Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review
Corresponding Author: Xiangming He
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 42
Abstract
Solid-state electrolytes (SSEs) are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density. Among them, polymer solid-state electrolytes (PSEs) are competitive candidates for replacing commercial liquid electrolytes due to their flexibility, shape versatility and easy machinability. Despite the rapid development of PSEs, their practical application still faces obstacles including poor ionic conductivity, narrow electrochemical stable window and inferior mechanical strength. Polymer/inorganic composite electrolytes (PIEs) formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes (ISEs), exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics. Some PIEs are highly compatible with high-voltage cathode and lithium metal anode, which offer desirable access to obtaining lithium metal batteries with high energy density. This review elucidates the current issues and recent advances in PIEs. The performance of PIEs was remarkably influenced by the characteristics of the fillers including type, content, morphology, arrangement and surface groups. We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs. Finally, the obstacles and opportunities for creating high-performance PIEs are outlined. This review aims to provide some theoretical guidance and direction for the development of PIEs.
Highlights:
1 The current issues and recent advances in polymer/inorganic composite electrolytes are reviewed.
2 The molecular interaction between different components in the composite environment is highlighted for designing high-performance polymer/inorganic composite electrolytes.
3 Inorganic filler properties that affect polymer/inorganic composite electrolyte performance are pointed out.
4 Future research directions for polymer/inorganic composite electrolytes compatible with high-voltage lithium metal batteries are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- Y. Wang, Y. Xue, C. Zhang, Electrochemical product engineering towards sustainable recovery and manufacturing of critical metals. Green Chem. 23, 6301–6321 (2021). https://doi.org/10.1039/D1GC01462E
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
- W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017). https://doi.org/10.1039/C6CS00875E
- J. Hou, L. Lu, L. Wang, A. Ohma, D. Ren et al., Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11, 5100 (2020). https://doi.org/10.1038/s41467-020-18868-w
- Y. He, X. Ren, Y. Xu, M. Engelhard, X. Li et al., Origin of lithium whisker formation and growth under stress. Nat. Nanotechnol. 14, 1042–1047 (2019). https://doi.org/10.1038/s41565-019-0558-z
- F. Shi, A. Pei, A. Vailionis, J. Xie, B. Liu et al., Strong texturing of lithium metal in batteries. Proc. Nat. Acad. Sci. 114(46), 12138–12143 (2017). https://doi.org/10.1073/pnas.1708224114
- W. Wu, Y. Bo, D. Li, Y. Liang, J. Zhang et al., Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Lett. 14, 44 (2022). https://doi.org/10.1007/s40820-021-00780-7
- J. Langdon, A. Manthiram, Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Adv. Mater. 34(41), 2205188 (2022). https://doi.org/10.1002/adma.202205188
- S.A. Freunberger, Y. Chen, N.E. Drewett, L.J. Hardwick, F. Bardé et al., The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50(37), 8609–8613 (2011). https://doi.org/10.1002/anie.201102357
- J. Betz, J.P. Brinkmann, R. Nölle, C. Lürenbaum, M. Kolek et al., Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9(21), 1900574 (2019). https://doi.org/10.1002/aenm.201900574
- J. Leng, H. Liang, H. Wang, Z. Xiao, S. Wang et al., A facile and low-cost wet-chemistry artificial interface engineering for garnet-based solid-state Li metal batteries. Nano Energy 101, 107603 (2022). https://doi.org/10.1016/j.nanoen.2022.107603
- M. Falco, S. Ferrari, G.B. Appetecchi, C. Gerbaldi, Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries. Mol. Syst. Des. Eng. 4, 850–871 (2019). https://doi.org/10.1039/C9ME00050J
- X. Fu, D. Yu, J. Zhou, S. Li, X. Gao et al., Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm 18, 4236–4258 (2016). https://doi.org/10.1039/C6CE00171H
- D.K. Maurya, R. Dhanusuraman, Z. Guo, S. Angaiah, Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Adv. Compos. Hybrid Mater. 5, 2651–2674 (2022). https://doi.org/10.1007/s42114-021-00412-z
- A. Gurung, J. Pokharel, A. Baniya, R. Pathak, K. Chen et al., A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustain. Energy Fuels 3, 3279–3309 (2019). https://doi.org/10.1039/C9SE00549H
- T. Zhang, W. He, W. Zhang, T. Wang, P. Li et al., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem. Sci. 11, 8686–8707 (2020). https://doi.org/10.1039/D0SC03121F
- S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11(2), 2000802 (2021). https://doi.org/10.1002/aenm.202000802
- S. Ferrari, J.R. Nair, Y. Zhou, C. Wan, 10: polymer nanocomposites for lithium battery applications, in Polymer-Based Nanocomposites for Energy and Environmental Applications. ed. by M. Jawaid, M.M. Khan (Elsevier, Amsterdam, 2018), pp.283–313. https://doi.org/10.1016/B978-0-08-102262-7.00010-6
- P. Arunachalam, 6: polymer-based nanocomposites for energy and environmental applications, in Polymer-Based Nanocomposites for Energy and Environmental Applications. ed. by M. Jawaid, M.M. Khan (Elsevier, Amsterdam, 2018), pp.185–203. https://doi.org/10.1016/B978-0-08-102262-7.00006-4
- S.J. Tan, X.X. Zeng, Q. Ma, X.W. Wu, Y.G. Guo, Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev. 1, 113–138 (2018). https://doi.org/10.1007/s41918-018-0011-2
- L.Z. Fan, H. He, C.W. Nan, Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
- Z. Chang, H. Yang, X. Zhu, P. He, H. Zhou, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 13, 1510 (2022). https://doi.org/10.1038/s41467-022-29118-6
- J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 15, 2753–2775 (2022). https://doi.org/10.1039/D1EE03466A
- Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015). https://doi.org/10.1039/C5TA03471J
- A. Bielefeld, D.A. Weber, J. Janek, Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries. ACS Appl. Mater. Interfaces 12(11), 12821–12833 (2020). https://doi.org/10.1021/acsami.9b22788
- Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49(23), 8790–8839 (2020). https://doi.org/10.1039/D0CS00305K
- R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 3(6), 487–516 (2016). https://doi.org/10.1039/C6MH00218H
- K. Nie, S. Wu, J. Wang, X. Sun, Z. Yan et al., Reaction mechanisms of Ta-substituted cubic Li7La3Zr2O12 with solvents during storage. ACS Appl. Mater. Interfaces 13(32), 38384–38393 (2021). https://doi.org/10.1021/acsami.1c10373
- J.F. Wu, B.W. Pu, D. Wang, S.Q. Shi, N. Zhao et al., In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl. Mater. Interfaces 11(1), 898–905 (2019). https://doi.org/10.1021/acsami.8b18356
- Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
- R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-sate batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120(14), 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
- P. Fan, H. Liu, V. Marosz, N.T. Samuels, S.L. Suib et al., High performance composite polymer electrolytes for lithium-ion batteries. Adv. Funct. Mater. 31(23), 2101380 (2021). https://doi.org/10.1002/adfm.202101380
- Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma et al., Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5(9), 1402073 (2015). https://doi.org/10.1002/aenm.201402073
- P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu et al., Review on polymer-based composite electrolytes for lithium batteries. Front. Chem. 7, 522 (2019). https://doi.org/10.3389/fchem.2019.00522
- H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu et al., Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 33, 188–215 (2020). https://doi.org/10.1016/j.ensm.2020.08.014
- J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
- J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14, 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
- C.F.N. Marchiori, R.P. Carvalho, M. Ebadi, D. Brandell, C.M. Araujo, Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts. Chem. Mater. 32(17), 7237–7246 (2020). https://doi.org/10.1021/acs.chemmater.0c01489
- K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki et al., Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 133(33), 13121–13129 (2011). https://doi.org/10.1021/ja203983r
- K. Nie, X. Wang, J. Qiu, Y. Wang, Q. Yang et al., Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett. 5(3), 826–832 (2020). https://doi.org/10.1021/acsenergylett.9b02739
- S. Kaboli, H. Demers, A. Paolella, A. Darwiche, M. Dontigny et al., Behavior of solid electrolyte in Li-polymer battery with NMC cathode via in-situ scanning electron microscopy. Nano Lett. 20(3), 1607–1613 (2020). https://doi.org/10.1021/acs.nanolett.9b04452
- L. Yang, J. Zhang, W. Xue, J. Li, R. Chen et al., Anomalous thermal decomposition behavior of polycrystalline LiNi0.8Mn0.1Co0.1O2 in PEO-based solid polymer electrolyte. Adv. Funct. Mater. 32(23), 2200096 (2022). https://doi.org/10.1002/adfm.202200096
- M.A.C. Martínez, N. Boaretto, A.J. Naylor, F. Alcaide, G.D. Salian et al., Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv. Energy Mater. 12(32), 2201264 (2022). https://doi.org/10.1002/aenm.202201264
- Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31(28), 2101523 (2021). https://doi.org/10.1002/adfm.202101523
- F. Chen, D. Yang, W. Zha, B. Zhu, Y. Zhang et al., Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 258, 1106–1114 (2017). https://doi.org/10.1016/j.electacta.2017.11.164
- F. He, Z. Hu, W. Tang, A. Wang, B. Wen et al., Vertically heterostructured solid electrolytes for lithium metal batteries. Adv. Funct. Mater. 32(25), 2201465 (2022). https://doi.org/10.1002/adfm.202201465
- T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
- H. Liang, L. Wang, L. Sheng, H. Xu, Y. Song et al., Focus on the electroplating chemistry of Li ions in nonaqueous liquid electrolytes: toward stable lithium metal batteries. Electrochem. Energy Rev. 5, 23 (2022). https://doi.org/10.1007/s41918-022-00158-2
- S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14, 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
- J. Kang, N. Deng, Y. Liu, Z. Yan, L. Gao et al., Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Mater. 52, 130–160 (2022). https://doi.org/10.1016/j.ensm.2022.07.037
- Y. Wang, Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries. Nano-Micro Lett. 13, 210 (2021). https://doi.org/10.1007/s40820-021-00731-2
- K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. MacDowell, N.P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014). https://doi.org/10.1038/nmat3793
- J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42(12), 7355–7367 (1990). https://doi.org/10.1103/PhysRevA.42.7355
- R. Messer, F. Noack, Nuclear magnetic relaxation by self-diffusion in solid lithium: T1-frequency dependence. Appl. Phys. 6, 79–88 (1975). https://doi.org/10.1007/BF00883553
- C. Fang, B. Lu, G. Pawar, M. Zhang, D. Cheng et al., Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6(10), 987–994 (2021). https://doi.org/10.1038/s41560-021-00917-3
- C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152(2), A396–A404 (2005). https://doi.org/10.1149/1.1850854
- Z. Ahmad, V. Viswanathan, Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119(5), 056003 (2017). https://doi.org/10.1103/PhysRevLett.119.056003
- C. Fu, V. Venturi, J. Kim, Z. Ahmad, A.W. Ells et al., Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020). https://doi.org/10.1038/s41563-020-0655-2
- X. Ke, Y. Wang, G. Ren, C. Yuan, Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater. 26, 313–324 (2020). https://doi.org/10.1016/j.ensm.2019.08.029
- X. Yu, A. Manthiram, Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes. Acc. Chem. Res. 50(11), 2653–2660 (2017). https://doi.org/10.1021/acs.accounts.7b00460
- M. Keller, A. Varzi, S. Passerini, Hybrid electrolytes for lithium metal batteries. J. Power Sources 392, 206–225 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.099
- L. Zhou, D.L. Danilov, F. Qiao, J. Wang, H. Li et al., Sulfur reduction reaction in lithium-sulfur batteries: mechanisms, catalysts, and characterization. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202202094
- H. Zhang, U. Oteo, X. Judez, G.G. Eshetu, M. Martinez-Ibañez et al., Designer anion enabling solid-state lithium-sulfur batteries. Joule 3(7), 1689–1702 (2019). https://doi.org/10.1016/j.joule.2019.05.003
- Y. Liu, H. Liu, Y. Lin, Y. Zhao, H. Yuan et al., Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery. Adv. Funct. Mater. 31(41), 2104863 (2021). https://doi.org/10.1002/adfm.202104863
- X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17(5), 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
- S. Li, S.Q. Zhang, L. Shen, Q. Liu, J.B. Ma et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7(5), 1903088 (2020). https://doi.org/10.1002/advs.201903088
- J.R. Harding, C.V. Amanchukwu, P.T. Hammond, Y. Shao-Horn, Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries. J. Phys. Chem. C 119(13), 6947–6955 (2015). https://doi.org/10.1021/jp511794g
- E. Nasybulin, W. Xu, M.H. Engelhard, Z. Nie, X.S. Li et al., Stability of polymer binders in Li–O2 batteries. J. Power Sources 243, 899–907 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.097
- B. Kumar, L.G. Scanlon, Polymer-ceramic composite electrolytes. J. Power Sources 52(2), 261–268 (1994). https://doi.org/10.1016/0378-7753(94)02147-3
- J. Yi, S. Guo, P. He, H. Zhou, Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ. Sci. 10(4), 860–884 (2017). https://doi.org/10.1039/C6EE03499C
- D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(11), 589 (1973). https://doi.org/10.1016/0032-3861(73)90146-8
- M. Armand, Polymer solid electrolytes: an overview. Solid State Ion. 9–10, 745–754 (1983). https://doi.org/10.1016/0167-2738(83)90083-8
- M. Armand, The history of polymer electrolytes. Solid State Ion. 69(3–4), 309–319 (1994). https://doi.org/10.1016/0167-2738(94)90419-7
- H. Yue, J. Li, Q. Wang, C. Li, J. Zhang et al., Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustain. Chem. Eng. 6(1), 268–274 (2018). https://doi.org/10.1021/acssuschemeng.7b02401
- C.Y. Hsu, R.J. Liu, C.H. Hsu, P.L. Kuo, High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery. RSC Adv. 6(22), 18082–18088 (2016). https://doi.org/10.1039/C5RA26345J
- N.K. Jyothi, K.K. Venkataratnam, P.N. Murty, K.V. Kumar, Preparation and characterization of PAN-KI complexed gel polymer electrolytes for solid-state battery applications. Bull. Mater. Sci. 39(4), 1047–1055 (2016). https://doi.org/10.1007/s12034-016-1241-8
- Z. Xiao, T. Long, L. Song, Y. Zheng, C. Wang, Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. Ionics 28, 15–26 (2022). https://doi.org/10.1007/s11581-021-04340-2
- X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53(9), 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
- H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12(39), 2201762 (2022). https://doi.org/10.1002/aenm.202201762
- N. Zhang, J. He, W. Han, Y. Wang, Composite solid electrolyte PEO/SN/LiAlO2 for a solid-state lithium battery. J. Mater. Sci. 54(13), 9603–9612 (2019). https://doi.org/10.1007/s10853-019-03535-3
- N.T.K. Sundaram, A. Subramania, Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim. Acta 52(15), 4987–4993 (2007). https://doi.org/10.1016/j.electacta.2007.01.066
- L. Wang, X. Li, W. Yang, Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries. Electrochim. Acta 55(6), 1895–1899 (2010). https://doi.org/10.1016/j.electacta.2009.11.003
- W. Zhang, J. Nie, F. Li, Z.L. Wang, C. Sun, A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45, 413–419 (2018). https://doi.org/10.1016/j.nanoen.2018.01.028
- B. Tang, Y. Zhao, Z. Wang, S. Chen, Y. Wu et al., Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries. eScience 1(2), 194–202 (2021). https://doi.org/10.1016/j.esci.2021.12.001
- J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanops in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). https://doi.org/10.1016/j.nanoen.2016.09.002
- S. Liu, L. Zhou, J. Han, K. Wen, S. Guan et al., Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte. Adv. Energy Mater. 12(25), 2270105 (2022). https://doi.org/10.1002/aenm.202270105
- S. Sen, E. Trevisanello, E. Niemöller, B.X. Shi, F.J. Simon et al., The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. J. Mater. Chem. A 9(35), 18701–18732 (2021). https://doi.org/10.1039/D1TA02796D
- A.M. Stephan, K.S. Nahm, Review on composite polymer electrolytes for lithium batteries. Polymer 47(16), 5952–5964 (2006). https://doi.org/10.1016/j.polymer.2006.05.069
- D. Xie, M. Zhang, Y. Wu, L. Xiang, Y. Tang, A flexible dual-Ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv. Funct. Mater. 30(5), 1906770 (2020). https://doi.org/10.1002/adfm.201906770
- F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta et al., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 46(16), 2457–2461 (2001). https://doi.org/10.1016/S0013-4686(01)00458-3
- O. Borodin, X. Ren, J. Vatamanu, A.W. Cresce, J. Knap et al., Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50(12), 2886–2894 (2017). https://doi.org/10.1021/acs.accounts.7b00486
- Z. Xu, T. Yang, X. Chu, H. Su, Z. Wang et al., Strong lewis acid-base and weak hydrogen bond synergistically enhancing ionic conductivity of poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-metal battery. ACS Appl. Mater. Interfaces 12(9), 10341–10349 (2020). https://doi.org/10.1021/acsami.9b20128
- J. Yu, C. Wang, S. Li, N. Liu, J. Zhu et al., Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte. Small 15(44), 1902729 (2019). https://doi.org/10.1002/smll.201902729
- W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12), 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
- T. Itoh, Y. Miyamura, Y. Ichikawa, T. Uno, M. Kubo et al., Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J. Power Sources 119–121, 403–408 (2003). https://doi.org/10.1016/S0378-7753(03)00261-1
- H.Y. Sun, Y. Takeda, N. Imanishi, O. Yamamoto, H.J. Sohn, Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J. Electrochem. Soc. 147(7), 2462–2467 (2000). https://doi.org/10.1149/1.1393554
- H. Jamal, F. Khan, H.R. Si, J.H. Kim, Enhanced compatibility of a polymer-based electrolyte with Li-metal for stable and dendrite-free all-solid-state Li-metal batteries. J. Mater. Chem. A 9(48), 27304–27319 (2021). https://doi.org/10.1039/D1TA06886E
- Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng et al., A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Mater. 47, 262–270 (2022). https://doi.org/10.1016/j.ensm.2022.02.014
- H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge et al., Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019). https://doi.org/10.1016/j.ensm.2019.01.007
- Y. Shi, Z. Fan, B. Ding, Z. Li, Q. Lin et al., Atomic-scale Al2O3 modified PEO-based composite polymer electrolyte for durable solid-state Li–S batteries. J. Electroanal. Chem. 881, 114916 (2021). https://doi.org/10.1016/j.jelechem.2020.114916
- B. Liang, S. Tang, Q. Jiang, C. Chen, X. Chen et al., Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim. Acta 169, 334–341 (2015). https://doi.org/10.1016/j.electacta.2015.04.039
- W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan et al., Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid ps PMMA-ZrO2 for lithium ion batteries. J. Power Sources 382, 128–134 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.012
- S. Hua, J.L. Li, M.X. Jing, F. Chen, B.W. Ju et al., Effects of surface lithiated TiO2 nanorods on room-temperature properties of polymer solid electrolytes. Int. J. Energy Res. 44(8), 6452–6462 (2020). https://doi.org/10.1002/er.5379
- C. Li, Y. Huang, C. Chen, X. Feng, Z. Zhang, High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries. Appl. Surf. Sci. 563, 150248 (2021). https://doi.org/10.1016/j.apsusc.2021.150248
- R. Premila, C. Subbu, S. Rajendran, K.S. Kumar, Experimental investigation of nano filler TiO2 doped composite polymer electrolytes for lithium ion batteries. Appl. Surf. Sci. 449, 426–434 (2018). https://doi.org/10.1016/j.apsusc.2017.11.272
- S. Hua, M.X. Jing, C. Han, H. Yang, H. Chen et al., A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int. J. Energy Res. 43(13), 7296–7305 (2019). https://doi.org/10.1002/er.4758
- V. Aravindan, P. Vickraman, Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE). J. Phys. D 40(21), 6754–6759 (2007). https://doi.org/10.1088/0022-3727/40/21/040
- F. Croce, L. Settimi, B. Scrosati, Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem. Commun. 8(2), 364–368 (2006). https://doi.org/10.1016/j.elecom.2005.12.002
- N.T.K. Sundaram, T. Vasudevan, A. Subramania, Synthesis of ZrO2 nanops in microwave hydrolysis of Zr(IV) salt solutions-Ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanops. J. Phys. Chem. Solids 68(2), 264–271 (2007). https://doi.org/10.1016/j.jpcs.2006.11.005
- V. Aravindan, P. Vickraman, T.P. Kumar, ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB. J. Membr. Sci. 305(1–2), 146–151 (2007). https://doi.org/10.1016/j.memsci.2007.07.044
- O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang et al., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 18(5), 3104–3112 (2018). https://doi.org/10.1021/acs.nanolett.8b00659
- Y. Lin, X. Wang, J. Liu, J.D. Miller, Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 31, 478–485 (2017). https://doi.org/10.1016/j.nanoen.2016.11.045
- K. Zhu, Y. Liu, J. Liu, A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Adv. 4(80), 42278–42284 (2014). https://doi.org/10.1039/C4RA06208F
- J.F. Wu, X. Guo, MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 7(6), 2653–2659 (2019). https://doi.org/10.1039/C8TA10124H
- C. Gerbaldi, J.R. Nair, M.A. Kulandainathan, R.S. Kumar, C. Ferrara et al., Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 2(26), 9948–9954 (2014). https://doi.org/10.1039/C4TA01856G
- S. Suriyakumar, S. Gopi, M. Kathiresan, S. Bose, E.B. Gowd et al., Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li–S and Li-metal polymer batteries. Electrochim. Acta 285, 355–364 (2018). https://doi.org/10.1016/j.electacta.2018.08.012
- Y.W. Chen-Yang, Y.T. Chen, H.C. Chen, W.T. Lin, C.H. Tsai, Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery. Polymer 50(13), 2856–2862 (2009). https://doi.org/10.1016/j.polymer.2009.04.023
- M.Y.A. Rahman, A. Ahmad, L.H.C. Ismail, M.M. Salleh, Fabrication and characterization of a solid polymeric electrolyte of PAN-TiO2–LiClO4. J. Appl. Polym. Sci. 115(4), 2144–2148 (2010). https://doi.org/10.1002/app.31299
- W. Jia, Z. Li, Z. Wu, L. Wang, B. Wu et al., Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ion. 315, 7–13 (2018). https://doi.org/10.1016/j.ssi.2017.11.026
- L. TianKhoon, N.H. Hassan, M.Y.A. Rahman, R. Vedarajan, N. Matsumi et al., One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ion. 276, 72–79 (2015). https://doi.org/10.1016/j.ssi.2015.03.034
- S. Wang, J. Hu, X. Gui, S. Lin, Y. Tu, A promising PMMA/m-MgO all-solid-state electrolyte for lithium-oxygen batteries. J. Electrochem. Soc. 168(2), 020514 (2021). https://doi.org/10.1149/1945-7111/abdfa6
- S. Ramesh, S.C. Lu, Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifluoromethanesulfonyl)imide based polymer electrolytes. J. Power Sources 185(2), 1439–1443 (2008). https://doi.org/10.1016/j.jpowsour.2008.07.055
- S. Ramesh, L.C. Wen, Investigation on the effects of addition of SiO2 nanops on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA-LiCF3SO3–SiO2. Ionics 16(3), 255–262 (2010). https://doi.org/10.1007/s11581-009-0388-3
- J.E. Weston, B.C.H. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ion. 7(1), 75–79 (1982). https://doi.org/10.1016/0167-2738(82)90072-8
- B.R. Cai, J.H. Cao, W.H. Liang, L.Y. Yang, T. Liang et al., Ultraviolet-cured Al2O3-polyethylene terephthalate/polyvinylidene fluoride composite separator with asymmetric design and its performance in lithium batteries. ACS Appl. Energy Mater. 4(5), 5293–5303 (2021). https://doi.org/10.1021/acsaem.1c00804
- S.J. Kwon, B.M. Jung, T. Kim, J. Byun, J. Lee et al., Influence of Al2O3 nanowires on ion transport in nanocomposite solid polymer electrolytes. Macromolecules 51(24), 10194–10201 (2018). https://doi.org/10.1021/acs.macromol.8b01603
- C.C. Tambelli, A.C. Bloise, A.V. Rosário, E.C. Pereira, C.J. Magon et al., Characterisation of PEO- Al2O3 composite polymer electrolytes. Electrochim. Acta 47(11), 1677–1682 (2002). https://doi.org/10.1016/S0013-4686(01)00900-8
- W. Wieczorek, P. Lipka, G. Żukowska, H. Wyciślik, Ionic interactions in polymeric electrolytes based on low molecular weight poly(ethylene glycol)s. J. Phys. Chem. B 102(36), 6968–6974 (1998). https://doi.org/10.1021/jp981397k
- Z. Wang, X. Huang, L. Chen, Understanding of effects of nano-Al2O3 ps on ionic conductivity of composite polymer electrolytes. Electrochem. Solid-State Lett. 6(11), E40–E44 (2003). https://doi.org/10.1149/1.1615352
- Y.L. Ni’mah, Z.H. Muhaiminah, S. Suprapto, Increase of solid polymer electrolyte ionic conductivity using nano-SiO2 synthesized from sugarcane bagasse as filler. Polymers 13(23), 4240 (2021). https://doi.org/10.3390/polym13234240
- Y.L. Yap, A.H. You, L.L. Teo, Preparation and characterization studies of PMMA-PEO-blend solid polymer electrolytes with SiO2 filler and plasticizer for lithium ion battery. Ionics 25(7), 3087–3098 (2019). https://doi.org/10.1007/s11581-019-02842-8
- Y. Hu, Y. Zhong, L. Qi, H. Wang, Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries. Nano Res. 13(12), 3230–3234 (2020). https://doi.org/10.1007/s12274-020-2993-4
- P. Pal, A. Ghosh, Influence of TiO2 nano-ps on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 260, 157–167 (2018). https://doi.org/10.1016/j.electacta.2017.11.070
- F. Pignanelli, M. Romero, J. Castiglioni, R. Faccio, A.W. Mombrú, Novel synergistic in situ synthesis of lithium-ion poly(ethylene citrate)-TiO2 nanocomposites as promising fluorine-free solid polymer electrolytes for lithium batteries. J. Phys. Chem. Solids 135, 109082 (2019). https://doi.org/10.1016/j.jpcs.2019.109082
- C. Chavan, R.F. Bhajantri, V. Cyriac, Ismayil, S. Bulla et al., Exploration of free volume behavior and ionic conductivity of PVA: x (x = 0, Y2O3, ZrO2, YSZ) ion-oxide conducting polymer ceramic composites. J. Non-Cryst. Solids 590, 121696 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121696
- H.M. Xu, M.X. Jing, J. Li, Z.H. Huang, T.F. Wang et al., Safety-enhanced flexible polypropylene oxide-ZrO2 composite solid electrolyte film with high room-temperature ionic conductivity. ACS Sustain. Chem. Eng. 9(33), 11118–11126 (2021). https://doi.org/10.1021/acssuschemeng.1c02886
- T. Itoh, Y. Ichikawa, T. Uno, M. Kubo, O. Yamamoto, Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2. Solid State Ion. 156(3), 393–399 (2003). https://doi.org/10.1016/S0167-2738(02)00682-3
- B.K. Park, H. Kim, K.S. Kim, H.S. Kim, S.H. Han et al., Interface design considering intrinsic properties of dielectric materials to minimize space-charge layer effect between oxide cathode and sulfide solid electrolyte in all-solid-state batteries. Adv. Energy Mater. 12(37), 2201208 (2022). https://doi.org/10.1002/aenm.202201208
- Y.F. Huang, T. Gu, G. Rui, P. Shi, W. Fu et al., A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14(11), 6021–6029 (2021). https://doi.org/10.1039/D1EE02663A
- Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12, 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
- H. Jamal, F. Khan, S. Hyun, S.W. Min, J.H. Kim, Enhancement of the ionic conductivity of a composite polymer electrolyte via surface functionalization of SSZ-13 zeolite for all-solid-state Li-metal batteries. J. Mater. Chem. A 9(7), 4126–4137 (2021). https://doi.org/10.1039/D0TA11218F
- G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou et al., Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery. Nano-Micro Lett. 13, 105 (2021). https://doi.org/10.1007/s40820-021-00628-0
- J.C. Barbosa, R. Gonçalves, C.M. Costa, V.Z. Bermudez, A. Fidalgo-Marijuan et al., Metal-organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Mater. Adv. 2(12), 3790–3805 (2021). https://doi.org/10.1039/D1MA00244A
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- S. Bai, Y. Sun, J. Yi, Y. He, Y. Qiao et al., High-power Li-metal anode enabled by metal-organic framework modified electrolyte. Joule 2(10), 2117–2132 (2018). https://doi.org/10.1016/j.joule.2018.07.010
- Z. Wang, S. Wang, A. Wang, X. Liu, J. Chen et al., Covalently linked metal-organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. J. Mater. Chem. A 6(35), 17227–17234 (2018). https://doi.org/10.1039/C8TA05642K
- N. Angulakshmi, K.S. Nahm, J.R. Nair, C. Gerbaldi, R. Bongiovanni et al., Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochim. Acta 90, 179–185 (2013). https://doi.org/10.1016/j.electacta.2012.12.003
- A.M. Stephan, T.P. Kumar, S. Thomas, P.S. Thomas, R. Bongiovanni et al., Calcium phosphate incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. I. Ionic conductivity and positron annihilation lifetime spectroscopy studies. J. Appl. Polym. Sci. 124(4), 3245–3254 (2012). https://doi.org/10.1002/app.35219
- R. Prasanth, N. Shubha, H.H. Hng, M. Srinivasan, Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur. Polym. J. 49(2), 307–318 (2013). https://doi.org/10.1016/j.eurpolymj.2012.10.033
- M. Deka, A. Kumar, Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries. J. Power Sources 196(3), 1358–1364 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.035
- J.W. Gilman, C.L. Jackson, A.B. Morgan, R. Harris, E. Manias et al., Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 12(7), 1866–1873 (2000). https://doi.org/10.1021/cm0001760
- X. Yu, J. Ma, C. Mou, G. Cui, Percolation structure design of organic-inorganic composite electrolyte with high lithium-ion conductivity. Acta Phys. Chim. Sin. 38(3), 1912061 (2022). https://doi.org/10.3866/PKU.WHXB201912061
- L. Chen, Y. Li, S.P. Li, L.Z. Fan, C.W. Nan et al., PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46, 176–184 (2018). https://doi.org/10.1016/j.nanoen.2017.12.037
- J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
- J. Zheng, Y.Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10(4), 4113–4120 (2018). https://doi.org/10.1021/acsami.7b17301
- T. Yang, J. Zheng, Q. Cheng, Y.Y. Hu, C.K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9(26), 21773–21780 (2017). https://doi.org/10.1021/acsami.7b03806
- Z. Li, H.M. Huang, J.K. Zhu, J.F. Wu, H. Yang et al., Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl. Mater. Interfaces 11(1), 784–791 (2019). https://doi.org/10.1021/acsami.8b17279
- V. Thangadurai, H. Kaack, W.J.F. Weppner, Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86(3), 437–440 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
- V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43(13), 4714–4727 (2014). https://doi.org/10.1039/C4CS00020J
- W. Lu, M. Xue, C. Zhang, Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries. Energy Storage Mater. 39, 108–129 (2021). https://doi.org/10.1016/j.ensm.2021.04.016
- X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139(39), 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
- Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi et al., Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29(1), 1805301 (2019). https://doi.org/10.1002/adfm.201805301
- J. Sun, Y. Li, Q. Zhang, C. Hou, Q. Shi et al., A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem. Eng. J. 375, 121922 (2019). https://doi.org/10.1016/j.cej.2019.121922
- M. Wu, D. Liu, D. Qu, Z. Xie, J. Li et al., 3D coral-like LLZO/PVDF composite electrolytes with enhanced ionic conductivity and mechanical flexibility for solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(47), 52652–52659 (2020). https://doi.org/10.1021/acsami.0c15004
- K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. 113(26), 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
- Y. Zhao, J. Yan, W. Cai, Y. Lai, J. Song et al., Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater. 23, 306–313 (2019). https://doi.org/10.1016/j.ensm.2019.04.043
- D.H. Kim, M.Y. Kim, S.H. Yang, H.M. Ryu, H.Y. Jung et al., Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. J. Ind. Eng. Chem. 71, 445–451 (2019). https://doi.org/10.1016/j.jiec.2018.12.001
- J. Zagórski, J.M.L. del Amo, M.J. Cordill, F. Aguesse, L. Buannic et al., Garnet-polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl. Energy Mater. 2(3), 1734–1746 (2019). https://doi.org/10.1021/acsaem.8b01850
- C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu et al., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. 114(42), 11069–11074 (2017). https://doi.org/10.1073/pnas.1708489114
- J. Zhang, X. Zang, H. Wen, T. Dong, J. Chai et al., High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5(10), 4940–4948 (2017). https://doi.org/10.1039/C6TA10066J
- J.H. Choi, C.H. Lee, J.H. Yu, C.H. Doh, S.M. Lee, Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 274, 458–463 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.078
- R. Li, S. Guo, L. Yu, L. Wang, D. Wu et al., Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6(10), 1900200 (2019). https://doi.org/10.1002/admi.201900200
- M. Falco, L. Castro, J.R. Nair, F. Bella, F. Bardé et al., UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl. Energy Mater. 2(3), 1600–1607 (2019). https://doi.org/10.1021/acsaem.8b02185
- J. Zheng, M. Tang, Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55(40), 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
- H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G.Y. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137(4), 1023–1027 (1990). https://doi.org/10.1149/1.2086597
- E. Dashjav, Q. Ma, Q. Xu, C.L. Tsai, M. Giarola et al., The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ion. 321, 83–90 (2018). https://doi.org/10.1016/j.ssi.2018.04.010
- Q. Liu, Q. Yu, S. Li, S. Wang, L. Zhang et al., Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification. Energy Storage Mater. 25, 613–620 (2020). https://doi.org/10.1016/j.ensm.2019.09.023
- P. Hartmann, T. Leichtweiss, M.R. Busche, M. Schneider, M. Reich et al., Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013). https://doi.org/10.1021/jp4051275
- X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanop/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051
- A. Li, X. Liao, H. Zhang, L. Shi, P. Wang et al., Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32(2), 1905517 (2020). https://doi.org/10.1002/adma.201905517
- Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
- G. Wang, H. Liu, Y. Liang, C. Wang, L.Z. Fan, Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. Energy Storage Mater. 45, 1212–1219 (2022). https://doi.org/10.1016/j.ensm.2021.11.021
- Q. Guo, Y. Han, H. Wang, S. Xiong, Y. Li et al., New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries. ACS Appl. Mater. Interfaces 9(48), 41837–41844 (2017). https://doi.org/10.1021/acsami.7b12092
- J. Lee, T. Howell, M. Rottmayer, J. Boeckl, H. Huang, Free-standing PEO/LiTFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries. J. Electrochem. Soc. 166(2), A416–A422 (2019). https://doi.org/10.1149/2.1321902jes
- G. Piana, F. Bella, F. Geobaldo, G. Meligrana, C. Gerbaldi, PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J. Energy Storage 26, 100947 (2019). https://doi.org/10.1016/j.est.2019.100947
- J. Cheng, G. Hou, Q. Sun, Z. Liang, X. Xu et al., Cold-pressing PEO/LAGP composite electrolyte for integrated all-solid-state lithium metal battery. Solid State Ion. 345, 115156 (2020). https://doi.org/10.1016/j.ssi.2019.115156
- C. Wang, Y. Yang, X. Liu, H. Zhong, H. Xu et al., Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9(15), 13694–13702 (2017). https://doi.org/10.1021/acsami.7b00336
- Z.H. Huang, J. Li, L.X. Li, H.M. Xu, C. Han et al., Boosting lithium-ion transport capability of LAGP/PPO composite solid electrolyte via component regulation from ‘ceramics-in-polymer’ to ‘polymer-in-ceramics.’ Ceram. Int. 48(18), 25949–25957 (2022). https://doi.org/10.1016/j.ceramint.2022.05.274
- L. Wang, S. Hu, J. Su, T. Huang, A. Yu, Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 11(45), 42715–42721 (2019). https://doi.org/10.1021/acsami.9b12112
- H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17(5), 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
- Y. Li, H. Wang, Composite solid electrolytes with NASICON-type LATP and PVdF-HFP for solid-state lithium batteries. Ind. Eng. Chem. Res. 60(3), 1494–1500 (2021). https://doi.org/10.1021/acs.iecr.0c05075
- S. Bonizzoni, C. Ferrara, V. Berbenni, U. Anselmi-Tamburini, P. Mustarelli et al., NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Phys. Chem. Chem. Phys. 21(11), 6142–6149 (2019). https://doi.org/10.1039/C9CP00405J
- Y. Jin, X. Zong, X. Zhang, C. Liu, D. Li et al., Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J. Power Sources 501, 230027 (2021). https://doi.org/10.1016/j.jpowsour.2021.230027
- Z. Chen, H. Zhang, H. Xu, S. Dong, M. Jiang et al., In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries. Chem. Eng. J. 433, 133589 (2022). https://doi.org/10.1016/j.cej.2021.133589
- Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li et al., Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit. Rev. Solid State 44(4), 265–282 (2019). https://doi.org/10.1080/10408436.2018.1485551
- J. Lu, Y. Li, Perovskite-type Li-ion solid electrolytes: a review. J. Mater. Sci. Mater. 32(8), 9736–9754 (2021). https://doi.org/10.1007/s10854-021-05699-8
- H. Xu, P.H. Chien, J. Shi, Y. Li, N. Wu et al., High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. 116(38), 18815–18821 (2019). https://doi.org/10.1073/pnas.1907507116
- J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57(8), 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
- K. Liu, M. Wu, L. Wei, Y. Lin, T. Zhao, A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries. J. Membr. Sci. 610, 118265 (2020). https://doi.org/10.1016/j.memsci.2020.118265
- W. Liu, N. Liu, J. Sun, P.C. Hsu, Y. Li et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15(4), 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
- W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2(5), 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
- K. Liu, R. Zhang, J. Sun, M. Wu, T. Zhao, Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11(50), 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936
- L. Zhu, P. Zhu, S. Yao, X. Shen, F. Tu, High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery. Int. J. Energy Res. 43(9), 4854–4866 (2019). https://doi.org/10.1002/er.4638
- P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang et al., Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 6(10), 4279–4285 (2018). https://doi.org/10.1039/C7TA10517G
- X. Wang, Y. Zhang, X. Zhang, T. Liu, Y.H. Lin et al., Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10(29), 24791–24798 (2018). https://doi.org/10.1021/acsami.8b06658
- P. Zhu, C. Yan, J. Zhu, J. Zang, Y. Li et al., Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009
- Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora et al., Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31(34), 1901131 (2019). https://doi.org/10.1002/adma.201901131
- J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33(6), 2000751 (2021). https://doi.org/10.1002/adma.202000751
- Y. Su, X. Zhang, C. Du, Y. Luo, J. Chen et al., An all-solid-state battery based on sulfide and PEO composite electrolyte. Small 18(29), 2202069 (2022). https://doi.org/10.1002/smll.202202069
- M. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium-sulfur battery enabled by Thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30(14), 1910123 (2020). https://doi.org/10.1002/adfm.201910123
- Y. Zhang, R. Chen, S. Wang, T. Liu, B. Xu et al., Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater. 25, 145–153 (2020). https://doi.org/10.1016/j.ensm.2019.10.020
- J. Li, H. Chen, Y. Shen, C. Hu, Z. Cheng et al., Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater. 23, 277–283 (2019). https://doi.org/10.1016/j.ensm.2019.05.002
- Y. Li, W. Arnold, A. Thapa, J.B. Jasinski, G. Sumanasekera et al., Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(38), 42653–42659 (2020). https://doi.org/10.1021/acsami.0c08261
- H. Liu, P. He, G. Wang, Y. Liang, C. Wang et al., Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. Chem. Eng. J. 430, 132991 (2022). https://doi.org/10.1016/j.cej.2021.132991
- J. Zheng, P. Wang, H. Liu, Y.Y. Hu, Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2(2), 1452–1459 (2019). https://doi.org/10.1021/acsaem.8b02008
- F.J. Simon, M. Hanauer, F.H. Richter, J. Janek, Interphase formation of PEO20:LiTFSI-Li6PS5Cl composite electrolytes with lithium metal. ACS Appl. Mater. Interfaces 12(10), 11713–11723 (2020). https://doi.org/10.1021/acsami.9b22968
- S. Luo, Z. Wang, A. Fan, X. Liu, H. Wang et al., A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film. J. Power Sources 485, 229325 (2021). https://doi.org/10.1016/j.jpowsour.2020.229325
- C. Lai, C. Shu, W. Li, L. Wang, X. Wang et al., Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte. Nano Lett. 20(11), 8273–8281 (2020). https://doi.org/10.1021/acs.nanolett.0c03395
- J. Yi, D. Zhou, Y. Liang, H. Liu, H. Ni et al., Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. J. Energy Chem. 58, 17–24 (2021). https://doi.org/10.1016/j.jechem.2020.09.038
- X. Li, D. Wang, H. Wang, H. Yan, Z. Gong et al., Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl. Mater. Interfaces 11(25), 22745–22753 (2019). https://doi.org/10.1021/acsami.9b05212
- J. Zhang, C. Zheng, J. Lou, Y. Xia, C. Liang et al., Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: enhanced electrochemical performance, mechanical property and interfacial stability. J. Power Sources 412, 78–85 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.036
- L. Han, M. Lehmann, J. Zhu, T. Liu, Z. Zhou et al., Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries. Front. Energy Res. 8, 202 (2020). https://doi.org/10.3389/fenrg.2020.00202
- F.Q. Liu, W.P. Wang, Y.X. Yin, S.F. Zhang, J.L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4(10), eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
- S. Li, J. Huang, Y. Cui, S. Liu, Z. Chen et al., A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621 (2022). https://doi.org/10.1038/s41565-022-01107-2
- D.H.S. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15(3), 170–180 (2020). https://doi.org/10.1038/s41565-020-0657-x
- K. Kerman, A. Luntz, V. Viswanathan, Y.M. Chiang, Z. Chen, Review-practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164(7), A1731–A1744 (2017). https://doi.org/10.1149/2.1571707jes
- J. Schnell, T. Günther, T. Knoche, C. Vieider, L. Köhler et al., All-solid-state lithium-ion and lithium metal batteries: paving the way to large-scale production. J. Power Sources 382, 160–175 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.062
References
M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
Y. Wang, Y. Xue, C. Zhang, Electrochemical product engineering towards sustainable recovery and manufacturing of critical metals. Green Chem. 23, 6301–6321 (2021). https://doi.org/10.1039/D1GC01462E
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017). https://doi.org/10.1039/C6CS00875E
J. Hou, L. Lu, L. Wang, A. Ohma, D. Ren et al., Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11, 5100 (2020). https://doi.org/10.1038/s41467-020-18868-w
Y. He, X. Ren, Y. Xu, M. Engelhard, X. Li et al., Origin of lithium whisker formation and growth under stress. Nat. Nanotechnol. 14, 1042–1047 (2019). https://doi.org/10.1038/s41565-019-0558-z
F. Shi, A. Pei, A. Vailionis, J. Xie, B. Liu et al., Strong texturing of lithium metal in batteries. Proc. Nat. Acad. Sci. 114(46), 12138–12143 (2017). https://doi.org/10.1073/pnas.1708224114
W. Wu, Y. Bo, D. Li, Y. Liang, J. Zhang et al., Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Lett. 14, 44 (2022). https://doi.org/10.1007/s40820-021-00780-7
J. Langdon, A. Manthiram, Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Adv. Mater. 34(41), 2205188 (2022). https://doi.org/10.1002/adma.202205188
S.A. Freunberger, Y. Chen, N.E. Drewett, L.J. Hardwick, F. Bardé et al., The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50(37), 8609–8613 (2011). https://doi.org/10.1002/anie.201102357
J. Betz, J.P. Brinkmann, R. Nölle, C. Lürenbaum, M. Kolek et al., Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9(21), 1900574 (2019). https://doi.org/10.1002/aenm.201900574
J. Leng, H. Liang, H. Wang, Z. Xiao, S. Wang et al., A facile and low-cost wet-chemistry artificial interface engineering for garnet-based solid-state Li metal batteries. Nano Energy 101, 107603 (2022). https://doi.org/10.1016/j.nanoen.2022.107603
M. Falco, S. Ferrari, G.B. Appetecchi, C. Gerbaldi, Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries. Mol. Syst. Des. Eng. 4, 850–871 (2019). https://doi.org/10.1039/C9ME00050J
X. Fu, D. Yu, J. Zhou, S. Li, X. Gao et al., Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm 18, 4236–4258 (2016). https://doi.org/10.1039/C6CE00171H
D.K. Maurya, R. Dhanusuraman, Z. Guo, S. Angaiah, Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Adv. Compos. Hybrid Mater. 5, 2651–2674 (2022). https://doi.org/10.1007/s42114-021-00412-z
A. Gurung, J. Pokharel, A. Baniya, R. Pathak, K. Chen et al., A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustain. Energy Fuels 3, 3279–3309 (2019). https://doi.org/10.1039/C9SE00549H
T. Zhang, W. He, W. Zhang, T. Wang, P. Li et al., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem. Sci. 11, 8686–8707 (2020). https://doi.org/10.1039/D0SC03121F
S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11(2), 2000802 (2021). https://doi.org/10.1002/aenm.202000802
S. Ferrari, J.R. Nair, Y. Zhou, C. Wan, 10: polymer nanocomposites for lithium battery applications, in Polymer-Based Nanocomposites for Energy and Environmental Applications. ed. by M. Jawaid, M.M. Khan (Elsevier, Amsterdam, 2018), pp.283–313. https://doi.org/10.1016/B978-0-08-102262-7.00010-6
P. Arunachalam, 6: polymer-based nanocomposites for energy and environmental applications, in Polymer-Based Nanocomposites for Energy and Environmental Applications. ed. by M. Jawaid, M.M. Khan (Elsevier, Amsterdam, 2018), pp.185–203. https://doi.org/10.1016/B978-0-08-102262-7.00006-4
S.J. Tan, X.X. Zeng, Q. Ma, X.W. Wu, Y.G. Guo, Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev. 1, 113–138 (2018). https://doi.org/10.1007/s41918-018-0011-2
L.Z. Fan, H. He, C.W. Nan, Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
Z. Chang, H. Yang, X. Zhu, P. He, H. Zhou, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 13, 1510 (2022). https://doi.org/10.1038/s41467-022-29118-6
J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 15, 2753–2775 (2022). https://doi.org/10.1039/D1EE03466A
Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015). https://doi.org/10.1039/C5TA03471J
A. Bielefeld, D.A. Weber, J. Janek, Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries. ACS Appl. Mater. Interfaces 12(11), 12821–12833 (2020). https://doi.org/10.1021/acsami.9b22788
Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49(23), 8790–8839 (2020). https://doi.org/10.1039/D0CS00305K
R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 3(6), 487–516 (2016). https://doi.org/10.1039/C6MH00218H
K. Nie, S. Wu, J. Wang, X. Sun, Z. Yan et al., Reaction mechanisms of Ta-substituted cubic Li7La3Zr2O12 with solvents during storage. ACS Appl. Mater. Interfaces 13(32), 38384–38393 (2021). https://doi.org/10.1021/acsami.1c10373
J.F. Wu, B.W. Pu, D. Wang, S.Q. Shi, N. Zhao et al., In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl. Mater. Interfaces 11(1), 898–905 (2019). https://doi.org/10.1021/acsami.8b18356
Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-sate batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120(14), 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
P. Fan, H. Liu, V. Marosz, N.T. Samuels, S.L. Suib et al., High performance composite polymer electrolytes for lithium-ion batteries. Adv. Funct. Mater. 31(23), 2101380 (2021). https://doi.org/10.1002/adfm.202101380
Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma et al., Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5(9), 1402073 (2015). https://doi.org/10.1002/aenm.201402073
P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu et al., Review on polymer-based composite electrolytes for lithium batteries. Front. Chem. 7, 522 (2019). https://doi.org/10.3389/fchem.2019.00522
H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu et al., Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 33, 188–215 (2020). https://doi.org/10.1016/j.ensm.2020.08.014
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14, 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
C.F.N. Marchiori, R.P. Carvalho, M. Ebadi, D. Brandell, C.M. Araujo, Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts. Chem. Mater. 32(17), 7237–7246 (2020). https://doi.org/10.1021/acs.chemmater.0c01489
K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki et al., Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 133(33), 13121–13129 (2011). https://doi.org/10.1021/ja203983r
K. Nie, X. Wang, J. Qiu, Y. Wang, Q. Yang et al., Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett. 5(3), 826–832 (2020). https://doi.org/10.1021/acsenergylett.9b02739
S. Kaboli, H. Demers, A. Paolella, A. Darwiche, M. Dontigny et al., Behavior of solid electrolyte in Li-polymer battery with NMC cathode via in-situ scanning electron microscopy. Nano Lett. 20(3), 1607–1613 (2020). https://doi.org/10.1021/acs.nanolett.9b04452
L. Yang, J. Zhang, W. Xue, J. Li, R. Chen et al., Anomalous thermal decomposition behavior of polycrystalline LiNi0.8Mn0.1Co0.1O2 in PEO-based solid polymer electrolyte. Adv. Funct. Mater. 32(23), 2200096 (2022). https://doi.org/10.1002/adfm.202200096
M.A.C. Martínez, N. Boaretto, A.J. Naylor, F. Alcaide, G.D. Salian et al., Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv. Energy Mater. 12(32), 2201264 (2022). https://doi.org/10.1002/aenm.202201264
Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31(28), 2101523 (2021). https://doi.org/10.1002/adfm.202101523
F. Chen, D. Yang, W. Zha, B. Zhu, Y. Zhang et al., Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 258, 1106–1114 (2017). https://doi.org/10.1016/j.electacta.2017.11.164
F. He, Z. Hu, W. Tang, A. Wang, B. Wen et al., Vertically heterostructured solid electrolytes for lithium metal batteries. Adv. Funct. Mater. 32(25), 2201465 (2022). https://doi.org/10.1002/adfm.202201465
T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
H. Liang, L. Wang, L. Sheng, H. Xu, Y. Song et al., Focus on the electroplating chemistry of Li ions in nonaqueous liquid electrolytes: toward stable lithium metal batteries. Electrochem. Energy Rev. 5, 23 (2022). https://doi.org/10.1007/s41918-022-00158-2
S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14, 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
J. Kang, N. Deng, Y. Liu, Z. Yan, L. Gao et al., Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Mater. 52, 130–160 (2022). https://doi.org/10.1016/j.ensm.2022.07.037
Y. Wang, Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries. Nano-Micro Lett. 13, 210 (2021). https://doi.org/10.1007/s40820-021-00731-2
K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. MacDowell, N.P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014). https://doi.org/10.1038/nmat3793
J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42(12), 7355–7367 (1990). https://doi.org/10.1103/PhysRevA.42.7355
R. Messer, F. Noack, Nuclear magnetic relaxation by self-diffusion in solid lithium: T1-frequency dependence. Appl. Phys. 6, 79–88 (1975). https://doi.org/10.1007/BF00883553
C. Fang, B. Lu, G. Pawar, M. Zhang, D. Cheng et al., Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6(10), 987–994 (2021). https://doi.org/10.1038/s41560-021-00917-3
C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152(2), A396–A404 (2005). https://doi.org/10.1149/1.1850854
Z. Ahmad, V. Viswanathan, Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119(5), 056003 (2017). https://doi.org/10.1103/PhysRevLett.119.056003
C. Fu, V. Venturi, J. Kim, Z. Ahmad, A.W. Ells et al., Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020). https://doi.org/10.1038/s41563-020-0655-2
X. Ke, Y. Wang, G. Ren, C. Yuan, Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater. 26, 313–324 (2020). https://doi.org/10.1016/j.ensm.2019.08.029
X. Yu, A. Manthiram, Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes. Acc. Chem. Res. 50(11), 2653–2660 (2017). https://doi.org/10.1021/acs.accounts.7b00460
M. Keller, A. Varzi, S. Passerini, Hybrid electrolytes for lithium metal batteries. J. Power Sources 392, 206–225 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.099
L. Zhou, D.L. Danilov, F. Qiao, J. Wang, H. Li et al., Sulfur reduction reaction in lithium-sulfur batteries: mechanisms, catalysts, and characterization. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202202094
H. Zhang, U. Oteo, X. Judez, G.G. Eshetu, M. Martinez-Ibañez et al., Designer anion enabling solid-state lithium-sulfur batteries. Joule 3(7), 1689–1702 (2019). https://doi.org/10.1016/j.joule.2019.05.003
Y. Liu, H. Liu, Y. Lin, Y. Zhao, H. Yuan et al., Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery. Adv. Funct. Mater. 31(41), 2104863 (2021). https://doi.org/10.1002/adfm.202104863
X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17(5), 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
S. Li, S.Q. Zhang, L. Shen, Q. Liu, J.B. Ma et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7(5), 1903088 (2020). https://doi.org/10.1002/advs.201903088
J.R. Harding, C.V. Amanchukwu, P.T. Hammond, Y. Shao-Horn, Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries. J. Phys. Chem. C 119(13), 6947–6955 (2015). https://doi.org/10.1021/jp511794g
E. Nasybulin, W. Xu, M.H. Engelhard, Z. Nie, X.S. Li et al., Stability of polymer binders in Li–O2 batteries. J. Power Sources 243, 899–907 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.097
B. Kumar, L.G. Scanlon, Polymer-ceramic composite electrolytes. J. Power Sources 52(2), 261–268 (1994). https://doi.org/10.1016/0378-7753(94)02147-3
J. Yi, S. Guo, P. He, H. Zhou, Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ. Sci. 10(4), 860–884 (2017). https://doi.org/10.1039/C6EE03499C
D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(11), 589 (1973). https://doi.org/10.1016/0032-3861(73)90146-8
M. Armand, Polymer solid electrolytes: an overview. Solid State Ion. 9–10, 745–754 (1983). https://doi.org/10.1016/0167-2738(83)90083-8
M. Armand, The history of polymer electrolytes. Solid State Ion. 69(3–4), 309–319 (1994). https://doi.org/10.1016/0167-2738(94)90419-7
H. Yue, J. Li, Q. Wang, C. Li, J. Zhang et al., Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustain. Chem. Eng. 6(1), 268–274 (2018). https://doi.org/10.1021/acssuschemeng.7b02401
C.Y. Hsu, R.J. Liu, C.H. Hsu, P.L. Kuo, High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery. RSC Adv. 6(22), 18082–18088 (2016). https://doi.org/10.1039/C5RA26345J
N.K. Jyothi, K.K. Venkataratnam, P.N. Murty, K.V. Kumar, Preparation and characterization of PAN-KI complexed gel polymer electrolytes for solid-state battery applications. Bull. Mater. Sci. 39(4), 1047–1055 (2016). https://doi.org/10.1007/s12034-016-1241-8
Z. Xiao, T. Long, L. Song, Y. Zheng, C. Wang, Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. Ionics 28, 15–26 (2022). https://doi.org/10.1007/s11581-021-04340-2
X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53(9), 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12(39), 2201762 (2022). https://doi.org/10.1002/aenm.202201762
N. Zhang, J. He, W. Han, Y. Wang, Composite solid electrolyte PEO/SN/LiAlO2 for a solid-state lithium battery. J. Mater. Sci. 54(13), 9603–9612 (2019). https://doi.org/10.1007/s10853-019-03535-3
N.T.K. Sundaram, A. Subramania, Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim. Acta 52(15), 4987–4993 (2007). https://doi.org/10.1016/j.electacta.2007.01.066
L. Wang, X. Li, W. Yang, Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries. Electrochim. Acta 55(6), 1895–1899 (2010). https://doi.org/10.1016/j.electacta.2009.11.003
W. Zhang, J. Nie, F. Li, Z.L. Wang, C. Sun, A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45, 413–419 (2018). https://doi.org/10.1016/j.nanoen.2018.01.028
B. Tang, Y. Zhao, Z. Wang, S. Chen, Y. Wu et al., Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries. eScience 1(2), 194–202 (2021). https://doi.org/10.1016/j.esci.2021.12.001
J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanops in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). https://doi.org/10.1016/j.nanoen.2016.09.002
S. Liu, L. Zhou, J. Han, K. Wen, S. Guan et al., Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte. Adv. Energy Mater. 12(25), 2270105 (2022). https://doi.org/10.1002/aenm.202270105
S. Sen, E. Trevisanello, E. Niemöller, B.X. Shi, F.J. Simon et al., The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. J. Mater. Chem. A 9(35), 18701–18732 (2021). https://doi.org/10.1039/D1TA02796D
A.M. Stephan, K.S. Nahm, Review on composite polymer electrolytes for lithium batteries. Polymer 47(16), 5952–5964 (2006). https://doi.org/10.1016/j.polymer.2006.05.069
D. Xie, M. Zhang, Y. Wu, L. Xiang, Y. Tang, A flexible dual-Ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv. Funct. Mater. 30(5), 1906770 (2020). https://doi.org/10.1002/adfm.201906770
F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta et al., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 46(16), 2457–2461 (2001). https://doi.org/10.1016/S0013-4686(01)00458-3
O. Borodin, X. Ren, J. Vatamanu, A.W. Cresce, J. Knap et al., Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res. 50(12), 2886–2894 (2017). https://doi.org/10.1021/acs.accounts.7b00486
Z. Xu, T. Yang, X. Chu, H. Su, Z. Wang et al., Strong lewis acid-base and weak hydrogen bond synergistically enhancing ionic conductivity of poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-metal battery. ACS Appl. Mater. Interfaces 12(9), 10341–10349 (2020). https://doi.org/10.1021/acsami.9b20128
J. Yu, C. Wang, S. Li, N. Liu, J. Zhu et al., Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte. Small 15(44), 1902729 (2019). https://doi.org/10.1002/smll.201902729
W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12), 11407–11413 (2016). https://doi.org/10.1021/acsnano.6b06797
T. Itoh, Y. Miyamura, Y. Ichikawa, T. Uno, M. Kubo et al., Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J. Power Sources 119–121, 403–408 (2003). https://doi.org/10.1016/S0378-7753(03)00261-1
H.Y. Sun, Y. Takeda, N. Imanishi, O. Yamamoto, H.J. Sohn, Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J. Electrochem. Soc. 147(7), 2462–2467 (2000). https://doi.org/10.1149/1.1393554
H. Jamal, F. Khan, H.R. Si, J.H. Kim, Enhanced compatibility of a polymer-based electrolyte with Li-metal for stable and dendrite-free all-solid-state Li-metal batteries. J. Mater. Chem. A 9(48), 27304–27319 (2021). https://doi.org/10.1039/D1TA06886E
Z. Li, S. Wang, J. Shi, Y. Liu, S. Zheng et al., A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Mater. 47, 262–270 (2022). https://doi.org/10.1016/j.ensm.2022.02.014
H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge et al., Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019). https://doi.org/10.1016/j.ensm.2019.01.007
Y. Shi, Z. Fan, B. Ding, Z. Li, Q. Lin et al., Atomic-scale Al2O3 modified PEO-based composite polymer electrolyte for durable solid-state Li–S batteries. J. Electroanal. Chem. 881, 114916 (2021). https://doi.org/10.1016/j.jelechem.2020.114916
B. Liang, S. Tang, Q. Jiang, C. Chen, X. Chen et al., Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim. Acta 169, 334–341 (2015). https://doi.org/10.1016/j.electacta.2015.04.039
W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan et al., Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid ps PMMA-ZrO2 for lithium ion batteries. J. Power Sources 382, 128–134 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.012
S. Hua, J.L. Li, M.X. Jing, F. Chen, B.W. Ju et al., Effects of surface lithiated TiO2 nanorods on room-temperature properties of polymer solid electrolytes. Int. J. Energy Res. 44(8), 6452–6462 (2020). https://doi.org/10.1002/er.5379
C. Li, Y. Huang, C. Chen, X. Feng, Z. Zhang, High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries. Appl. Surf. Sci. 563, 150248 (2021). https://doi.org/10.1016/j.apsusc.2021.150248
R. Premila, C. Subbu, S. Rajendran, K.S. Kumar, Experimental investigation of nano filler TiO2 doped composite polymer electrolytes for lithium ion batteries. Appl. Surf. Sci. 449, 426–434 (2018). https://doi.org/10.1016/j.apsusc.2017.11.272
S. Hua, M.X. Jing, C. Han, H. Yang, H. Chen et al., A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int. J. Energy Res. 43(13), 7296–7305 (2019). https://doi.org/10.1002/er.4758
V. Aravindan, P. Vickraman, Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE). J. Phys. D 40(21), 6754–6759 (2007). https://doi.org/10.1088/0022-3727/40/21/040
F. Croce, L. Settimi, B. Scrosati, Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem. Commun. 8(2), 364–368 (2006). https://doi.org/10.1016/j.elecom.2005.12.002
N.T.K. Sundaram, T. Vasudevan, A. Subramania, Synthesis of ZrO2 nanops in microwave hydrolysis of Zr(IV) salt solutions-Ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanops. J. Phys. Chem. Solids 68(2), 264–271 (2007). https://doi.org/10.1016/j.jpcs.2006.11.005
V. Aravindan, P. Vickraman, T.P. Kumar, ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB. J. Membr. Sci. 305(1–2), 146–151 (2007). https://doi.org/10.1016/j.memsci.2007.07.044
O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang et al., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 18(5), 3104–3112 (2018). https://doi.org/10.1021/acs.nanolett.8b00659
Y. Lin, X. Wang, J. Liu, J.D. Miller, Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 31, 478–485 (2017). https://doi.org/10.1016/j.nanoen.2016.11.045
K. Zhu, Y. Liu, J. Liu, A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Adv. 4(80), 42278–42284 (2014). https://doi.org/10.1039/C4RA06208F
J.F. Wu, X. Guo, MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 7(6), 2653–2659 (2019). https://doi.org/10.1039/C8TA10124H
C. Gerbaldi, J.R. Nair, M.A. Kulandainathan, R.S. Kumar, C. Ferrara et al., Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 2(26), 9948–9954 (2014). https://doi.org/10.1039/C4TA01856G
S. Suriyakumar, S. Gopi, M. Kathiresan, S. Bose, E.B. Gowd et al., Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li–S and Li-metal polymer batteries. Electrochim. Acta 285, 355–364 (2018). https://doi.org/10.1016/j.electacta.2018.08.012
Y.W. Chen-Yang, Y.T. Chen, H.C. Chen, W.T. Lin, C.H. Tsai, Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery. Polymer 50(13), 2856–2862 (2009). https://doi.org/10.1016/j.polymer.2009.04.023
M.Y.A. Rahman, A. Ahmad, L.H.C. Ismail, M.M. Salleh, Fabrication and characterization of a solid polymeric electrolyte of PAN-TiO2–LiClO4. J. Appl. Polym. Sci. 115(4), 2144–2148 (2010). https://doi.org/10.1002/app.31299
W. Jia, Z. Li, Z. Wu, L. Wang, B. Wu et al., Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ion. 315, 7–13 (2018). https://doi.org/10.1016/j.ssi.2017.11.026
L. TianKhoon, N.H. Hassan, M.Y.A. Rahman, R. Vedarajan, N. Matsumi et al., One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ion. 276, 72–79 (2015). https://doi.org/10.1016/j.ssi.2015.03.034
S. Wang, J. Hu, X. Gui, S. Lin, Y. Tu, A promising PMMA/m-MgO all-solid-state electrolyte for lithium-oxygen batteries. J. Electrochem. Soc. 168(2), 020514 (2021). https://doi.org/10.1149/1945-7111/abdfa6
S. Ramesh, S.C. Lu, Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifluoromethanesulfonyl)imide based polymer electrolytes. J. Power Sources 185(2), 1439–1443 (2008). https://doi.org/10.1016/j.jpowsour.2008.07.055
S. Ramesh, L.C. Wen, Investigation on the effects of addition of SiO2 nanops on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA-LiCF3SO3–SiO2. Ionics 16(3), 255–262 (2010). https://doi.org/10.1007/s11581-009-0388-3
J.E. Weston, B.C.H. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ion. 7(1), 75–79 (1982). https://doi.org/10.1016/0167-2738(82)90072-8
B.R. Cai, J.H. Cao, W.H. Liang, L.Y. Yang, T. Liang et al., Ultraviolet-cured Al2O3-polyethylene terephthalate/polyvinylidene fluoride composite separator with asymmetric design and its performance in lithium batteries. ACS Appl. Energy Mater. 4(5), 5293–5303 (2021). https://doi.org/10.1021/acsaem.1c00804
S.J. Kwon, B.M. Jung, T. Kim, J. Byun, J. Lee et al., Influence of Al2O3 nanowires on ion transport in nanocomposite solid polymer electrolytes. Macromolecules 51(24), 10194–10201 (2018). https://doi.org/10.1021/acs.macromol.8b01603
C.C. Tambelli, A.C. Bloise, A.V. Rosário, E.C. Pereira, C.J. Magon et al., Characterisation of PEO- Al2O3 composite polymer electrolytes. Electrochim. Acta 47(11), 1677–1682 (2002). https://doi.org/10.1016/S0013-4686(01)00900-8
W. Wieczorek, P. Lipka, G. Żukowska, H. Wyciślik, Ionic interactions in polymeric electrolytes based on low molecular weight poly(ethylene glycol)s. J. Phys. Chem. B 102(36), 6968–6974 (1998). https://doi.org/10.1021/jp981397k
Z. Wang, X. Huang, L. Chen, Understanding of effects of nano-Al2O3 ps on ionic conductivity of composite polymer electrolytes. Electrochem. Solid-State Lett. 6(11), E40–E44 (2003). https://doi.org/10.1149/1.1615352
Y.L. Ni’mah, Z.H. Muhaiminah, S. Suprapto, Increase of solid polymer electrolyte ionic conductivity using nano-SiO2 synthesized from sugarcane bagasse as filler. Polymers 13(23), 4240 (2021). https://doi.org/10.3390/polym13234240
Y.L. Yap, A.H. You, L.L. Teo, Preparation and characterization studies of PMMA-PEO-blend solid polymer electrolytes with SiO2 filler and plasticizer for lithium ion battery. Ionics 25(7), 3087–3098 (2019). https://doi.org/10.1007/s11581-019-02842-8
Y. Hu, Y. Zhong, L. Qi, H. Wang, Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries. Nano Res. 13(12), 3230–3234 (2020). https://doi.org/10.1007/s12274-020-2993-4
P. Pal, A. Ghosh, Influence of TiO2 nano-ps on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 260, 157–167 (2018). https://doi.org/10.1016/j.electacta.2017.11.070
F. Pignanelli, M. Romero, J. Castiglioni, R. Faccio, A.W. Mombrú, Novel synergistic in situ synthesis of lithium-ion poly(ethylene citrate)-TiO2 nanocomposites as promising fluorine-free solid polymer electrolytes for lithium batteries. J. Phys. Chem. Solids 135, 109082 (2019). https://doi.org/10.1016/j.jpcs.2019.109082
C. Chavan, R.F. Bhajantri, V. Cyriac, Ismayil, S. Bulla et al., Exploration of free volume behavior and ionic conductivity of PVA: x (x = 0, Y2O3, ZrO2, YSZ) ion-oxide conducting polymer ceramic composites. J. Non-Cryst. Solids 590, 121696 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121696
H.M. Xu, M.X. Jing, J. Li, Z.H. Huang, T.F. Wang et al., Safety-enhanced flexible polypropylene oxide-ZrO2 composite solid electrolyte film with high room-temperature ionic conductivity. ACS Sustain. Chem. Eng. 9(33), 11118–11126 (2021). https://doi.org/10.1021/acssuschemeng.1c02886
T. Itoh, Y. Ichikawa, T. Uno, M. Kubo, O. Yamamoto, Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2. Solid State Ion. 156(3), 393–399 (2003). https://doi.org/10.1016/S0167-2738(02)00682-3
B.K. Park, H. Kim, K.S. Kim, H.S. Kim, S.H. Han et al., Interface design considering intrinsic properties of dielectric materials to minimize space-charge layer effect between oxide cathode and sulfide solid electrolyte in all-solid-state batteries. Adv. Energy Mater. 12(37), 2201208 (2022). https://doi.org/10.1002/aenm.202201208
Y.F. Huang, T. Gu, G. Rui, P. Shi, W. Fu et al., A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14(11), 6021–6029 (2021). https://doi.org/10.1039/D1EE02663A
Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12, 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
H. Jamal, F. Khan, S. Hyun, S.W. Min, J.H. Kim, Enhancement of the ionic conductivity of a composite polymer electrolyte via surface functionalization of SSZ-13 zeolite for all-solid-state Li-metal batteries. J. Mater. Chem. A 9(7), 4126–4137 (2021). https://doi.org/10.1039/D0TA11218F
G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou et al., Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery. Nano-Micro Lett. 13, 105 (2021). https://doi.org/10.1007/s40820-021-00628-0
J.C. Barbosa, R. Gonçalves, C.M. Costa, V.Z. Bermudez, A. Fidalgo-Marijuan et al., Metal-organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Mater. Adv. 2(12), 3790–3805 (2021). https://doi.org/10.1039/D1MA00244A
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
S. Bai, Y. Sun, J. Yi, Y. He, Y. Qiao et al., High-power Li-metal anode enabled by metal-organic framework modified electrolyte. Joule 2(10), 2117–2132 (2018). https://doi.org/10.1016/j.joule.2018.07.010
Z. Wang, S. Wang, A. Wang, X. Liu, J. Chen et al., Covalently linked metal-organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. J. Mater. Chem. A 6(35), 17227–17234 (2018). https://doi.org/10.1039/C8TA05642K
N. Angulakshmi, K.S. Nahm, J.R. Nair, C. Gerbaldi, R. Bongiovanni et al., Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochim. Acta 90, 179–185 (2013). https://doi.org/10.1016/j.electacta.2012.12.003
A.M. Stephan, T.P. Kumar, S. Thomas, P.S. Thomas, R. Bongiovanni et al., Calcium phosphate incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. I. Ionic conductivity and positron annihilation lifetime spectroscopy studies. J. Appl. Polym. Sci. 124(4), 3245–3254 (2012). https://doi.org/10.1002/app.35219
R. Prasanth, N. Shubha, H.H. Hng, M. Srinivasan, Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur. Polym. J. 49(2), 307–318 (2013). https://doi.org/10.1016/j.eurpolymj.2012.10.033
M. Deka, A. Kumar, Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries. J. Power Sources 196(3), 1358–1364 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.035
J.W. Gilman, C.L. Jackson, A.B. Morgan, R. Harris, E. Manias et al., Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 12(7), 1866–1873 (2000). https://doi.org/10.1021/cm0001760
X. Yu, J. Ma, C. Mou, G. Cui, Percolation structure design of organic-inorganic composite electrolyte with high lithium-ion conductivity. Acta Phys. Chim. Sin. 38(3), 1912061 (2022). https://doi.org/10.3866/PKU.WHXB201912061
L. Chen, Y. Li, S.P. Li, L.Z. Fan, C.W. Nan et al., PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46, 176–184 (2018). https://doi.org/10.1016/j.nanoen.2017.12.037
J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
J. Zheng, Y.Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10(4), 4113–4120 (2018). https://doi.org/10.1021/acsami.7b17301
T. Yang, J. Zheng, Q. Cheng, Y.Y. Hu, C.K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9(26), 21773–21780 (2017). https://doi.org/10.1021/acsami.7b03806
Z. Li, H.M. Huang, J.K. Zhu, J.F. Wu, H. Yang et al., Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl. Mater. Interfaces 11(1), 784–791 (2019). https://doi.org/10.1021/acsami.8b17279
V. Thangadurai, H. Kaack, W.J.F. Weppner, Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86(3), 437–440 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43(13), 4714–4727 (2014). https://doi.org/10.1039/C4CS00020J
W. Lu, M. Xue, C. Zhang, Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries. Energy Storage Mater. 39, 108–129 (2021). https://doi.org/10.1016/j.ensm.2021.04.016
X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139(39), 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi et al., Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29(1), 1805301 (2019). https://doi.org/10.1002/adfm.201805301
J. Sun, Y. Li, Q. Zhang, C. Hou, Q. Shi et al., A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem. Eng. J. 375, 121922 (2019). https://doi.org/10.1016/j.cej.2019.121922
M. Wu, D. Liu, D. Qu, Z. Xie, J. Li et al., 3D coral-like LLZO/PVDF composite electrolytes with enhanced ionic conductivity and mechanical flexibility for solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(47), 52652–52659 (2020). https://doi.org/10.1021/acsami.0c15004
K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. 113(26), 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
Y. Zhao, J. Yan, W. Cai, Y. Lai, J. Song et al., Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater. 23, 306–313 (2019). https://doi.org/10.1016/j.ensm.2019.04.043
D.H. Kim, M.Y. Kim, S.H. Yang, H.M. Ryu, H.Y. Jung et al., Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. J. Ind. Eng. Chem. 71, 445–451 (2019). https://doi.org/10.1016/j.jiec.2018.12.001
J. Zagórski, J.M.L. del Amo, M.J. Cordill, F. Aguesse, L. Buannic et al., Garnet-polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl. Energy Mater. 2(3), 1734–1746 (2019). https://doi.org/10.1021/acsaem.8b01850
C.Z. Zhao, X.Q. Zhang, X.B. Cheng, R. Zhang, R. Xu et al., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. 114(42), 11069–11074 (2017). https://doi.org/10.1073/pnas.1708489114
J. Zhang, X. Zang, H. Wen, T. Dong, J. Chai et al., High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5(10), 4940–4948 (2017). https://doi.org/10.1039/C6TA10066J
J.H. Choi, C.H. Lee, J.H. Yu, C.H. Doh, S.M. Lee, Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 274, 458–463 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.078
R. Li, S. Guo, L. Yu, L. Wang, D. Wu et al., Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6(10), 1900200 (2019). https://doi.org/10.1002/admi.201900200
M. Falco, L. Castro, J.R. Nair, F. Bella, F. Bardé et al., UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl. Energy Mater. 2(3), 1600–1607 (2019). https://doi.org/10.1021/acsaem.8b02185
J. Zheng, M. Tang, Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55(40), 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G.Y. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137(4), 1023–1027 (1990). https://doi.org/10.1149/1.2086597
E. Dashjav, Q. Ma, Q. Xu, C.L. Tsai, M. Giarola et al., The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ion. 321, 83–90 (2018). https://doi.org/10.1016/j.ssi.2018.04.010
Q. Liu, Q. Yu, S. Li, S. Wang, L. Zhang et al., Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification. Energy Storage Mater. 25, 613–620 (2020). https://doi.org/10.1016/j.ensm.2019.09.023
P. Hartmann, T. Leichtweiss, M.R. Busche, M. Schneider, M. Reich et al., Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013). https://doi.org/10.1021/jp4051275
X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanop/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051
A. Li, X. Liao, H. Zhang, L. Shi, P. Wang et al., Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32(2), 1905517 (2020). https://doi.org/10.1002/adma.201905517
Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie et al., Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 49, 433–444 (2022). https://doi.org/10.1016/j.ensm.2022.04.035
G. Wang, H. Liu, Y. Liang, C. Wang, L.Z. Fan, Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. Energy Storage Mater. 45, 1212–1219 (2022). https://doi.org/10.1016/j.ensm.2021.11.021
Q. Guo, Y. Han, H. Wang, S. Xiong, Y. Li et al., New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries. ACS Appl. Mater. Interfaces 9(48), 41837–41844 (2017). https://doi.org/10.1021/acsami.7b12092
J. Lee, T. Howell, M. Rottmayer, J. Boeckl, H. Huang, Free-standing PEO/LiTFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries. J. Electrochem. Soc. 166(2), A416–A422 (2019). https://doi.org/10.1149/2.1321902jes
G. Piana, F. Bella, F. Geobaldo, G. Meligrana, C. Gerbaldi, PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J. Energy Storage 26, 100947 (2019). https://doi.org/10.1016/j.est.2019.100947
J. Cheng, G. Hou, Q. Sun, Z. Liang, X. Xu et al., Cold-pressing PEO/LAGP composite electrolyte for integrated all-solid-state lithium metal battery. Solid State Ion. 345, 115156 (2020). https://doi.org/10.1016/j.ssi.2019.115156
C. Wang, Y. Yang, X. Liu, H. Zhong, H. Xu et al., Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9(15), 13694–13702 (2017). https://doi.org/10.1021/acsami.7b00336
Z.H. Huang, J. Li, L.X. Li, H.M. Xu, C. Han et al., Boosting lithium-ion transport capability of LAGP/PPO composite solid electrolyte via component regulation from ‘ceramics-in-polymer’ to ‘polymer-in-ceramics.’ Ceram. Int. 48(18), 25949–25957 (2022). https://doi.org/10.1016/j.ceramint.2022.05.274
L. Wang, S. Hu, J. Su, T. Huang, A. Yu, Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 11(45), 42715–42721 (2019). https://doi.org/10.1021/acsami.9b12112
H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17(5), 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
Y. Li, H. Wang, Composite solid electrolytes with NASICON-type LATP and PVdF-HFP for solid-state lithium batteries. Ind. Eng. Chem. Res. 60(3), 1494–1500 (2021). https://doi.org/10.1021/acs.iecr.0c05075
S. Bonizzoni, C. Ferrara, V. Berbenni, U. Anselmi-Tamburini, P. Mustarelli et al., NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Phys. Chem. Chem. Phys. 21(11), 6142–6149 (2019). https://doi.org/10.1039/C9CP00405J
Y. Jin, X. Zong, X. Zhang, C. Liu, D. Li et al., Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J. Power Sources 501, 230027 (2021). https://doi.org/10.1016/j.jpowsour.2021.230027
Z. Chen, H. Zhang, H. Xu, S. Dong, M. Jiang et al., In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries. Chem. Eng. J. 433, 133589 (2022). https://doi.org/10.1016/j.cej.2021.133589
Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li et al., Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit. Rev. Solid State 44(4), 265–282 (2019). https://doi.org/10.1080/10408436.2018.1485551
J. Lu, Y. Li, Perovskite-type Li-ion solid electrolytes: a review. J. Mater. Sci. Mater. 32(8), 9736–9754 (2021). https://doi.org/10.1007/s10854-021-05699-8
H. Xu, P.H. Chien, J. Shi, Y. Li, N. Wu et al., High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. 116(38), 18815–18821 (2019). https://doi.org/10.1073/pnas.1907507116
J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57(8), 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
K. Liu, M. Wu, L. Wei, Y. Lin, T. Zhao, A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries. J. Membr. Sci. 610, 118265 (2020). https://doi.org/10.1016/j.memsci.2020.118265
W. Liu, N. Liu, J. Sun, P.C. Hsu, Y. Li et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15(4), 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2(5), 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
K. Liu, R. Zhang, J. Sun, M. Wu, T. Zhao, Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11(50), 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936
L. Zhu, P. Zhu, S. Yao, X. Shen, F. Tu, High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery. Int. J. Energy Res. 43(9), 4854–4866 (2019). https://doi.org/10.1002/er.4638
P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang et al., Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 6(10), 4279–4285 (2018). https://doi.org/10.1039/C7TA10517G
X. Wang, Y. Zhang, X. Zhang, T. Liu, Y.H. Lin et al., Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10(29), 24791–24798 (2018). https://doi.org/10.1021/acsami.8b06658
P. Zhu, C. Yan, J. Zhu, J. Zang, Y. Li et al., Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009
Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora et al., Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31(34), 1901131 (2019). https://doi.org/10.1002/adma.201901131
J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33(6), 2000751 (2021). https://doi.org/10.1002/adma.202000751
Y. Su, X. Zhang, C. Du, Y. Luo, J. Chen et al., An all-solid-state battery based on sulfide and PEO composite electrolyte. Small 18(29), 2202069 (2022). https://doi.org/10.1002/smll.202202069
M. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium-sulfur battery enabled by Thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30(14), 1910123 (2020). https://doi.org/10.1002/adfm.201910123
Y. Zhang, R. Chen, S. Wang, T. Liu, B. Xu et al., Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater. 25, 145–153 (2020). https://doi.org/10.1016/j.ensm.2019.10.020
J. Li, H. Chen, Y. Shen, C. Hu, Z. Cheng et al., Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater. 23, 277–283 (2019). https://doi.org/10.1016/j.ensm.2019.05.002
Y. Li, W. Arnold, A. Thapa, J.B. Jasinski, G. Sumanasekera et al., Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(38), 42653–42659 (2020). https://doi.org/10.1021/acsami.0c08261
H. Liu, P. He, G. Wang, Y. Liang, C. Wang et al., Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. Chem. Eng. J. 430, 132991 (2022). https://doi.org/10.1016/j.cej.2021.132991
J. Zheng, P. Wang, H. Liu, Y.Y. Hu, Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2(2), 1452–1459 (2019). https://doi.org/10.1021/acsaem.8b02008
F.J. Simon, M. Hanauer, F.H. Richter, J. Janek, Interphase formation of PEO20:LiTFSI-Li6PS5Cl composite electrolytes with lithium metal. ACS Appl. Mater. Interfaces 12(10), 11713–11723 (2020). https://doi.org/10.1021/acsami.9b22968
S. Luo, Z. Wang, A. Fan, X. Liu, H. Wang et al., A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film. J. Power Sources 485, 229325 (2021). https://doi.org/10.1016/j.jpowsour.2020.229325
C. Lai, C. Shu, W. Li, L. Wang, X. Wang et al., Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte. Nano Lett. 20(11), 8273–8281 (2020). https://doi.org/10.1021/acs.nanolett.0c03395
J. Yi, D. Zhou, Y. Liang, H. Liu, H. Ni et al., Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. J. Energy Chem. 58, 17–24 (2021). https://doi.org/10.1016/j.jechem.2020.09.038
X. Li, D. Wang, H. Wang, H. Yan, Z. Gong et al., Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl. Mater. Interfaces 11(25), 22745–22753 (2019). https://doi.org/10.1021/acsami.9b05212
J. Zhang, C. Zheng, J. Lou, Y. Xia, C. Liang et al., Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: enhanced electrochemical performance, mechanical property and interfacial stability. J. Power Sources 412, 78–85 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.036
L. Han, M. Lehmann, J. Zhu, T. Liu, Z. Zhou et al., Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries. Front. Energy Res. 8, 202 (2020). https://doi.org/10.3389/fenrg.2020.00202
F.Q. Liu, W.P. Wang, Y.X. Yin, S.F. Zhang, J.L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4(10), eaat5383 (2018). https://doi.org/10.1126/sciadv.aat5383
S. Li, J. Huang, Y. Cui, S. Liu, Z. Chen et al., A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621 (2022). https://doi.org/10.1038/s41565-022-01107-2
D.H.S. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15(3), 170–180 (2020). https://doi.org/10.1038/s41565-020-0657-x
K. Kerman, A. Luntz, V. Viswanathan, Y.M. Chiang, Z. Chen, Review-practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164(7), A1731–A1744 (2017). https://doi.org/10.1149/2.1571707jes
J. Schnell, T. Günther, T. Knoche, C. Vieider, L. Köhler et al., All-solid-state lithium-ion and lithium metal batteries: paving the way to large-scale production. J. Power Sources 382, 160–175 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.062