rational design of MoS2@graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 7(10), 3320–3325 (2014). https://doi.org/10.1039/c4ee02211d
- I.H. Son, J.H. Park, S. Kwon, S. Park, M.H. Rümmeli et al., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015). https://doi.org/10.1038/ncomms8393
- N. Li, S. Jin, Q. Liao, H. Cui, C.X. Wang, Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy 5, 105–115 (2014). https://doi.org/10.1016/j.nanoen.2014.02.011
- S. Jin, N. Li, H. Cui, C. Wang, Growth of the vertically aligned graphene@ amorphous GeOx sandwich nanoflakes and excellent Li storage properties. Nano Energy 2(6), 1128–1136 (2013). https://doi.org/10.1016/j.nanoen.2013.09.008
- N. Li, H. Song, H. Cui, C. Wang, Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy 3, 102–112 (2014). https://doi.org/10.1016/j.nanoen.2013.10.014
- Y. Wang, B. Chen, D.H. Seo, Z.J. Han, J.I. Wong, K. Ostrikov, H. Zhang, H.Y. Yang, MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 8, e268 (2016). https://doi.org/10.1038/am.2016.44
- Y. Zhang, O.I. Malyi, Y. Tang, J. Wei, Z. Zhu et al., Reducing the charge carrier transport barrier in functionally layer-graded electrodes. Angew. Chem. Int. Ed. 56(47), 14847–14852 (2017). https://doi.org/10.1002/anie.201707883
- L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24(18), 2630–2637 (2014). https://doi.org/10.1002/adfm.201303138
- G. Wang, J. Zhang, S. Yang, F. Wang, X. Zhuang, K. Müllen, X. Feng, Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 8(8), 1702254 (2018). https://doi.org/10.1002/aenm.201702254
- H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding et al., Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery–supercapacitor divide. Nano Lett. 14(4), 1987–1994 (2014). https://doi.org/10.1021/nl500011d
- H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599–604 (2017). https://doi.org/10.1126/science.aam5852
- Q. Xu, J.Y. Li, J.K. Sun, Y.X. Yin, L.J. Wan, Y.G. Guo, Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7(3), 1601481 (2017). https://doi.org/10.1002/aenm.201601481
- X.Y. Yu, L. Yu, L. Shen, X. Song, H. Chen, X.W. Lou, General formation of MS (M=Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 24(47), 7440–7446 (2014). https://doi.org/10.1002/adfm.201402560
- J. Zhang, K. Wang, Q. Xu, Y. Zhou, F. Cheng, S. Guo, Beyond yolk shell nanoparticles Fe3O4@Fe3C@core shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3), 3369–3376 (2015). https://doi.org/10.1021/acsnano.5b00760
- H. Zhang, X. Huang, O. Noonan, L. Zhou, C. Yu, Tailored yolk-shell Sn@C nanoboxes for high-performance lithium storage. Adv. Funct. Mater. 27(8), 1606023 (2017). https://doi.org/10.1002/adfm.201606023
- Y. Li, K. Yan, H.W. Lee, Z. Lu, N. Liu, Y. Cui, Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29
- D.S. Jung, T.H. Hwang, S.B. Park, J.W. Choi, Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 13(5), 2092–2097 (2013). https://doi.org/10.1021/nl400437f
- R. Mo, D. Rooney, K. Sun, H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 8, 13949 (2017). https://doi.org/10.1038/ncomms13949
- Y. Ma, R. Younesi, R. Pan, C. Liu, J. Zhu, B. Wei, K. Edström, Constraining Si particles within graphene foam monolith: interfacial modification for high-performance Li+ storage and flexible integrated configuration. Adv. Funct. Mater. 26(37), 6797–6806 (2016). https://doi.org/10.1002/adfm.201602324
- K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559(7715), 556–563 (2018). https://doi.org/10.1038/s41586-018-0347-0
- Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4(5), 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
- Z. Li, D. Kong, G. Zhou, S. Wu, W. Lv et al., Twin-functional graphene oxide: compacting with Fe2O3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Mater. 6, 98–103 (2017). https://doi.org/10.1016/j.ensm.2016.09.005
- H. Wang, L. Liu, R. Wang, X. Yan, Z. Wang et al., Self-assembly of antisite defectless nano-LiFePO4@C/reduced graphene oxide microspheres for high-performance lithium-ion batteries. Chemsuschem 11(13), 2255–2261 (2018). https://doi.org/10.1002/cssc.201800786
- H. Li, X. Wang, Three-dimensional architectures constructed using two-dimensional nanosheets. Sci. China Chem. 58(12), 1792–1799 (2015). https://doi.org/10.1007/s11426-015-5511-x
- C. Zhang, D.H. Liu, W. Lv, D.W. Wang, W. Wei et al., A high-density graphene–sulfur assembly: a promising cathode for compact Li–S batteries. Nanoscale 7(13), 5592–5597 (2015). https://doi.org/10.1039/C4NR06863G
- Y. Tao, X. Xie, W. Lv, D.M. Tang, D. Kong et al., Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013). https://doi.org/10.1038/srep02975
- J. Han, D. Kong, W. Lv, D.M. Tang, D. Han et al., Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9, 402 (2018). https://doi.org/10.1038/s41467-017-02808-2
- J. Ni, Y. Li, Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6(17), 1600278 (2016). https://doi.org/10.1002/aenm.201600278
- Z. Wu, K. Liu, C. Lv, S. Zhong, Q. Wang et al., Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms. Small 14(22), 1800414 (2018). https://doi.org/10.1002/smll.201800414
- L. Hu, H. Wu, Y. Gao, A. Cao, H. Li, J. McDough, X. Xie, M. Zhou, Y. Cui, Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 1(4), 523–527 (2011). https://doi.org/10.1002/aenm.201100056
- W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng, K. Müllen, 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 25(21), 2909–2914 (2013). https://doi.org/10.1002/adma.201300445
- D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014). https://doi.org/10.1002/adma.201400719
- J. Wang, J. Liu, D. Chao, J. Yan, J. Lin, Z.X. Shen, Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 26(42), 7162–7169 (2014). https://doi.org/10.1002/adma.201402728
- M. Zhu, J. Song, T. Li, A. Gong, Y. Wang et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427
- C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song et al., Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7(17), 1700595 (2017). https://doi.org/10.1002/aenm.201700595
- C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058
- S.S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 27(24), 1700348 (2017). https://doi.org/10.1002/adfm.201700348
- H. Zhao, D. Lei, Y.B. He, Y. Yuan, Q. Yun et al., Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 8(19), 1800266 (2018). https://doi.org/10.1002/aenm.201800266
References
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016). https://doi.org/10.1038/ncomms12647
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011). https://doi.org/10.1039/c1ee01598b
K. Kang, Y.S. Meng, J. Bg, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). https://doi.org/10.1126/science.1122152
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7(1), 14–18 (2014). https://doi.org/10.1039/C3EE42613K
S.A. Freunberger, True performance metrics in beyond-intercalation batteries. Nat. Energy 2, 17091 (2017). https://doi.org/10.1038/nenergy.2017.91
J. Zhang, Y. Bai, X.G. Sun, Y. Li, B. Guo et al., Superior conductive solid-like electrolytes: nanoconfining liquids within the hollow structures. Nano Lett. 15(5), 3398–3402 (2015). https://doi.org/10.1021/acs.nanolett.5b00739
J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013). https://doi.org/10.1021/nl403461n
N. Mahmood, Y. Hou, Electrode nanostructures in lithium-based batteries. Adv. Sci. 1(1), 1400012 (2014). https://doi.org/10.1002/advs.201400012
W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016). https://doi.org/10.1016/j.ensm.2015.10.002
C. Zhang, W. Lv, Y. Tao, Q.H. Yang, Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8(5), 1390–1403 (2015). https://doi.org/10.1039/C5EE00389J
M.J. Lee, E. Lho, P. Bai, S. Chae, J. Li, J. Cho, Low-temperature carbon coating of nanosized Li1.015Al0.06Mn1.925O4 and high-density electrode for high-power Li-ion batteries. Nano Lett. 17(6), 3744–3751 (2017). https://doi.org/10.1021/acs.nanolett.7b01076
Y.M. Chen, X.Y. Yu, Z. Li, U. Paik, X.W. Lou, Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci. Adv. 2(7), e1600021 (2016). https://doi.org/10.1126/sciadv.1600021
G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, L. Wang, Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9(2), 1592–1599 (2015). https://doi.org/10.1021/nn506252u
H. Xia, Q. Xu, J. Zhang, Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 10, 66 (2018). https://doi.org/10.1007/s40820-018-0219-z
M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016). https://doi.org/10.1038/natrevmats.2016.33
R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H.M. Cheng, The regulating role of carbon nanotubes and graphene in lithium–ion and lithium–sulfur batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201800863
Z. Li, S. Wu, W. Lv, J.J. Shao, F. Kang, Q.H. Yang, Graphene emerges as a versatile template for materials preparation. Small 12(20), 2674–2688 (2016). https://doi.org/10.1002/smll.201503722
Y. Zhao, L.P. Wang, M.T. Sougrati, Z.X. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z.C. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7(9), 1601424 (2017). https://doi.org/10.1002/aenm.201601424
W. Li, L. Zeng, Y. Wu, Y. Yu, Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Sci. China Mater. 59(4), 287–321 (2016). https://doi.org/10.1007/s40843-016-5039-6
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001
J.-J. Shao, W. Lv, Q.H. Yang, Self-assembly of graphene oxide at interfaces. Adv. Mater. 26(32), 5586–5612 (2014). https://doi.org/10.1002/adma.201400267
L. Zhang, G. Zhang, H.B. Wu, L. Yu, X.W. Lou, Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 25(18), 2589–2593 (2013). https://doi.org/10.1002/adma.201300105
A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9(3), 1002–1006 (2009). https://doi.org/10.1021/nl803081j
N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012). https://doi.org/10.1021/nl3014814
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
Z. Li, J. Ding, H.L. Wang, K. Cui, T. Stephenson, D. Karpuzov, D. Mitlin, High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 15, 369–378 (2015). https://doi.org/10.1016/j.nanoen.2015.04.018
B. Wang, W. Li, T. Wu, J. Guo, Z. Wen, Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy Storage Mater. 15, 139–147 (2018). https://doi.org/10.1016/j.ensm.2018.03.025
G.L. Xia, J.W. Su, M.S. Li, P. Jiang, Y. Yang, Q. Chen, A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J. Mater. Chem. A 5(21), 10321–10327 (2017). https://doi.org/10.1039/c7ta02600e
J. Yao, K. Zhang, W. Wang, X. Zuo, Q. Yang, H. Tang, M. Wu, G. Li, Functional integration and self-template synthesis of hollow core-shell carbon mesoporous spheres/Fe3O4/nitrogen-doped graphene to enhance catalytic activity in DSSCs. Nanoscale 10(17), 7946–7956 (2018). https://doi.org/10.1039/c8nr01095a
L. Dang, C. Wei, H. Ma, Q. Lu, F. Gao, Three-dimensional honeycomb-like networks of birnessite mang anese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances. Nanoscale 7(17), 8101–8109 (2015). https://doi.org/10.1039/c5nr00576k
Z. Wan, J. Shao, J. Yun, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries. Small 10(23), 4975–4981 (2014). https://doi.org/10.1002/smll.201401286
L. Yu, H.B. Wu, X.W.D. Lou, Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 50(2), 293–301 (2017). https://doi.org/10.1021/acs.accounts.6b00480
L. Jabbour, M. Destro, C. Gerbaldi, D. Chaussy, N. Penazzi, D. Beneventi, Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J. Mater. Chem. 22(7), 3227–3233 (2012). https://doi.org/10.1039/c2jm15117k
R. Wang, C. Xu, J. Sun, L. Gao, C. Lin, Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries. J. Mater. Chem. A 1(5), 1794–1800 (2013). https://doi.org/10.1039/c2ta00753c
Z. Wang, C. Xu, P. Tammela, J. Huo, M. Strømme, K. Edström, T. Gustafsson, L. Nyholm, Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J. Mater. Chem. A 3(27), 14109–14115 (2015). https://doi.org/10.1039/c5ta02136g
R.V. Salvatierra, A.R.O. Raji, S.K. Lee, Y.S. Ji, L. Li, J.M. Tour, Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv. Energy Mater. 6(24), 1600918 (2016). https://doi.org/10.1002/aenm.201600918
L. Gao, Y. Jin, X. Liu, M. Xu, X. Lai, J. Shui, A rationally assembled graphene nanoribbon/graphene framework for high volumetric energy and power density Li-ion batteries. Nanoscale 10(16), 7676–7684 (2018). https://doi.org/10.1039/c8nr00692j
Y. Ge, C. Wang, Y. Zhao, Y. Liu, Y. Chao, T. Zheng, G.G. Wallace, An electrosynthesized 3D porous molybdenum sulfide/graphene film with enhanced electrochemical performance for lithium storage. Small 14(9), 1703096 (2018). https://doi.org/10.1002/smll.201703096
Y. Yang, J. Huang, J. Zeng, J. Xiong, J. Zhao, Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode. ACS Appl. Mater. Interfaces. 9(38), 32801–32811 (2017). https://doi.org/10.1021/acsami.7b10683
C. Niu, J. Meng, X. Wang, C. Han, M. Yan et al., General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7402 (2015). https://doi.org/10.1038/ncomms8402
M. Wang, L. He, Y. Yin, Magnetic field guided colloidal assembly. Mater. Today 16(4), 110–116 (2013). https://doi.org/10.1016/j.mattod.2013.04.008
D. Toulemon, M.V. Rastei, D. Schmool, J.S. Garitaonandia, L. Lezama, X. Cattoen, S. Begin-Colin, B.P. Pichon, Enhanced collective magnetic properties induced by the controlled assembly of iron oxide nanoparticles in chains. Adv. Funct. Mater. 26(15), 2454–2462 (2016). https://doi.org/10.1002/adfm.201505086
R. Du, Q. Zhao, Z. Zheng, W. Hu, J. Zhang, 3D self-supporting porous magnetic assemblies for water remediation and beyond. Adv. Energy Mater. 6(17), 1600473 (2016). https://doi.org/10.1002/aenm.201600473
F. Xu, C.-a.M. Wu, V. Rengarajan, T.D. Finley, H.O. Keles, Y.R. Sung, B. Li, U.A. Gurkan, U. Demirci, Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater. 23(37), 4254–4260 (2011). https://doi.org/10.1002/adma.201101962
R.M. Erb, R. Libanori, N. Rothfuchs, A.R. Studart, Composites reinforced in three dimensions by using low magnetic fields. Science 335(6065), 199–204 (2012). https://doi.org/10.1126/science.1210822
MathSciNet
Article
MATH
H.L. Ferrand, S. Bolisetty, A.F. Demirors, R. Libanori, A.R. Studart, R. Mezzenga, Magnetic assembly of transparent and conducting graphene-based functional composites. Nat. Commun. 7, 12078 (2016). https://doi.org/10.1038/ncomms12078
K. Zhang, W. Zhao, J.T. Lee, G. Jang, X. Shi, J.H. Park, A magnetic field assisted self-assembly strategy towards strongly coupled Fe3O4 nanocrystal/rGO paper for high-performance lithium ion batteries. J. Mater. Chem. A 2(25), 9636–9644 (2014). https://doi.org/10.1039/c4ta00821a
M. Kawamori, T. Asai, Y. Shirai, S. Yagi, M. Oishi, T. Ichitsubo, E. Matsubara, Three-dimensional nanoelectrode by metal nanowire nonwoven clothes. Nano Lett. 14(4), 1932–1937 (2014). https://doi.org/10.1021/nl404753e
J. Qin, Q. Zhang, Z. Cao, X. Li, C. Hu, B. Wei, MnOx-SWCNT macro-films as flexible binder-free anodes for high-performance Li-ion batteries. Nano Energy 2(5), 733–741 (2013). https://doi.org/10.1016/j.nanoen.2012.12.009
Q. Zhang, S. Tan, R.G. Mendes, Z. Sun, Y. Chen et al., Extremely weak van der waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. Adv. Mater. 28(13), 2616–2623 (2016). https://doi.org/10.1002/adma.201505498
A. Gohier, B. Laik, K.H. Kim, J.L. Maurice, J.P. Pereira-Ramos, C.S. Cojocaru, P.T. Van, High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 24(19), 2592–2597 (2012). https://doi.org/10.1002/adma.201104923
S. Huang, L.Z. Cheong, D. Wang, C. Shen, Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces. 9(28), 23672–23678 (2017). https://doi.org/10.1021/acsami.7b04361
G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu et al., Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nat. Energy 2, 17090 (2017). https://doi.org/10.1038/nenergy.2017.90
L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016). https://doi.org/10.1002/adma.201504225
A.D. Roberts, X. Li, H.F. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014). https://doi.org/10.1039/c4cs00071d
K.N. Wood, R. O’Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7(4), 1212–1249 (2014). https://doi.org/10.1039/c3ee44078h
J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart, Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
C. Li, G. Shi, Functional gels based on chemically modified graphenes. Adv. Mater. 26(24), 3992–4012 (2014). https://doi.org/10.1002/adma.201306104
X. Wang, L. Lv, Z. Cheng, J. Gao, L. Dong, C. Hu, L. Qu, High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv. Energy Mater. 6(6), 1502100 (2016). https://doi.org/10.1002/aenm.201502100
J. Dong, Y. Xue, C. Zhang, Q. Weng, P. Dai et al., Improved Li+ storage through homogeneous N-doping within highly branched tubular graphitic foam. Adv. Mater. 29(6), 1603692 (2017). https://doi.org/10.1002/adma.201603692
U. Kasavajjula, C. Wang, A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163(2), 1003–1039 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.084
B. Wang, B. Luo, X. Li, L. Zhi, The dimensionality of Sn anodes in Li-ion batteries. Mater. Today 15(12), 544–552 (2012). https://doi.org/10.1016/S1369-7021(13)70012-9
C.K. Chan, X.F. Zhang, Y. Cui, High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8(1), 307–309 (2008). https://doi.org/10.1021/nl0727157
Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8(1), 265–270 (2008). https://doi.org/10.1021/nl0725906
G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). https://doi.org/10.1021/cm101532x
S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2009). https://doi.org/10.1021/nl802484w
M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013). https://doi.org/10.1021/cr3001884
K. Chang, W. Chen, l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011). https://doi.org/10.1021/nn200659w
R. Bhandavat, L. David, G. Singh, Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3(11), 1523–1530 (2012). https://doi.org/10.1021/jz300480w
Y.M. Zhao, Y.P. Cui, J. Shi, W. Liu, Z.C. Shi, S.G. Chen, X. Wang, H.L. Wang, Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J. Mater. Chem. A 5(29), 15243–15252 (2017). https://doi.org/10.1039/C7TA04154C
J. Han, W. Wei, C. Zhang, Y. Tao, W. Lv, G. Ling, F. Kang, Q.H. Yang, Engineering graphenes from the nano- to the macroscale for electrochemical energy storage. Electrochem. Energ. Rev. 1(2), 139–168 (2018). https://doi.org/10.1007/s41918-018-0006-z
X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/C7CS00871F
T.R. Tang, Q. Yun, W. Lv, Y.B. He, C. You, F. Su, L. Ke, B. Li, F. Kang, Q.H. Yang, How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2 -based lithium-ion batteries. Carbon 103, 356–362 (2016). https://doi.org/10.1016/j.carbon.2016.03.032
Y. Zhang, W. Bai, J. Ren, W. Weng, H. Lin, Z. Zhang, H. Peng, Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A 2(29), 11054–11059 (2014). https://doi.org/10.1039/c4ta01878h
C. Wang, J. Wang, H. Chen, M. Wen, K. Xing, S. Chen, Q. Wu, An interlayer nanostructure of rGO/Sn2Fe-NRs array/rGO with high capacity for lithium ion battery anodes. Sci. China Mater. 59(11), 927–937 (2016). https://doi.org/10.1007/s40843-016-5086-7
J. Zhu, Q. Wu, J. Key, M. Wu, P.K. Shen, Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: one-step synthesis and enhanced Li-ion battery anode performance. Energy Storage Mater. 15, 75–81 (2018). https://doi.org/10.1016/j.ensm.2018.03.014
H. He, D. Kong, B. Wang, W. Fu, X. Qiu, Q.H. Yang, L. Zhi, Carbon-network-integrated SnSiOx+2 Nanofiber sheathed by ultrathin graphitic carbon for highly reversible lithium storage. Adv. Energy Mater. 6(10), 1502495 (2016). https://doi.org/10.1002/aenm.201502495
F.Y. Su, C. You, Y.B. He, W. Lv, W. Cui, F. Jin, B. Li, Q.H. Yang, F. Kang, Flexible and planar graphene conductive additives for lithium-ion batteries. J. Mater. Chem. 20(43), 9644–9650 (2010). https://doi.org/10.1039/C0JM01633K
F.Y. Su, Y.B. He, B. Li, X.-C. Chen, C.H. You, W. Wei, W. Lv, Q.H. Yang, F. Kang, Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1(3), 429–439 (2012). https://doi.org/10.1016/j.nanoen.2012.02.004
J. Ryu, T. Chen, T. Bok, G. Song, J. Ma et al., Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nat. Commun. 9(1), 2924 (2018). https://doi.org/10.1038/s41467-018-05398-9
S. Jing, H. Jiang, Y. Hu, J. Shen, C. Li, Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 25(33), 5395–5401 (2015). https://doi.org/10.1002/adfm.201502330
D. Kong, H. He, Q. Song, B. Wang, W. Lv, Q.H. Yang, L. Zhi, Rational design of MoS2@graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 7(10), 3320–3325 (2014). https://doi.org/10.1039/c4ee02211d
I.H. Son, J.H. Park, S. Kwon, S. Park, M.H. Rümmeli et al., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015). https://doi.org/10.1038/ncomms8393
N. Li, S. Jin, Q. Liao, H. Cui, C.X. Wang, Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy 5, 105–115 (2014). https://doi.org/10.1016/j.nanoen.2014.02.011
S. Jin, N. Li, H. Cui, C. Wang, Growth of the vertically aligned graphene@ amorphous GeOx sandwich nanoflakes and excellent Li storage properties. Nano Energy 2(6), 1128–1136 (2013). https://doi.org/10.1016/j.nanoen.2013.09.008
N. Li, H. Song, H. Cui, C. Wang, Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy 3, 102–112 (2014). https://doi.org/10.1016/j.nanoen.2013.10.014
Y. Wang, B. Chen, D.H. Seo, Z.J. Han, J.I. Wong, K. Ostrikov, H. Zhang, H.Y. Yang, MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 8, e268 (2016). https://doi.org/10.1038/am.2016.44
Y. Zhang, O.I. Malyi, Y. Tang, J. Wei, Z. Zhu et al., Reducing the charge carrier transport barrier in functionally layer-graded electrodes. Angew. Chem. Int. Ed. 56(47), 14847–14852 (2017). https://doi.org/10.1002/anie.201707883
L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24(18), 2630–2637 (2014). https://doi.org/10.1002/adfm.201303138
G. Wang, J. Zhang, S. Yang, F. Wang, X. Zhuang, K. Müllen, X. Feng, Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 8(8), 1702254 (2018). https://doi.org/10.1002/aenm.201702254
H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding et al., Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery–supercapacitor divide. Nano Lett. 14(4), 1987–1994 (2014). https://doi.org/10.1021/nl500011d
H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599–604 (2017). https://doi.org/10.1126/science.aam5852
Q. Xu, J.Y. Li, J.K. Sun, Y.X. Yin, L.J. Wan, Y.G. Guo, Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7(3), 1601481 (2017). https://doi.org/10.1002/aenm.201601481
X.Y. Yu, L. Yu, L. Shen, X. Song, H. Chen, X.W. Lou, General formation of MS (M=Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 24(47), 7440–7446 (2014). https://doi.org/10.1002/adfm.201402560
J. Zhang, K. Wang, Q. Xu, Y. Zhou, F. Cheng, S. Guo, Beyond yolk shell nanoparticles Fe3O4@Fe3C@core shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3), 3369–3376 (2015). https://doi.org/10.1021/acsnano.5b00760
H. Zhang, X. Huang, O. Noonan, L. Zhou, C. Yu, Tailored yolk-shell Sn@C nanoboxes for high-performance lithium storage. Adv. Funct. Mater. 27(8), 1606023 (2017). https://doi.org/10.1002/adfm.201606023
Y. Li, K. Yan, H.W. Lee, Z. Lu, N. Liu, Y. Cui, Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29
D.S. Jung, T.H. Hwang, S.B. Park, J.W. Choi, Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 13(5), 2092–2097 (2013). https://doi.org/10.1021/nl400437f
R. Mo, D. Rooney, K. Sun, H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 8, 13949 (2017). https://doi.org/10.1038/ncomms13949
Y. Ma, R. Younesi, R. Pan, C. Liu, J. Zhu, B. Wei, K. Edström, Constraining Si particles within graphene foam monolith: interfacial modification for high-performance Li+ storage and flexible integrated configuration. Adv. Funct. Mater. 26(37), 6797–6806 (2016). https://doi.org/10.1002/adfm.201602324
K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559(7715), 556–563 (2018). https://doi.org/10.1038/s41586-018-0347-0
Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4(5), 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
Z. Li, D. Kong, G. Zhou, S. Wu, W. Lv et al., Twin-functional graphene oxide: compacting with Fe2O3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Mater. 6, 98–103 (2017). https://doi.org/10.1016/j.ensm.2016.09.005
H. Wang, L. Liu, R. Wang, X. Yan, Z. Wang et al., Self-assembly of antisite defectless nano-LiFePO4@C/reduced graphene oxide microspheres for high-performance lithium-ion batteries. Chemsuschem 11(13), 2255–2261 (2018). https://doi.org/10.1002/cssc.201800786
H. Li, X. Wang, Three-dimensional architectures constructed using two-dimensional nanosheets. Sci. China Chem. 58(12), 1792–1799 (2015). https://doi.org/10.1007/s11426-015-5511-x
C. Zhang, D.H. Liu, W. Lv, D.W. Wang, W. Wei et al., A high-density graphene–sulfur assembly: a promising cathode for compact Li–S batteries. Nanoscale 7(13), 5592–5597 (2015). https://doi.org/10.1039/C4NR06863G
Y. Tao, X. Xie, W. Lv, D.M. Tang, D. Kong et al., Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013). https://doi.org/10.1038/srep02975
J. Han, D. Kong, W. Lv, D.M. Tang, D. Han et al., Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9, 402 (2018). https://doi.org/10.1038/s41467-017-02808-2
J. Ni, Y. Li, Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6(17), 1600278 (2016). https://doi.org/10.1002/aenm.201600278
Z. Wu, K. Liu, C. Lv, S. Zhong, Q. Wang et al., Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms. Small 14(22), 1800414 (2018). https://doi.org/10.1002/smll.201800414
L. Hu, H. Wu, Y. Gao, A. Cao, H. Li, J. McDough, X. Xie, M. Zhou, Y. Cui, Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 1(4), 523–527 (2011). https://doi.org/10.1002/aenm.201100056
W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng, K. Müllen, 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 25(21), 2909–2914 (2013). https://doi.org/10.1002/adma.201300445
D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014). https://doi.org/10.1002/adma.201400719
J. Wang, J. Liu, D. Chao, J. Yan, J. Lin, Z.X. Shen, Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater. 26(42), 7162–7169 (2014). https://doi.org/10.1002/adma.201402728
M. Zhu, J. Song, T. Li, A. Gong, Y. Wang et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427
C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song et al., Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7(17), 1700595 (2017). https://doi.org/10.1002/aenm.201700595
C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058
S.S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 27(24), 1700348 (2017). https://doi.org/10.1002/adfm.201700348
H. Zhao, D. Lei, Y.B. He, Y. Yuan, Q. Yun et al., Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 8(19), 1800266 (2018). https://doi.org/10.1002/aenm.201800266