State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials
Corresponding Author: Haojie Yu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 68
Abstract
Microwave has been widely used in many fields, including communication, medical treatment and military industry; however, the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life. Therefore, designing high-performance microwave absorption materials (MAMs) has become an indispensable requirement. Recently, metal–organic frameworks (MOFs) have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure, high porosity and large specific surface area. Usually, MOF-derived MAMs exhibit excellent electrical conductivity, good magnetism and sufficient defects and interfaces, providing obvious merits in both impedance matching and microwave loss. In this review, the recent research progresses on MOF-derived MAMs were profoundly reviewed, including the categories of MOFs and MOF composites precursors, design principles, preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs. Finally, the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
Highlights:
1 The metal organic frameworks derived microwave absorption materials (MOF derived MAMs) were systematically reviewed.
2 The design principles, preparation methods and effect of microstructures and composites of MOF derived MAMs were discussed.
3 The challenges and further research directions of MOF derived MAMs were presented
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Yu, J. Ko, T.W. Kim, D.S. Lee, N.D. Kim et al., Effect of sorted, homogeneous electronic grade single-walled carbon nanotube on the electromagnetic shielding effectiveness. Carbon 167, 523–529 (2020). https://doi.org/10.1016/j.carbon.2020.06.047
- T. Lin, H. Yu, L. Wang, S. Fahad, A. Khan et al., A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J. Mater. Sci. 56, 5449–5478 (2021). https://doi.org/10.1007/s10853-020-05631-1
- H. Zhang, Z. Heng, J. Zhou, Y. Shi, Y. Chen et al., In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chem. Eng. J. 398, 125559 (2020). https://doi.org/10.1016/j.cej.2020.125559
- Y. Bai, F. Qin, Y. Lu, Multifunctional electromagnetic interference shielding ternary alloy (Ni-W-P) decorated fabric with wide-operating-range joule heating performances. ACS Appl. Mater. Interfaces 12, 48016–48026 (2020). https://doi.org/10.1021/acsami.0c15134
- A. Nazir, H. Yu, L. Wang, S. Fahad, K.-U.-R. Naveed et al., Electrical conductivity and electromagnetic interference shielding properties of polymer/carbon composites. J. Mater. Sci. Mater. 30, 16636–16650 (2019). https://doi.org/10.1007/s10854-019-02043-z
- R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 224–234 (2022). https://doi.org/10.1016/j.jcis.2021.11.197
- H. Geng, X. Zhang, W. Xie, P. Zhao, G. Wang et al., Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 33–42 (2022). https://doi.org/10.1016/j.jcis.2021.11.192
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020). https://doi.org/10.1002/advs.202000979
- H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/Poly(vinylalcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- Y. Zhang, Z. Yang, T. Pan, H. Gao, H. Guan et al., Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos. Part A Appl. Sci. Manuf. 137, 105994 (2020). https://doi.org/10.1016/j.compositesa.2020.105994
- Y. Shi, L. He, D. Chen, Q. Wang, J. Shen et al., Simultaneously improved electromagnetic interference shielding and flame retarding properties of poly (butylene succinate)/thermoplastic polyurethane blends by constructing segregated flame retardants and multi-walled carbon nanotubes double network. Compos. Part A Appl. Sci. Manuf. 137, 106037 (2020). https://doi.org/10.1016/j.compositesa.2020.106037
- T. Lin, H. Yu, Y. Wang, L. Wang, S.Z. Vatsadze et al., Polypyrrole nanotube/ferrocene-modified graphene oxide composites: from fabrication to EMI shielding application. J. Mater. Sci. 56, 18093–18115 (2021). https://doi.org/10.1007/s10853-021-06406-y
- T. Lin, H. Yu, L. Wang, Q. Ma, H. Huang et al., A study on the fabrication and microwave shielding properties of PANI/C60 heterostructures. Polym. Compos. 42, 1961–1976 (2021). https://doi.org/10.1002/pc.25948
- C. Chang, X. Yue, B. Hao, D. Xing, P. Ma, Direct growth of carbon nanotubes on basalt fiber for the application of electromagnetic interference shielding. Carbon 167, 31–39 (2020). https://doi.org/10.1016/j.carbon.2020.05.074
- Y. Huang, K. Yasuda, C. Wan, Intercalation: constructing nanolaminated reduced graphene oxide/silica ceramics for lightweight and mechanically reliable electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 12, 55148–55156 (2020). https://doi.org/10.1021/acsami.0c15193
- A. Nazir, H. Yu, L. Wang, Y. He, Q. Chen et al., Electromagnetic interference shielding properties of ferrocene-based polypyrrole/carbon material composites. Appl. Phys. A-Mater. (2020). https://doi.org/10.1007/s00339-020-03927-2
- Y.B. Feng, T. Qiu, C.Y. Shen, Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater. 318, 8–13 (2007). https://doi.org/10.1016/j.jmmm.2007.04.012
- G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23, 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- Z. Wu, X. Qian, K. Pei, W. You, X. Li et al., Drawing advanced electromagnetic functional composites with ultra-low filler loading. Chem. Eng. J. 399, 125720 (2020). https://doi.org/10.1016/j.cej.2020.125720
- X. Li, G. Ji, H. Lv, M. Wang, Y. Du, Microwave absorbing properties and enhanced infrared reflectance of Fe/Cu composites prepared by chemical plating. J. Magn. Magn. Mater. 355, 65–69 (2014). https://doi.org/10.1016/j.jmmm.2013.11.055
- H. Lv, G. Ji, X. Li, X. Chang, M. Wang et al., Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method. J. Magn. Magn. Mater. 374, 225–229 (2015). https://doi.org/10.1016/j.jmmm.2014.08.006
- A.J. Albaaji, E.G. Castle, M.J. Reece, J.P. Hall, S.L. Evans, Effect of ball-milling time on mechanical and magnetic properties of carbon nanotube reinforced FeCo alloy composites. Mater. Des. 122, 296–306 (2017). https://doi.org/10.1016/j.matdes.2017.02.091
- R. Guil-Lopez, R.M. Navarro, J.L.G. Fierro, Controlling the impregnation of nickel on nanoporous aluminum oxide nanoliths as catalysts for partial oxidation of methane. Chem. Eng. J. 256, 458–467 (2014). https://doi.org/10.1016/j.cej.2014.05.146
- Z. Huang, H. Yu, L. Wang, X. Liu, T. Lin et al., Ferrocene-contained metal organic frameworks: from synthesis to applications. Coord. Chem. Rev. 430, 213737 (2021). https://doi.org/10.1016/j.ccr.2020.213737
- J. Liu, Z. Deng, H. Yu, L. Wang, Ferrocene-based metal-organic framework for highly efficient recovery of gold from WEEE. Chem. Eng. J. 410, 128360 (2021). https://doi.org/10.1016/j.cej.2020.128360
- Z. Deng, H. Yu, L. Wang, J. Liu, K.J. Shea, Ferrocene-based metal-organic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst. J. Mater. Chem. A 7, 15975–15980 (2019). https://doi.org/10.1039/c9ta03403j
- J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang et al., Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014). https://doi.org/10.1039/c4cs00094c
- W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
- X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro- nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660–2677 (2017). https://doi.org/10.1039/C6CS00426a
- T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro et al., Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015). https://doi.org/10.1038/nmat4113
- J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009). https://doi.org/10.1039/b802426j
- W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li et al., Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017). https://doi.org/10.1039/C6CS00930A
- Z. Hu, B.J. Deibert, J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014). https://doi.org/10.1039/c4cs00010b
- R. Jin, C. Zeng, M. Zhou, Y. Chen, Atomically precise colloidal metal nanoclusters and nanops: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016). https://doi.org/10.1021/acs.chemrev.5b00703
- Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
- J. Yan, Y. Huang, X. Han, X. Gao, P. Liu, Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. B. Eng. 163, 67–76 (2019). https://doi.org/10.1016/j.compositesb.2018.11.008
- L. Wang, X. Bai, B. Wen, Z. Du, Y. Lin, Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. B Eng. 166, 464–471 (2019). https://doi.org/10.1016/j.compositesb.2019.02.054
- W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- P. Miao, K. Cheng, H. Li, J. Gu, K. Chen et al., Poly(dimethylsilylene)diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption. ACS Appl. Mater. Interfaces 11, 17706–17713 (2019). https://doi.org/10.1021/acsami.9b03944
- L. Wang, X. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
- Y. Qiu, Y. Lin, H. Yang, L. Wang, M. Wang et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 383, 123207 (2020). https://doi.org/10.1016/j.cej.2019.123207
- Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6, 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
- Z. Yang, H. Lv, R. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9, 3671–3682 (2016). https://doi.org/10.1007/s12274-016-1238-z
- H. Fan, Z. Yao, J. Zhou, P. Yi, B. Wei et al., Enhanced microwave absorption of epoxy composite by constructing 3D Co-C-MWCNTs derived from metal organic frameworks. J. Mater. Sci. 56, 1426–1442 (2021). https://doi.org/10.1007/s10853-020-05365-0
- S. Song, A. Zhang, L. Chen, Q. Jia, C. Zhou et al., A novel multi-cavity structured MOF derivative-porous graphene hybrid for high performance microwave absorption. Carbon 176, 279–289 (2021). https://doi.org/10.1016/j.carbon.2021.01.138
- M. Kong, Z. Jia, B. Wang, J. Dou, X. Liu et al., Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustain. Mater. Technol. 26, e00219 (2020). https://doi.org/10.1016/j.susmat.2020.e00219
- W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 10, 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
- J. Tao, Z. Jiao, L. Xu, P. Yi, Z. Yao et al., Construction of MOF-derived Co/C shell on carbon fiber surface to enhance multi-polarization effect towards efficient broadband electromagnetic wave absorption. Carbon 184, 571–582 (2021). https://doi.org/10.1016/j.carbon.2021.08.064
- X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv et al., Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 12, 17870–17880 (2020). https://doi.org/10.1021/acsami.0c01572
- Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
- K. Sushmita, G. Madras, S. Bose, Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding. ACS Omega 5, 4705–4718 (2020). https://doi.org/10.1021/acsomega.9b03641
- D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59, 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
- Z. Jia, M. Zhang, B. Liu, F. Wang, G. Wei et al., Graphene foams for electromagnetic interference shielding: a review. ACS Appl. Nano Mater. 3, 6140–6155 (2020). https://doi.org/10.1021/acsanm.0c00835
- R. Pastore, A. Delfini, D. Micheli, A. Vricella, M. Marchetti et al., Carbon foam electromagnetic mm-wave absorption in reverberation chamber. Carbon 144, 63–71 (2019). https://doi.org/10.1016/j.carbon.2018.12.026
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- L. Li, S. Zhao, X. Luo, H. Zhang, Z. Yu, Smart MXene-based janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
- F. Wu, Z. Liu, J. Wang, T. Shah, P. Liu et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 422, 130591 (2021). https://doi.org/10.1016/j.cej.2021.130591
- G. Song, K. Yang, L. Gai, Y. Li, Q. An et al., ZIF-67-CMC-derived 3D N-doped hierarchical porous carbon with in-situ encapsulated bimetallic sulfide and Ni NPs for synergistic microwave absorption. Compos. Part A Appl. Sci. Manuf. 149, 106584 (2021). https://doi.org/10.1016/j.compositesa.2021.106584
- Y. Zhou, S. Wang, D. Li, L. Jiang, Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption. Compos. B Eng. 213, 108701 (2021). https://doi.org/10.1016/j.compositesb.2021.108701
- Z. Liu, F. Pan, B. Deng, Z. Xiang, W. Lu, Self-assembled MoS2-3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021). https://doi.org/10.1016/j.carbon.2020.12.019
- X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11, 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
- J. Chen, J. Zheng, F. Wang, Q. Huang, G. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 174, 509–517 (2021). https://doi.org/10.1016/j.carbon.2020.12.077
- X. Zhang, J. Xu, X. Liu, S. Zhang, H. Yuan et al., Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon 155, 233–242 (2019). https://doi.org/10.1016/j.carbon.2019.08.074
- L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1-xCox@Carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- C. Wu, K. Bi, M. Yan, Scalable self-supported FeNi3/Mo2C flexible paper for enhanced electromagnetic wave absorption evaluated via coaxial, waveguide and arch methods. J. Mater. Chem. C 8, 10204–10212 (2020). https://doi.org/10.1039/d0tc01881c
- Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9, 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
- J. Chen, J. Zheng, Q. Huang, G. Wang, G. Ji, Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers. J. Mater. Sci. Technol. 94, 239–246 (2021). https://doi.org/10.1016/j.jmst.2021.03.072
- M. Kong, X. Liu, Z. Jia, B. Wang, X. Wu et al., Porous magnetic carbon CoFe alloys@ZnO@C composites based on Zn/Co-based bimetallic MOF with efficient electromagnetic wave absorption. J. Colloid Interface Sci. 604, 39–51 (2021). https://doi.org/10.1016/j.jcis.2021.07.003
- B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411–420 (2021). https://doi.org/10.1016/j.carbon.2021.01.136
- Y. Zhao, W. Wang, Q. Wang, H. Zhao, P. Li et al., Construction of excellent electromagnetic wave absorber from multi-heterostructure materials derived from ZnCo2O4 and ZIF-67 composite. Carbon 185, 514–525 (2021). https://doi.org/10.1016/j.carbon.2021.09.049
- W. Wang, H. Zhang, Y. Zhao, J. Wang, H. Zhao et al., A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. Chem. Eng. J. 426, 131667 (2021). https://doi.org/10.1016/j.cej.2021.131667
- J. Wang, M. Zhou, Z. Xie, X. Hao, S. Tang et al., Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section. J. Colloid Interface Sci. 612, 146–155 (2021). https://doi.org/10.1016/j.jcis.2021.12.162
- H. Lv, C. Wu, F. Qin, H. Peng, M. Yan, Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO nanosheets for electromagnetic wave absorption. J. Mater. Sci. Technol. 90, 1–8 (2021). https://doi.org/10.1016/j.jmst.2020.12.083
- G. Liu, J. Tu, C. Wu, Y. Fu, C. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 20459–20466 (2021). https://doi.org/10.1021/acsami.1c00281
- Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2020). https://doi.org/10.1016/j.cej.2019.123096
- Q. Wang, J. Wang, Y. Zhao, Y. Zhao, J. Yan et al., NiO/NiFe2O4@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: experimental and theoretical study. Chem. Eng. J. 430, 132814 (2022). https://doi.org/10.1016/j.cej.2021.132814
- X. Yang, B. Fan, X. Tang, J. Wang, G. Tong et al., Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption. Chem. Eng. J. 430, 132747 (2022). https://doi.org/10.1016/j.cej.2021.132747
- Y. Wang, W. Zhou, G. Zeng, H. Chen, H. Luo et al., Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers. Carbon 175, 233–242 (2021). https://doi.org/10.1016/j.carbon.2021.01.001
- J. Wang, F. Wu, Y. Cui, A. Zhang, Q. Zhang et al., Efficient synthesis of N-doped porous carbon nanoribbon composites with selective microwave absorption performance in common wavebands. Carbon 175, 164–175 (2021). https://doi.org/10.1016/j.carbon.2021.01.005
- S. Peng, S. Wang, G. Hao, C. Zhu, Y. Zhang et al., Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J. Magn. Magn. Mater. 487, 165306 (2019). https://doi.org/10.1016/j.jmmm.2019.165306
- Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
- K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 10, 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965
- M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16, 2000158 (2020). https://doi.org/10.1002/smll.202000158
- Q. Zeng, L. Wang, X. Li, W. You, J. Zhang et al., Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 538, 148051 (2021). https://doi.org/10.1016/j.apsusc.2020.148051
- J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces 11, 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850
- Z. Yang, Y. Zhang, M. Li, L. Yang, J. Liu et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater. 2, 7888–7897 (2019). https://doi.org/10.1021/acsanm.9b01881
- S. Zhong, C. Zhan, D. Cao, Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85, 51–59 (2015). https://doi.org/10.1016/j.carbon.2014.12.064
- J. Ma, W. Liu, X. Liang, B. Quan, Y. Cheng et al., Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 728, 138–144 (2017). https://doi.org/10.1016/j.jallcom.2017.08.274
- X. Zhang, J. Qiao, C. Liu, F. Wang, Y. Jiang et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 7, 385–393 (2020). https://doi.org/10.1039/c9qi01259a
- R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe-C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
- P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban et al., Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology. Adv. Mater. Interfaces 7, 1901820 (2020). https://doi.org/10.1002/admi.201901820
- P. Li, D.E. Miser, S. Rabiei, R.T. Yadav, M.R. Hajaligol, The removal of carbon monoxide by iron oxide nanops. Appl. Catal. B 43, 151–162 (2003). https://doi.org/10.1016/s0926-3373(02)00297-7
- W. Liu, L. Liu, G. Ji, D. Li, Y. Zhang et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustain. Chem. Eng. 5, 7961–7971 (2017). https://doi.org/10.1021/acssuschemeng.7b01514
- C. Peng, Y. Zhang, B. Zhang, MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption. J. Alloys Compd. 826, 154203 (2020). https://doi.org/10.1016/j.jallcom.2020.154203
- Q. Wu, H. Jin, W. Chen, S. Huo, X. Chen et al., Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 5, 065602 (2018). https://doi.org/10.1088/2053-1591/aac67e
- Y. Dong, X. Zhu, F. Pan, B. Deng, Z. Liu et al., Mace-like carbon fiber/ZnO nanorod composite derived from typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv. Compos. Hybrid Ma. 4, 1002–1014 (2021). https://doi.org/10.1007/s42114-021-00277-2
- J. Wang, B. Wang, Z. Wang, L. Chen, C. Gao et al., Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 586, 479–490 (2021). https://doi.org/10.1016/j.jcis.2020.10.111
- G. He, Y. Duan, H. Pang, J. Hu, Superior microwave absorption based on ZnO capped MnO2 nanostructures. Adv. Mater. Interfaces 7, 2000407 (2020). https://doi.org/10.1002/admi.202000407
- J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
- S. Gao, G.-S. Wang, L. Guo, S.-H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, 1906668 (2020). https://doi.org/10.1002/smll.201906668
- Z. Shen, H. Peng, Z. Xiong, H. Yang, Z. Huang et al., Facile fabrication of Nd2O2S/C nanocomposite with enhanced microwave absorption induced by defects. J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.18220
- Y. Qiu, B. Wen, H. Yang, Y. Lin, Y. Cheng et al., MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption. J. Colloid Interface Sci. 602, 242–250 (2021). https://doi.org/10.1016/j.jcis.2021.06.006
- P. Hu, S. Dong, X. Li, J. Chen, X. Zhang et al., A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties. J. Mater. Chem. C 7, 9219–9228 (2019). https://doi.org/10.1039/c9tc02182e
- D. Xu, J. Qiao, N. Wu, W. Liu, F. Wang et al., Facile synthesis of three-dimensional porous Co/MnO composites derived from bimetal oxides for highly efficient electromagnetic wave absorption. ACS Sustain. Chem. Eng. 7, 8687–8695 (2019). https://doi.org/10.1021/acssuschemeng.9b00529
- X. Chen, Z. Jia, A. Feng, B. Wang, X. Tong et al., Hierarchical Fe3O4@carbon@MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interface Sci. 553, 465–474 (2019). https://doi.org/10.1016/j.jcis.2019.06.058
- H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu et al., 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 417, 128087 (2021). https://doi.org/10.1016/j.cej.2020.128087
- S.X. Zhang, L. Xu, Z.H. Chen, S.T. Fan, Z.J. Qiu et al., Hierarchical porous carbon derived from green cyclodextrin metal-organic framework and its application in microwave absorption. J. Appl. Polym. Sci. 138, 50849 (2021). https://doi.org/10.1002/app.50849
- B. Quan, X. Liang, H. Yi, Y. Chen, J. Xiang et al., Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response. J. Mater. Chem. C 6, 11659–11665 (2018). https://doi.org/10.1039/c8tc03628d
- Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao et al., Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7, 1655–1663 (2017). https://doi.org/10.1021/acscatal.6b02966
- T. Zhang, J. Wang, W. Zhang, C. Yang, L. Zhang et al., Amorphous Fe/Mn bimetal-organic frameworks: outer and inner structural designs for efficient arsenic(iii) removal. J. Mater. Chem. A 7, 2845–2854 (2019). https://doi.org/10.1039/c8ta10394a
- Y. Liu, Z. Chen, W. Xie, F. Qiu, Y. Zhang et al., Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J. Alloys Compd. 809, 151837 (2019). https://doi.org/10.1016/j.jallcom.2019.151837
- L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater. 2, 7827–7838 (2019). https://doi.org/10.1021/acsanm.9b01842
- T. Zhu, Y. Sun, Y. Wang, H. Xing, Y. Zong et al., Controllable synthesis of MOF-derived FexNi1−x@C composites with dielectric-magnetic synergy toward optimized impedance matching and outstanding microwave absorption. J. Mater. Sci. 56, 592–606 (2021). https://doi.org/10.1007/s10853-020-05307-w
- J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 11, 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430
- W. Liu, J. Pan, G. Ji, X. Liang, Y. Cheng et al., Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal-organic frameworks: effect of composition. Dalton Trans. 46, 3700–3709 (2017). https://doi.org/10.1039/c7dt00156h
- W. Feng, Y. Wang, J. Chen, B. Li, L. Guo et al., Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C 6, 10–18 (2018). https://doi.org/10.1039/c7tc03784h
- Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang et al., Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 10, 29136–29144 (2018). https://doi.org/10.1021/acsami.8b09093
- J. Pan, W. Xia, X. Sun, T. Wang, J. Li et al., Improvement of interfacial polarization and impedance matching for two-dimensional leaf-like bimetallic (Co, Zn) doped porous carbon nanocomposites with broadband microwave absorption. Appl. Surf. Sci. 512, 144894 (2020). https://doi.org/10.1016/j.apsusc.2019.144894
- B. Wen, H. Yang, Y. Lin, Y. Qiu, Y. Cheng et al., Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 605, 657–666 (2022). https://doi.org/10.1016/j.jcis.2021.07.118
- L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- L. Zhang, P. Yin, J. Wang, X. Feng, J. Dai, Low-frequency microwave absorption of MOF-derived Co/CoO/SrCO3@C composites. Mater. Chem. Phys. 264, 124457 (2021). https://doi.org/10.1016/j.matchemphys.2021.124457
- H. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanops. ACS Appl. Mater. Interfaces 9, 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796
- L. Huang, C. Chen, X. Huang, S. Ruan, Y.-J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. B Eng. 164, 583–589 (2019). https://doi.org/10.1016/j.compositesb.2019.01.081
- X. Zhang, J. Qiao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces 11, 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
- X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang et al., Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/c5nr03176a
- J. Yu, J. Yu, T. Ying, X. Liu, X. Zhang et al., Zeolitic imidazolate framework derived Fe-N/C for efficient microwave absorbers. J. Alloys Compd. 838, 155629 (2020). https://doi.org/10.1016/j.jallcom.2020.155629
- J. Yan, Y. Huang, Y. Yan, X. Zhao, P. Liu, The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties. Compos. Part A Appl. Sci. Manuf. 139, 106107 (2020). https://doi.org/10.1016/j.compositesa.2020.106107
- H. Zhao, Y. Cheng, J. Ma, Y. Zhang, G. Ji et al., A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 339, 432–441 (2018). https://doi.org/10.1016/j.cej.2018.01.151
- M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
- K. Zhang, A. Xie, M. Sun, W. Jiang, F. Wu et al., Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys. 199, 340–347 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.026
- S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan et al., Great enhancement of electromagnetic wave absorption of MWCNTs@carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazole framework. Appl. Surf. Sci. 481, 99–107 (2019). https://doi.org/10.1016/j.apsusc.2019.03.018
- J. Fang, Y. Ma, Z. Zhang, B. Yang, Y. Li et al., Metal-organic framework-derived carbon/carbon nanotubes mediate impedance matching for strong microwave absorption at fairly low temperatures. ACS Appl. Mater. Interfaces 13, 33496–33504 (2021). https://doi.org/10.1021/acsami.1c07792
- K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9, 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
- B. Quan, X. Liang, X. Zhang, G. Xu, G. Ji et al., Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 10, 41535–41543 (2018). https://doi.org/10.1021/acsami.8b16088
- X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces 11, 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754
- L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang et al., Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanops. J. Mater. Chem. A 2, 14940–14946 (2014). https://doi.org/10.1039/c4ta02815e
- A. Nazir, H. Yu, L. Wang, M. Haroon, R.S. Ullah et al., Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53, 8699–8719 (2018). https://doi.org/10.1007/s10853-018-2122-x
- A. Nazir, H. Yu, L. Wang, Y. He, Q. Chen et al., Preparation and properties of ferrocene-based polyfuran/carbon material composites for electromagnetic interference shielding. J. Electron. Mater. 49, 5647–5656 (2020). https://doi.org/10.1007/s11664-020-08314-4
- L. Lyu, S. Zheng, F. Wang, Y. Liu, J. Liu, High-performance microwave absorption of MOF-derived Co3O4@N-doped carbon anchored on carbon foam. J. Colloid Interface Sci. 602, 197–206 (2021). https://doi.org/10.1016/j.jcis.2021.05.184
- J. Zhang, Z. Yan, X. Liu, Y. Zhang, H. Zou et al., Conductive skeleton-heterostructure composites based on chrome shavings for enhanced electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 53076–53087 (2020). https://doi.org/10.1021/acsami.0c14300
- X. Sun, M. Yang, S. Yang, S. Wang, W. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15, 1902974 (2019). https://doi.org/10.1002/smll.201902974
- S. Wang, Q. Li, K. Hu, S. Wang, Q. Liu et al., A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption. Appl. Surf. Sci. 544, 148891 (2021). https://doi.org/10.1016/j.apsusc.2020.148891
- Y. Zhou, W. Zhou, C. Ni, S. Yan, L. Yu et al., “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents. Chem. Eng. J. 430, 132621 (2022). https://doi.org/10.1016/j.cej.2021.132621
- C. Ji, Y. Liu, J. Xu, Y. Li, Y. Shang et al., Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree. J. Alloys Compd. 890, 161834 (2022). https://doi.org/10.1016/j.jallcom.2021.161834
- X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408–7418 (2017). https://doi.org/10.1039/c7nr02628e
- Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10, 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
- Y. Fei, M. Liang, T. Zhou, Y. Chen, H. Zou, Unique carbon nanofiber@Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon 167, 575–584 (2020). https://doi.org/10.1016/j.carbon.2020.06.013
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
- M. Yuan, M. Zhou, H. Fu, Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band. Compos. Part B-Eng. 224, 109178 (2021). https://doi.org/10.1016/j.compositesb.2021.109178
- X. Zhang, H. Wang, R. Hu, C. Huang, W. Zhong et al., Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanops. Appl. Surf. Sci. 484, 383–391 (2019). https://doi.org/10.1016/j.apsusc.2019.03.264
- X. Han, Y. Huang, L. Ding, Y. Song, T. Li et al., Ti3C2Tx MXene nanosheet metal-organic framework composites for microwave absorption. ACS Appl. Nano Mater. 4, 691–701 (2021). https://doi.org/10.1021/acsanm.0c02983
- B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-Like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
- X. Zhu, H. Qiu, P. Chen, G. Chen, W. Min, Graphitic carbon nitride (g-C3N4) in situ polymerization to synthesize MOF-Co@CNTs as efficient electromagnetic microwave absorption materials. Carbon 176, 530–539 (2021). https://doi.org/10.1016/j.carbon.2021.02.044
- H. Jin, J. Wang, S. Yang, ZIF-67-derived micron-sized cobalt-doped porous carbon-based microwave absorbers with g-C3N4 as template. Ceram. Int. 47, 11506–11513 (2021). https://doi.org/10.1016/j.ceramint.2020.12.278
- L. Yan, X. Wang, S. Zhao, Y. Li, Z. Gao et al., Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl. Mater. Interfaces 9, 11116–11125 (2017). https://doi.org/10.1021/acsami.6b16864
- A. Nazir, H. Yu, L. Wang, J. Liu, S. Li et al., Electromagnetic interference shielding effectiveness of ferrocene-based polyimidazole/carbon material composites. Polym. Compos. 41, 2068–2081 (2020). https://doi.org/10.1002/pc.25521
- X. Sun, X. Lv, M. Sui, X. Weng, X. Li et al., Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: a lightweight material with excellent electromagnetic absorption. Materials 11, 781 (2018). https://doi.org/10.3390/ma11050781
- J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
- S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14, 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
- C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanops suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
- X. Zhang, Z. Wang, L. Xu, K. Zuraiqi, T. Daeneke et al., Liquid metal derived MOF functionalized nanoarrays with ultra-wideband electromagnetic absorption. J. Colloid Interface Sci. 606, 1852–1865 (2022). https://doi.org/10.1016/j.jcis.2021.08.143
- H. Wang, X. Sun, S. Yang, P. Zhao, X. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
- L. Wang, X. Li, X. Shi, M. Huang, X. Li et al., Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 13, 2136–2156 (2021). https://doi.org/10.1039/d0nr06267g
- M. Huang, L. Wang, W. You, R. Che, Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 17, 2101416 (2021). https://doi.org/10.1002/smll.202101416
- W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO@N-doped porous carbon/Co3ZnC core-shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018). https://doi.org/10.1016/j.cej.2018.02.078
- F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanops encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
- S. Wang, S. Peng, S. Zhong, W. Jiang, Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@Air@C hierarchical heterostructures for efficient electromagnetic wave absorption. J. Mater. Chem. C 6, 9465–9474 (2018). https://doi.org/10.1039/c8tc03260b
- P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
- G. Liu, C. Wu, H. Lei, H. Xin, X. Zhang et al., Anisotropy engineering of metal organic framework derivatives for effective electromagnetic wave absorption. Carbon 181, 48–57 (2021). https://doi.org/10.1016/j.carbon.2021.05.015
- Z. Gao, Y. Song, S. Zhang, D. Lan, Z. Zhao et al., Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. J. Colloid Interface Sci. 600, 288–298 (2021). https://doi.org/10.1016/j.jcis.2021.05.009
- J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying et al., Wood-based straightway channel structure for high performance microwave absorption. Carbon 124, 492–498 (2017). https://doi.org/10.1016/j.carbon.2017.07.088
- H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon ps for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
- J. Liu, H. Liang, H. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 130, 105760 (2020). https://doi.org/10.1016/j.compositesa.2019.105760
- Z. Zhao, K. Kou, L. Zhang, H. Wu, Optimal p distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption. Carbon 186, 323–332 (2022). https://doi.org/10.1016/j.carbon.2021.10.052
References
I. Yu, J. Ko, T.W. Kim, D.S. Lee, N.D. Kim et al., Effect of sorted, homogeneous electronic grade single-walled carbon nanotube on the electromagnetic shielding effectiveness. Carbon 167, 523–529 (2020). https://doi.org/10.1016/j.carbon.2020.06.047
T. Lin, H. Yu, L. Wang, S. Fahad, A. Khan et al., A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J. Mater. Sci. 56, 5449–5478 (2021). https://doi.org/10.1007/s10853-020-05631-1
H. Zhang, Z. Heng, J. Zhou, Y. Shi, Y. Chen et al., In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chem. Eng. J. 398, 125559 (2020). https://doi.org/10.1016/j.cej.2020.125559
Y. Bai, F. Qin, Y. Lu, Multifunctional electromagnetic interference shielding ternary alloy (Ni-W-P) decorated fabric with wide-operating-range joule heating performances. ACS Appl. Mater. Interfaces 12, 48016–48026 (2020). https://doi.org/10.1021/acsami.0c15134
A. Nazir, H. Yu, L. Wang, S. Fahad, K.-U.-R. Naveed et al., Electrical conductivity and electromagnetic interference shielding properties of polymer/carbon composites. J. Mater. Sci. Mater. 30, 16636–16650 (2019). https://doi.org/10.1007/s10854-019-02043-z
R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 224–234 (2022). https://doi.org/10.1016/j.jcis.2021.11.197
H. Geng, X. Zhang, W. Xie, P. Zhao, G. Wang et al., Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 33–42 (2022). https://doi.org/10.1016/j.jcis.2021.11.192
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020). https://doi.org/10.1002/advs.202000979
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/Poly(vinylalcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
Y. Zhang, Z. Yang, T. Pan, H. Gao, H. Guan et al., Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos. Part A Appl. Sci. Manuf. 137, 105994 (2020). https://doi.org/10.1016/j.compositesa.2020.105994
Y. Shi, L. He, D. Chen, Q. Wang, J. Shen et al., Simultaneously improved electromagnetic interference shielding and flame retarding properties of poly (butylene succinate)/thermoplastic polyurethane blends by constructing segregated flame retardants and multi-walled carbon nanotubes double network. Compos. Part A Appl. Sci. Manuf. 137, 106037 (2020). https://doi.org/10.1016/j.compositesa.2020.106037
T. Lin, H. Yu, Y. Wang, L. Wang, S.Z. Vatsadze et al., Polypyrrole nanotube/ferrocene-modified graphene oxide composites: from fabrication to EMI shielding application. J. Mater. Sci. 56, 18093–18115 (2021). https://doi.org/10.1007/s10853-021-06406-y
T. Lin, H. Yu, L. Wang, Q. Ma, H. Huang et al., A study on the fabrication and microwave shielding properties of PANI/C60 heterostructures. Polym. Compos. 42, 1961–1976 (2021). https://doi.org/10.1002/pc.25948
C. Chang, X. Yue, B. Hao, D. Xing, P. Ma, Direct growth of carbon nanotubes on basalt fiber for the application of electromagnetic interference shielding. Carbon 167, 31–39 (2020). https://doi.org/10.1016/j.carbon.2020.05.074
Y. Huang, K. Yasuda, C. Wan, Intercalation: constructing nanolaminated reduced graphene oxide/silica ceramics for lightweight and mechanically reliable electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 12, 55148–55156 (2020). https://doi.org/10.1021/acsami.0c15193
A. Nazir, H. Yu, L. Wang, Y. He, Q. Chen et al., Electromagnetic interference shielding properties of ferrocene-based polypyrrole/carbon material composites. Appl. Phys. A-Mater. (2020). https://doi.org/10.1007/s00339-020-03927-2
Y.B. Feng, T. Qiu, C.Y. Shen, Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater. 318, 8–13 (2007). https://doi.org/10.1016/j.jmmm.2007.04.012
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23, 1587–1593 (2011). https://doi.org/10.1021/cm103441u
Z. Wu, X. Qian, K. Pei, W. You, X. Li et al., Drawing advanced electromagnetic functional composites with ultra-low filler loading. Chem. Eng. J. 399, 125720 (2020). https://doi.org/10.1016/j.cej.2020.125720
X. Li, G. Ji, H. Lv, M. Wang, Y. Du, Microwave absorbing properties and enhanced infrared reflectance of Fe/Cu composites prepared by chemical plating. J. Magn. Magn. Mater. 355, 65–69 (2014). https://doi.org/10.1016/j.jmmm.2013.11.055
H. Lv, G. Ji, X. Li, X. Chang, M. Wang et al., Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method. J. Magn. Magn. Mater. 374, 225–229 (2015). https://doi.org/10.1016/j.jmmm.2014.08.006
A.J. Albaaji, E.G. Castle, M.J. Reece, J.P. Hall, S.L. Evans, Effect of ball-milling time on mechanical and magnetic properties of carbon nanotube reinforced FeCo alloy composites. Mater. Des. 122, 296–306 (2017). https://doi.org/10.1016/j.matdes.2017.02.091
R. Guil-Lopez, R.M. Navarro, J.L.G. Fierro, Controlling the impregnation of nickel on nanoporous aluminum oxide nanoliths as catalysts for partial oxidation of methane. Chem. Eng. J. 256, 458–467 (2014). https://doi.org/10.1016/j.cej.2014.05.146
Z. Huang, H. Yu, L. Wang, X. Liu, T. Lin et al., Ferrocene-contained metal organic frameworks: from synthesis to applications. Coord. Chem. Rev. 430, 213737 (2021). https://doi.org/10.1016/j.ccr.2020.213737
J. Liu, Z. Deng, H. Yu, L. Wang, Ferrocene-based metal-organic framework for highly efficient recovery of gold from WEEE. Chem. Eng. J. 410, 128360 (2021). https://doi.org/10.1016/j.cej.2020.128360
Z. Deng, H. Yu, L. Wang, J. Liu, K.J. Shea, Ferrocene-based metal-organic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst. J. Mater. Chem. A 7, 15975–15980 (2019). https://doi.org/10.1039/c9ta03403j
J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang et al., Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014). https://doi.org/10.1039/c4cs00094c
W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro- nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660–2677 (2017). https://doi.org/10.1039/C6CS00426a
T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro et al., Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015). https://doi.org/10.1038/nmat4113
J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009). https://doi.org/10.1039/b802426j
W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li et al., Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017). https://doi.org/10.1039/C6CS00930A
Z. Hu, B.J. Deibert, J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014). https://doi.org/10.1039/c4cs00010b
R. Jin, C. Zeng, M. Zhou, Y. Chen, Atomically precise colloidal metal nanoclusters and nanops: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016). https://doi.org/10.1021/acs.chemrev.5b00703
Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
J. Yan, Y. Huang, X. Han, X. Gao, P. Liu, Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. B. Eng. 163, 67–76 (2019). https://doi.org/10.1016/j.compositesb.2018.11.008
L. Wang, X. Bai, B. Wen, Z. Du, Y. Lin, Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. B Eng. 166, 464–471 (2019). https://doi.org/10.1016/j.compositesb.2019.02.054
W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
P. Miao, K. Cheng, H. Li, J. Gu, K. Chen et al., Poly(dimethylsilylene)diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption. ACS Appl. Mater. Interfaces 11, 17706–17713 (2019). https://doi.org/10.1021/acsami.9b03944
L. Wang, X. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
Y. Qiu, Y. Lin, H. Yang, L. Wang, M. Wang et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 383, 123207 (2020). https://doi.org/10.1016/j.cej.2019.123207
Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6, 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
Z. Yang, H. Lv, R. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9, 3671–3682 (2016). https://doi.org/10.1007/s12274-016-1238-z
H. Fan, Z. Yao, J. Zhou, P. Yi, B. Wei et al., Enhanced microwave absorption of epoxy composite by constructing 3D Co-C-MWCNTs derived from metal organic frameworks. J. Mater. Sci. 56, 1426–1442 (2021). https://doi.org/10.1007/s10853-020-05365-0
S. Song, A. Zhang, L. Chen, Q. Jia, C. Zhou et al., A novel multi-cavity structured MOF derivative-porous graphene hybrid for high performance microwave absorption. Carbon 176, 279–289 (2021). https://doi.org/10.1016/j.carbon.2021.01.138
M. Kong, Z. Jia, B. Wang, J. Dou, X. Liu et al., Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustain. Mater. Technol. 26, e00219 (2020). https://doi.org/10.1016/j.susmat.2020.e00219
W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 10, 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
J. Tao, Z. Jiao, L. Xu, P. Yi, Z. Yao et al., Construction of MOF-derived Co/C shell on carbon fiber surface to enhance multi-polarization effect towards efficient broadband electromagnetic wave absorption. Carbon 184, 571–582 (2021). https://doi.org/10.1016/j.carbon.2021.08.064
X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv et al., Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 12, 17870–17880 (2020). https://doi.org/10.1021/acsami.0c01572
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
K. Sushmita, G. Madras, S. Bose, Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding. ACS Omega 5, 4705–4718 (2020). https://doi.org/10.1021/acsomega.9b03641
D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59, 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
Z. Jia, M. Zhang, B. Liu, F. Wang, G. Wei et al., Graphene foams for electromagnetic interference shielding: a review. ACS Appl. Nano Mater. 3, 6140–6155 (2020). https://doi.org/10.1021/acsanm.0c00835
R. Pastore, A. Delfini, D. Micheli, A. Vricella, M. Marchetti et al., Carbon foam electromagnetic mm-wave absorption in reverberation chamber. Carbon 144, 63–71 (2019). https://doi.org/10.1016/j.carbon.2018.12.026
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
L. Li, S. Zhao, X. Luo, H. Zhang, Z. Yu, Smart MXene-based janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
F. Wu, Z. Liu, J. Wang, T. Shah, P. Liu et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 422, 130591 (2021). https://doi.org/10.1016/j.cej.2021.130591
G. Song, K. Yang, L. Gai, Y. Li, Q. An et al., ZIF-67-CMC-derived 3D N-doped hierarchical porous carbon with in-situ encapsulated bimetallic sulfide and Ni NPs for synergistic microwave absorption. Compos. Part A Appl. Sci. Manuf. 149, 106584 (2021). https://doi.org/10.1016/j.compositesa.2021.106584
Y. Zhou, S. Wang, D. Li, L. Jiang, Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption. Compos. B Eng. 213, 108701 (2021). https://doi.org/10.1016/j.compositesb.2021.108701
Z. Liu, F. Pan, B. Deng, Z. Xiang, W. Lu, Self-assembled MoS2-3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021). https://doi.org/10.1016/j.carbon.2020.12.019
X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11, 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
J. Chen, J. Zheng, F. Wang, Q. Huang, G. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 174, 509–517 (2021). https://doi.org/10.1016/j.carbon.2020.12.077
X. Zhang, J. Xu, X. Liu, S. Zhang, H. Yuan et al., Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon 155, 233–242 (2019). https://doi.org/10.1016/j.carbon.2019.08.074
L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1-xCox@Carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
C. Wu, K. Bi, M. Yan, Scalable self-supported FeNi3/Mo2C flexible paper for enhanced electromagnetic wave absorption evaluated via coaxial, waveguide and arch methods. J. Mater. Chem. C 8, 10204–10212 (2020). https://doi.org/10.1039/d0tc01881c
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9, 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
J. Chen, J. Zheng, Q. Huang, G. Wang, G. Ji, Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers. J. Mater. Sci. Technol. 94, 239–246 (2021). https://doi.org/10.1016/j.jmst.2021.03.072
M. Kong, X. Liu, Z. Jia, B. Wang, X. Wu et al., Porous magnetic carbon CoFe alloys@ZnO@C composites based on Zn/Co-based bimetallic MOF with efficient electromagnetic wave absorption. J. Colloid Interface Sci. 604, 39–51 (2021). https://doi.org/10.1016/j.jcis.2021.07.003
B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411–420 (2021). https://doi.org/10.1016/j.carbon.2021.01.136
Y. Zhao, W. Wang, Q. Wang, H. Zhao, P. Li et al., Construction of excellent electromagnetic wave absorber from multi-heterostructure materials derived from ZnCo2O4 and ZIF-67 composite. Carbon 185, 514–525 (2021). https://doi.org/10.1016/j.carbon.2021.09.049
W. Wang, H. Zhang, Y. Zhao, J. Wang, H. Zhao et al., A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. Chem. Eng. J. 426, 131667 (2021). https://doi.org/10.1016/j.cej.2021.131667
J. Wang, M. Zhou, Z. Xie, X. Hao, S. Tang et al., Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section. J. Colloid Interface Sci. 612, 146–155 (2021). https://doi.org/10.1016/j.jcis.2021.12.162
H. Lv, C. Wu, F. Qin, H. Peng, M. Yan, Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO nanosheets for electromagnetic wave absorption. J. Mater. Sci. Technol. 90, 1–8 (2021). https://doi.org/10.1016/j.jmst.2020.12.083
G. Liu, J. Tu, C. Wu, Y. Fu, C. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 20459–20466 (2021). https://doi.org/10.1021/acsami.1c00281
Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2020). https://doi.org/10.1016/j.cej.2019.123096
Q. Wang, J. Wang, Y. Zhao, Y. Zhao, J. Yan et al., NiO/NiFe2O4@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: experimental and theoretical study. Chem. Eng. J. 430, 132814 (2022). https://doi.org/10.1016/j.cej.2021.132814
X. Yang, B. Fan, X. Tang, J. Wang, G. Tong et al., Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption. Chem. Eng. J. 430, 132747 (2022). https://doi.org/10.1016/j.cej.2021.132747
Y. Wang, W. Zhou, G. Zeng, H. Chen, H. Luo et al., Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers. Carbon 175, 233–242 (2021). https://doi.org/10.1016/j.carbon.2021.01.001
J. Wang, F. Wu, Y. Cui, A. Zhang, Q. Zhang et al., Efficient synthesis of N-doped porous carbon nanoribbon composites with selective microwave absorption performance in common wavebands. Carbon 175, 164–175 (2021). https://doi.org/10.1016/j.carbon.2021.01.005
S. Peng, S. Wang, G. Hao, C. Zhu, Y. Zhang et al., Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J. Magn. Magn. Mater. 487, 165306 (2019). https://doi.org/10.1016/j.jmmm.2019.165306
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 10, 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965
M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16, 2000158 (2020). https://doi.org/10.1002/smll.202000158
Q. Zeng, L. Wang, X. Li, W. You, J. Zhang et al., Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 538, 148051 (2021). https://doi.org/10.1016/j.apsusc.2020.148051
J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces 11, 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850
Z. Yang, Y. Zhang, M. Li, L. Yang, J. Liu et al., Surface architecture of Ni-based metal organic framework hollow spheres for adjustable microwave absorption. ACS Appl. Nano Mater. 2, 7888–7897 (2019). https://doi.org/10.1021/acsanm.9b01881
S. Zhong, C. Zhan, D. Cao, Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85, 51–59 (2015). https://doi.org/10.1016/j.carbon.2014.12.064
J. Ma, W. Liu, X. Liang, B. Quan, Y. Cheng et al., Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 728, 138–144 (2017). https://doi.org/10.1016/j.jallcom.2017.08.274
X. Zhang, J. Qiao, C. Liu, F. Wang, Y. Jiang et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 7, 385–393 (2020). https://doi.org/10.1039/c9qi01259a
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe-C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/C5TA01457C
P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban et al., Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology. Adv. Mater. Interfaces 7, 1901820 (2020). https://doi.org/10.1002/admi.201901820
P. Li, D.E. Miser, S. Rabiei, R.T. Yadav, M.R. Hajaligol, The removal of carbon monoxide by iron oxide nanops. Appl. Catal. B 43, 151–162 (2003). https://doi.org/10.1016/s0926-3373(02)00297-7
W. Liu, L. Liu, G. Ji, D. Li, Y. Zhang et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustain. Chem. Eng. 5, 7961–7971 (2017). https://doi.org/10.1021/acssuschemeng.7b01514
C. Peng, Y. Zhang, B. Zhang, MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption. J. Alloys Compd. 826, 154203 (2020). https://doi.org/10.1016/j.jallcom.2020.154203
Q. Wu, H. Jin, W. Chen, S. Huo, X. Chen et al., Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 5, 065602 (2018). https://doi.org/10.1088/2053-1591/aac67e
Y. Dong, X. Zhu, F. Pan, B. Deng, Z. Liu et al., Mace-like carbon fiber/ZnO nanorod composite derived from typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv. Compos. Hybrid Ma. 4, 1002–1014 (2021). https://doi.org/10.1007/s42114-021-00277-2
J. Wang, B. Wang, Z. Wang, L. Chen, C. Gao et al., Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 586, 479–490 (2021). https://doi.org/10.1016/j.jcis.2020.10.111
G. He, Y. Duan, H. Pang, J. Hu, Superior microwave absorption based on ZnO capped MnO2 nanostructures. Adv. Mater. Interfaces 7, 2000407 (2020). https://doi.org/10.1002/admi.202000407
J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
S. Gao, G.-S. Wang, L. Guo, S.-H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, 1906668 (2020). https://doi.org/10.1002/smll.201906668
Z. Shen, H. Peng, Z. Xiong, H. Yang, Z. Huang et al., Facile fabrication of Nd2O2S/C nanocomposite with enhanced microwave absorption induced by defects. J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.18220
Y. Qiu, B. Wen, H. Yang, Y. Lin, Y. Cheng et al., MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption. J. Colloid Interface Sci. 602, 242–250 (2021). https://doi.org/10.1016/j.jcis.2021.06.006
P. Hu, S. Dong, X. Li, J. Chen, X. Zhang et al., A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties. J. Mater. Chem. C 7, 9219–9228 (2019). https://doi.org/10.1039/c9tc02182e
D. Xu, J. Qiao, N. Wu, W. Liu, F. Wang et al., Facile synthesis of three-dimensional porous Co/MnO composites derived from bimetal oxides for highly efficient electromagnetic wave absorption. ACS Sustain. Chem. Eng. 7, 8687–8695 (2019). https://doi.org/10.1021/acssuschemeng.9b00529
X. Chen, Z. Jia, A. Feng, B. Wang, X. Tong et al., Hierarchical Fe3O4@carbon@MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interface Sci. 553, 465–474 (2019). https://doi.org/10.1016/j.jcis.2019.06.058
H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu et al., 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 417, 128087 (2021). https://doi.org/10.1016/j.cej.2020.128087
S.X. Zhang, L. Xu, Z.H. Chen, S.T. Fan, Z.J. Qiu et al., Hierarchical porous carbon derived from green cyclodextrin metal-organic framework and its application in microwave absorption. J. Appl. Polym. Sci. 138, 50849 (2021). https://doi.org/10.1002/app.50849
B. Quan, X. Liang, H. Yi, Y. Chen, J. Xiang et al., Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response. J. Mater. Chem. C 6, 11659–11665 (2018). https://doi.org/10.1039/c8tc03628d
Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao et al., Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 7, 1655–1663 (2017). https://doi.org/10.1021/acscatal.6b02966
T. Zhang, J. Wang, W. Zhang, C. Yang, L. Zhang et al., Amorphous Fe/Mn bimetal-organic frameworks: outer and inner structural designs for efficient arsenic(iii) removal. J. Mater. Chem. A 7, 2845–2854 (2019). https://doi.org/10.1039/c8ta10394a
Y. Liu, Z. Chen, W. Xie, F. Qiu, Y. Zhang et al., Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J. Alloys Compd. 809, 151837 (2019). https://doi.org/10.1016/j.jallcom.2019.151837
L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater. 2, 7827–7838 (2019). https://doi.org/10.1021/acsanm.9b01842
T. Zhu, Y. Sun, Y. Wang, H. Xing, Y. Zong et al., Controllable synthesis of MOF-derived FexNi1−x@C composites with dielectric-magnetic synergy toward optimized impedance matching and outstanding microwave absorption. J. Mater. Sci. 56, 592–606 (2021). https://doi.org/10.1007/s10853-020-05307-w
J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 11, 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430
W. Liu, J. Pan, G. Ji, X. Liang, Y. Cheng et al., Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal-organic frameworks: effect of composition. Dalton Trans. 46, 3700–3709 (2017). https://doi.org/10.1039/c7dt00156h
W. Feng, Y. Wang, J. Chen, B. Li, L. Guo et al., Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C 6, 10–18 (2018). https://doi.org/10.1039/c7tc03784h
Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang et al., Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 10, 29136–29144 (2018). https://doi.org/10.1021/acsami.8b09093
J. Pan, W. Xia, X. Sun, T. Wang, J. Li et al., Improvement of interfacial polarization and impedance matching for two-dimensional leaf-like bimetallic (Co, Zn) doped porous carbon nanocomposites with broadband microwave absorption. Appl. Surf. Sci. 512, 144894 (2020). https://doi.org/10.1016/j.apsusc.2019.144894
B. Wen, H. Yang, Y. Lin, Y. Qiu, Y. Cheng et al., Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 605, 657–666 (2022). https://doi.org/10.1016/j.jcis.2021.07.118
L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
L. Zhang, P. Yin, J. Wang, X. Feng, J. Dai, Low-frequency microwave absorption of MOF-derived Co/CoO/SrCO3@C composites. Mater. Chem. Phys. 264, 124457 (2021). https://doi.org/10.1016/j.matchemphys.2021.124457
H. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanops. ACS Appl. Mater. Interfaces 9, 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796
L. Huang, C. Chen, X. Huang, S. Ruan, Y.-J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. B Eng. 164, 583–589 (2019). https://doi.org/10.1016/j.compositesb.2019.01.081
X. Zhang, J. Qiao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces 11, 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang et al., Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/c5nr03176a
J. Yu, J. Yu, T. Ying, X. Liu, X. Zhang et al., Zeolitic imidazolate framework derived Fe-N/C for efficient microwave absorbers. J. Alloys Compd. 838, 155629 (2020). https://doi.org/10.1016/j.jallcom.2020.155629
J. Yan, Y. Huang, Y. Yan, X. Zhao, P. Liu, The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties. Compos. Part A Appl. Sci. Manuf. 139, 106107 (2020). https://doi.org/10.1016/j.compositesa.2020.106107
H. Zhao, Y. Cheng, J. Ma, Y. Zhang, G. Ji et al., A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 339, 432–441 (2018). https://doi.org/10.1016/j.cej.2018.01.151
M. Yang, Y. Yuan, Y. Li, X. Sun, S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
K. Zhang, A. Xie, M. Sun, W. Jiang, F. Wu et al., Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys. 199, 340–347 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.026
S. Lu, Y. Meng, H. Wang, F. Wang, J. Yuan et al., Great enhancement of electromagnetic wave absorption of MWCNTs@carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazole framework. Appl. Surf. Sci. 481, 99–107 (2019). https://doi.org/10.1016/j.apsusc.2019.03.018
J. Fang, Y. Ma, Z. Zhang, B. Yang, Y. Li et al., Metal-organic framework-derived carbon/carbon nanotubes mediate impedance matching for strong microwave absorption at fairly low temperatures. ACS Appl. Mater. Interfaces 13, 33496–33504 (2021). https://doi.org/10.1021/acsami.1c07792
K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9, 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
B. Quan, X. Liang, X. Zhang, G. Xu, G. Ji et al., Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 10, 41535–41543 (2018). https://doi.org/10.1021/acsami.8b16088
X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces 11, 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754
L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang et al., Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanops. J. Mater. Chem. A 2, 14940–14946 (2014). https://doi.org/10.1039/c4ta02815e
A. Nazir, H. Yu, L. Wang, M. Haroon, R.S. Ullah et al., Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53, 8699–8719 (2018). https://doi.org/10.1007/s10853-018-2122-x
A. Nazir, H. Yu, L. Wang, Y. He, Q. Chen et al., Preparation and properties of ferrocene-based polyfuran/carbon material composites for electromagnetic interference shielding. J. Electron. Mater. 49, 5647–5656 (2020). https://doi.org/10.1007/s11664-020-08314-4
L. Lyu, S. Zheng, F. Wang, Y. Liu, J. Liu, High-performance microwave absorption of MOF-derived Co3O4@N-doped carbon anchored on carbon foam. J. Colloid Interface Sci. 602, 197–206 (2021). https://doi.org/10.1016/j.jcis.2021.05.184
J. Zhang, Z. Yan, X. Liu, Y. Zhang, H. Zou et al., Conductive skeleton-heterostructure composites based on chrome shavings for enhanced electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 53076–53087 (2020). https://doi.org/10.1021/acsami.0c14300
X. Sun, M. Yang, S. Yang, S. Wang, W. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15, 1902974 (2019). https://doi.org/10.1002/smll.201902974
S. Wang, Q. Li, K. Hu, S. Wang, Q. Liu et al., A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption. Appl. Surf. Sci. 544, 148891 (2021). https://doi.org/10.1016/j.apsusc.2020.148891
Y. Zhou, W. Zhou, C. Ni, S. Yan, L. Yu et al., “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents. Chem. Eng. J. 430, 132621 (2022). https://doi.org/10.1016/j.cej.2021.132621
C. Ji, Y. Liu, J. Xu, Y. Li, Y. Shang et al., Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree. J. Alloys Compd. 890, 161834 (2022). https://doi.org/10.1016/j.jallcom.2021.161834
X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408–7418 (2017). https://doi.org/10.1039/c7nr02628e
Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10, 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
Y. Fei, M. Liang, T. Zhou, Y. Chen, H. Zou, Unique carbon nanofiber@Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon 167, 575–584 (2020). https://doi.org/10.1016/j.carbon.2020.06.013
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
M. Yuan, M. Zhou, H. Fu, Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band. Compos. Part B-Eng. 224, 109178 (2021). https://doi.org/10.1016/j.compositesb.2021.109178
X. Zhang, H. Wang, R. Hu, C. Huang, W. Zhong et al., Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanops. Appl. Surf. Sci. 484, 383–391 (2019). https://doi.org/10.1016/j.apsusc.2019.03.264
X. Han, Y. Huang, L. Ding, Y. Song, T. Li et al., Ti3C2Tx MXene nanosheet metal-organic framework composites for microwave absorption. ACS Appl. Nano Mater. 4, 691–701 (2021). https://doi.org/10.1021/acsanm.0c02983
B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-Like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
X. Zhu, H. Qiu, P. Chen, G. Chen, W. Min, Graphitic carbon nitride (g-C3N4) in situ polymerization to synthesize MOF-Co@CNTs as efficient electromagnetic microwave absorption materials. Carbon 176, 530–539 (2021). https://doi.org/10.1016/j.carbon.2021.02.044
H. Jin, J. Wang, S. Yang, ZIF-67-derived micron-sized cobalt-doped porous carbon-based microwave absorbers with g-C3N4 as template. Ceram. Int. 47, 11506–11513 (2021). https://doi.org/10.1016/j.ceramint.2020.12.278
L. Yan, X. Wang, S. Zhao, Y. Li, Z. Gao et al., Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl. Mater. Interfaces 9, 11116–11125 (2017). https://doi.org/10.1021/acsami.6b16864
A. Nazir, H. Yu, L. Wang, J. Liu, S. Li et al., Electromagnetic interference shielding effectiveness of ferrocene-based polyimidazole/carbon material composites. Polym. Compos. 41, 2068–2081 (2020). https://doi.org/10.1002/pc.25521
X. Sun, X. Lv, M. Sui, X. Weng, X. Li et al., Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: a lightweight material with excellent electromagnetic absorption. Materials 11, 781 (2018). https://doi.org/10.3390/ma11050781
J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 380, 122625 (2020). https://doi.org/10.1016/j.cej.2019.122625
S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14, 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanops suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021). https://doi.org/10.1007/s40820-020-00572-5
X. Zhang, Z. Wang, L. Xu, K. Zuraiqi, T. Daeneke et al., Liquid metal derived MOF functionalized nanoarrays with ultra-wideband electromagnetic absorption. J. Colloid Interface Sci. 606, 1852–1865 (2022). https://doi.org/10.1016/j.jcis.2021.08.143
H. Wang, X. Sun, S. Yang, P. Zhao, X. Zhang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
L. Wang, X. Li, X. Shi, M. Huang, X. Li et al., Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 13, 2136–2156 (2021). https://doi.org/10.1039/d0nr06267g
M. Huang, L. Wang, W. You, R. Che, Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 17, 2101416 (2021). https://doi.org/10.1002/smll.202101416
W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO@N-doped porous carbon/Co3ZnC core-shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018). https://doi.org/10.1016/j.cej.2018.02.078
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core-shell FeCo@carbon nanops encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
S. Wang, S. Peng, S. Zhong, W. Jiang, Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@Air@C hierarchical heterostructures for efficient electromagnetic wave absorption. J. Mater. Chem. C 6, 9465–9474 (2018). https://doi.org/10.1039/c8tc03260b
P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
G. Liu, C. Wu, H. Lei, H. Xin, X. Zhang et al., Anisotropy engineering of metal organic framework derivatives for effective electromagnetic wave absorption. Carbon 181, 48–57 (2021). https://doi.org/10.1016/j.carbon.2021.05.015
Z. Gao, Y. Song, S. Zhang, D. Lan, Z. Zhao et al., Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. J. Colloid Interface Sci. 600, 288–298 (2021). https://doi.org/10.1016/j.jcis.2021.05.009
J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying et al., Wood-based straightway channel structure for high performance microwave absorption. Carbon 124, 492–498 (2017). https://doi.org/10.1016/j.carbon.2017.07.088
H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon ps for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
J. Liu, H. Liang, H. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 130, 105760 (2020). https://doi.org/10.1016/j.compositesa.2019.105760
Z. Zhao, K. Kou, L. Zhang, H. Wu, Optimal p distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption. Carbon 186, 323–332 (2022). https://doi.org/10.1016/j.carbon.2021.10.052