Surface Treatment of Inorganic CsPbI3 Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightness
Corresponding Author: Hongxia Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 69
Abstract
The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material. In particular, nanocrystals (NCs) of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications. However, the presence of surface defects on the NCs negatively impacts their performance in devices. Herein, we report a compatible facial post-treatment of CsPbI3 nanocrystals using guanidinium iodide (GuI). It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation. As a consequence, the film of treated CsPbI3 nanocrystals exhibited significantly enhanced luminescence and charge transport properties, leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8% with high brightness (peak luminance of 7039 cd m−2 and a peak current density of 10.8 cd A−1). The EQE is over threefold higher than performance of untreated device (EQE: 3.8%). The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min (at current density of 25 mA cm−2), outperforming the untreated devices (T50 ~ 6 min).
Highlights:
1 A facile and effective surface passivation strategy was demonstrated to improve the optical and stability of CsPbI3 nanocrystals by using guanidinium iodide post-treatment.
2 Guanidinium cations was shown to be compatible with CsPbI3 perovskite, leading to significantly improved surface properties of CsPbI3 nanocrystals.
3 Performance of the CsPbI3 nanocrystal-based light-emitting device was enhanced by 3.6 folds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- X.K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2020). https://doi.org/10.1038/s41563-020-0784-7
- D. Liu, Y. Guo, M. Que, X. Yin, J. Liu et al., Metal halide perovskite nanocrystals: application in high-performance photodetectors. Mater. Adv. 2(3), 856–879 (2021). https://doi.org/10.1039/D0MA00796J
- D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei et al., Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15(8), 5191–5199 (2015). https://doi.org/10.1021/acs.nanolett.5b01430
- J. Butkus, P. Vashishtha, K. Chen, J.K. Gallaher, S.K. Prasad et al., The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 29(8), 3644–3652 (2017). https://doi.org/10.1021/acs.chemmater.7b00478
- N. Pradhan, Tips and twists in making high photoluminescence quantum yield perovskite nanocrystals. ACS Energy Lett. 4(7), 1634–1638 (2019). https://doi.org/10.1021/acsenergylett.9b00946
- A.F. Gualdrón-Reyes, S. Masi, I. Mora-Seró, Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends Chem. 3(6), 499–511 (2021). https://doi.org/10.1016/j.trechm.2021.03.005
- H. Jin, E. Debroye, M. Keshavarz, I.G. Scheblykin, M.B. Roeffaers et al., It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7(2), 397–410 (2020). https://doi.org/10.1039/C9MH00500E
- S.T. Brinck, I. Infante, Surface termination, morphology, and bright photoluminescence of cesium lead halide perovskite nanocrystals. ACS Energy Lett. 1(6), 1266–1272 (2016). https://doi.org/10.1021/acsenergylett.6b00595
- X. Zhang, H. Liu, W. Wang, J. Zhang, B. Xu et al., Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic-inorganic mixed cations. Adv. Mater. 29(18), 1606405 (2017). https://doi.org/10.1002/adma.201606405
- S. Hou, M.K. Gangishetty, Q. Quan, D.N. Congreve, Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2(11), 2421–2433 (2018). https://doi.org/10.1016/j.joule.2018.08.005
- Y.J. Yoon, K.T. Lee, T.K. Lee, S.H. Kim, Y.S. Shin et al., Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule 2(10), 2105–2116 (2018). https://doi.org/10.1016/j.joule.2018.07.012
- J. Li, L. Xu, T. Wang, J. Song, J. Chen et al., 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29(5), 1603885 (2017). https://doi.org/10.1002/adma.201603885
- M.T. Hoang, A.S. Pannu, C. Tang, Y. Yang, N.D. Pham et al., Potassium doping to enhance green photoemission of light-emitting diodes based on CsPbBr3 perovskite nanocrystals. Adv. Opt. Mater. 8(18), 2000742 (2020). https://doi.org/10.1002/adom.202000742
- Y.H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park et al., Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4
- Y.K. Wang, F. Yuan, Y. Dong, J.Y. Li, A. Johnston et al., All-inorganic quantum dot LEDs based on phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60(29), 16164–16170 (2021). https://doi.org/10.1002/anie.202104812
- J. Lim, Y.S. Park, K. Wu, H.J. Yun, V.I. Klimov, Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18(10), 6645–6653 (2018). https://doi.org/10.1021/acs.nanolett.8b03457
- S.R. Smock, Y. Chen, A.J. Rossini, R.L. Brutchey, The surface chemistry and structure of colloidal lead halide perovskite nanocrystals. Acc. Chem. Res. 54(3), 707–718 (2021). https://doi.org/10.1021/acs.accounts.0c00741
- W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang et al., Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018). https://doi.org/10.1038/s41467-018-03049-7
- L. Yuan, R. Patterson, X. Wen, Z. Zhang, G. Conibeer et al., Investigation of anti-solvent induced optical properties change of cesium lead bromide iodide mixed perovskite (CsPbBr3-xIx) quantum dots. J. Colloid Interface Sci. 504, 586–592 (2017). https://doi.org/10.1016/j.jcis.2017.06.017
- J. Shamsi, A.S. Urban, M. Imran, L.D. Trizio, L. Manna, Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
- E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3(10), eaao4204 (2017). https://doi.org/10.1126/sciadv.aao4204
- Y.F. Lan, J.S. Yao, J.N. Yang, Y.H. Song, X.C. Ru et al., Spectrally stable and efficient pure red CsPbI3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy. Nano Lett. 21(20), 8756–8763 (2021). https://doi.org/10.1021/acs.nanolett.1c03011
- F. Zhang, S. Huang, P. Wang, X. Chen, S. Zhao et al., Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 29(8), 3793–3799 (2017). https://doi.org/10.1021/acs.chemmater.7b01100
- M.L. Williams, J.E. Gready, Guanidinium-type resonance stabilization and its biological implications. I. the guanidine and extended-guanidine series. J. Comput. Chem. 10(1), 35–54 (1989). https://doi.org/10.1002/jcc.540100105
- N.D. Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu et al., Guanidinium: A route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 16(2), 1009–1016 (2016). https://doi.org/10.1021/acs.nanolett.5b04060
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6309), 92–95 (2016). https://doi.org/10.1126/science.aag2700
- T. Chiba, K. Hoshi, Y.J. Pu, Y. Takeda, Y. Hayashi et al., High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 9(21), 18054–18060 (2017). https://doi.org/10.1021/acsami.7b03382
- X. Ling, J. Yuan, X. Zhang, Y. Qian, S.M. Zakeeruddin et al., Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32(26), 2001906 (2020). https://doi.org/10.1002/adma.202001906
- Z. Deng, G. Kieslich, P.D. Bristowe, A.K. Cheetham, S. Sun, Octahedral connectivity and its role in determining the phase stabilities and electronic structures of low-dimensional, perovskite-related iodoplumbates. APL Mater. 6(11), 114202 (2018). https://doi.org/10.1063/1.5046404
- L.M. Wheeler, E.M. Sanehira, A.R. Marshall, P. Schulz, M. Suri et al., Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140(33), 10504–10513 (2018). https://doi.org/10.1021/jacs.8b04984
- D. Magde, R. Wong, P.G. Seybold, Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75(4), 327–334 (2002). https://doi.org/10.1562/0031-8655(2002)0750327FQYATR2.0.CO2
- E.V. Péan, S. Dimitrov, C.S.D. Castro, M.L. Davies, Interpreting time-resolved photoluminescence of perovskite materials. Phys. Chem. Chem. Phys. 22(48), 28345–28358 (2020). https://doi.org/10.1039/D0CP04950F
- W. Chen, N.D. Pham, H. Wang, B. Jia, X. Wen, Spectroscopic Insight into efficient and stable hole transfer at the perovskite/spiro-OMeTAD interface with alternative additives. ACS Appl. Mater. Interfaces 13(4), 5752–5761 (2021). https://doi.org/10.1021/acsami.0c19111
- M. Lu, J. Guo, S. Sun, P. Lu, J. Wu et al., Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett. 20(4), 2829–2836 (2020). https://doi.org/10.1021/acs.nanolett.0c00545
- J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
- Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
- S. Wu, Z. Li, J. Zhang, T. Liu, Z. Zhu et al., Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chem. Commun. 55(30), 4315–4318 (2019). https://doi.org/10.1039/C9CC00016J
- J. Pan, Y. Shang, J. Yin, M.D. Bastiani, W. Peng et al., Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140(2), 562–565 (2017). https://doi.org/10.1021/jacs.7b10647
- B. Xu, M.I. Jacobs, O. Kostko, M. Ahmed, Guanidinium group remains protonated in a strongly basic arginine solution. ChemPhysChem 18(12), 1503–1506 (2017). https://doi.org/10.1002/cphc.201700197
- B.W. Boote, H.P. Andaraarachchi, B.A. Rosales, R. Blome-Fernández, F. Zhu et al., Unveiling the photo-and thermal-stability of cesium lead halide perovskite nanocrystals. ChemPhysChem 20(20), 2647–2656 (2019). https://doi.org/10.1002/cphc.201900432
- S. Dastidar, C.J. Hawley, A.D. Dillon, A.D. Gutierrez-Perez, J.E. Spanier et al., Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 8(6), 1278–1282 (2017). https://doi.org/10.1021/acs.jpclett.7b00134
- Y. Kim, P. Nandi, D. Lee, H. Shin, Stabilization of 3-D trigonal phase in guanidinium (C(NH2)3) lead triiodide (GAPbI3) films. Appl. Surf. Sci. 542, 148575 (2021). https://doi.org/10.1016/j.apsusc.2020.148575
- C. Li, A. Guerrero, S. Huettner, J. Bisquert, Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6
- N.D. Pham, C. Zhang, V.T. Tiong, S. Zhang, G. Will et al., Tailoring crystal structure of FA0.83Cs0.17PbI3 perovskite through guanidinium doping for enhanced performance and tunable hysteresis of planar perovskite solar cells. Adv. Func. Mater. 29(1), 1806479 (2019). https://doi.org/10.1002/adfm.201806479
- R. Grisorio, M.E.D. Clemente, E. Fanizza, I. Allegretta, D. Altamura et al., Exploring the surface chemistry of cesium lead halide perovskite nanocrystals. Nanoscale 11(3), 986–999 (2019). https://doi.org/10.1039/C8NR08011A
- C. Wang, A.S. Chesman, J.J. Jasieniak, Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Commun. 53(1), 232–235 (2017). https://doi.org/10.1039/C6CC08282C
- V. Wood, M.J. Panzer, J.M. Caruge, J.E. Halpert, M.G. Bawendi et al., Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett. 10(1), 24–29 (2010). https://doi.org/10.1021/nl902425g
- C. Kagan, C. Murray, M. Bawendi, Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633 (1996). https://doi.org/10.1103/PhysRevB.54.8633
References
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
X.K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2020). https://doi.org/10.1038/s41563-020-0784-7
D. Liu, Y. Guo, M. Que, X. Yin, J. Liu et al., Metal halide perovskite nanocrystals: application in high-performance photodetectors. Mater. Adv. 2(3), 856–879 (2021). https://doi.org/10.1039/D0MA00796J
D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei et al., Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15(8), 5191–5199 (2015). https://doi.org/10.1021/acs.nanolett.5b01430
J. Butkus, P. Vashishtha, K. Chen, J.K. Gallaher, S.K. Prasad et al., The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 29(8), 3644–3652 (2017). https://doi.org/10.1021/acs.chemmater.7b00478
N. Pradhan, Tips and twists in making high photoluminescence quantum yield perovskite nanocrystals. ACS Energy Lett. 4(7), 1634–1638 (2019). https://doi.org/10.1021/acsenergylett.9b00946
A.F. Gualdrón-Reyes, S. Masi, I. Mora-Seró, Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends Chem. 3(6), 499–511 (2021). https://doi.org/10.1016/j.trechm.2021.03.005
H. Jin, E. Debroye, M. Keshavarz, I.G. Scheblykin, M.B. Roeffaers et al., It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7(2), 397–410 (2020). https://doi.org/10.1039/C9MH00500E
S.T. Brinck, I. Infante, Surface termination, morphology, and bright photoluminescence of cesium lead halide perovskite nanocrystals. ACS Energy Lett. 1(6), 1266–1272 (2016). https://doi.org/10.1021/acsenergylett.6b00595
X. Zhang, H. Liu, W. Wang, J. Zhang, B. Xu et al., Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic-inorganic mixed cations. Adv. Mater. 29(18), 1606405 (2017). https://doi.org/10.1002/adma.201606405
S. Hou, M.K. Gangishetty, Q. Quan, D.N. Congreve, Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2(11), 2421–2433 (2018). https://doi.org/10.1016/j.joule.2018.08.005
Y.J. Yoon, K.T. Lee, T.K. Lee, S.H. Kim, Y.S. Shin et al., Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule 2(10), 2105–2116 (2018). https://doi.org/10.1016/j.joule.2018.07.012
J. Li, L. Xu, T. Wang, J. Song, J. Chen et al., 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29(5), 1603885 (2017). https://doi.org/10.1002/adma.201603885
M.T. Hoang, A.S. Pannu, C. Tang, Y. Yang, N.D. Pham et al., Potassium doping to enhance green photoemission of light-emitting diodes based on CsPbBr3 perovskite nanocrystals. Adv. Opt. Mater. 8(18), 2000742 (2020). https://doi.org/10.1002/adom.202000742
Y.H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park et al., Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4
Y.K. Wang, F. Yuan, Y. Dong, J.Y. Li, A. Johnston et al., All-inorganic quantum dot LEDs based on phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60(29), 16164–16170 (2021). https://doi.org/10.1002/anie.202104812
J. Lim, Y.S. Park, K. Wu, H.J. Yun, V.I. Klimov, Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18(10), 6645–6653 (2018). https://doi.org/10.1021/acs.nanolett.8b03457
S.R. Smock, Y. Chen, A.J. Rossini, R.L. Brutchey, The surface chemistry and structure of colloidal lead halide perovskite nanocrystals. Acc. Chem. Res. 54(3), 707–718 (2021). https://doi.org/10.1021/acs.accounts.0c00741
W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang et al., Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018). https://doi.org/10.1038/s41467-018-03049-7
L. Yuan, R. Patterson, X. Wen, Z. Zhang, G. Conibeer et al., Investigation of anti-solvent induced optical properties change of cesium lead bromide iodide mixed perovskite (CsPbBr3-xIx) quantum dots. J. Colloid Interface Sci. 504, 586–592 (2017). https://doi.org/10.1016/j.jcis.2017.06.017
J. Shamsi, A.S. Urban, M. Imran, L.D. Trizio, L. Manna, Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3(10), eaao4204 (2017). https://doi.org/10.1126/sciadv.aao4204
Y.F. Lan, J.S. Yao, J.N. Yang, Y.H. Song, X.C. Ru et al., Spectrally stable and efficient pure red CsPbI3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy. Nano Lett. 21(20), 8756–8763 (2021). https://doi.org/10.1021/acs.nanolett.1c03011
F. Zhang, S. Huang, P. Wang, X. Chen, S. Zhao et al., Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 29(8), 3793–3799 (2017). https://doi.org/10.1021/acs.chemmater.7b01100
M.L. Williams, J.E. Gready, Guanidinium-type resonance stabilization and its biological implications. I. the guanidine and extended-guanidine series. J. Comput. Chem. 10(1), 35–54 (1989). https://doi.org/10.1002/jcc.540100105
N.D. Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu et al., Guanidinium: A route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 16(2), 1009–1016 (2016). https://doi.org/10.1021/acs.nanolett.5b04060
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6309), 92–95 (2016). https://doi.org/10.1126/science.aag2700
T. Chiba, K. Hoshi, Y.J. Pu, Y. Takeda, Y. Hayashi et al., High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 9(21), 18054–18060 (2017). https://doi.org/10.1021/acsami.7b03382
X. Ling, J. Yuan, X. Zhang, Y. Qian, S.M. Zakeeruddin et al., Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32(26), 2001906 (2020). https://doi.org/10.1002/adma.202001906
Z. Deng, G. Kieslich, P.D. Bristowe, A.K. Cheetham, S. Sun, Octahedral connectivity and its role in determining the phase stabilities and electronic structures of low-dimensional, perovskite-related iodoplumbates. APL Mater. 6(11), 114202 (2018). https://doi.org/10.1063/1.5046404
L.M. Wheeler, E.M. Sanehira, A.R. Marshall, P. Schulz, M. Suri et al., Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140(33), 10504–10513 (2018). https://doi.org/10.1021/jacs.8b04984
D. Magde, R. Wong, P.G. Seybold, Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75(4), 327–334 (2002). https://doi.org/10.1562/0031-8655(2002)0750327FQYATR2.0.CO2
E.V. Péan, S. Dimitrov, C.S.D. Castro, M.L. Davies, Interpreting time-resolved photoluminescence of perovskite materials. Phys. Chem. Chem. Phys. 22(48), 28345–28358 (2020). https://doi.org/10.1039/D0CP04950F
W. Chen, N.D. Pham, H. Wang, B. Jia, X. Wen, Spectroscopic Insight into efficient and stable hole transfer at the perovskite/spiro-OMeTAD interface with alternative additives. ACS Appl. Mater. Interfaces 13(4), 5752–5761 (2021). https://doi.org/10.1021/acsami.0c19111
M. Lu, J. Guo, S. Sun, P. Lu, J. Wu et al., Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett. 20(4), 2829–2836 (2020). https://doi.org/10.1021/acs.nanolett.0c00545
J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
S. Wu, Z. Li, J. Zhang, T. Liu, Z. Zhu et al., Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chem. Commun. 55(30), 4315–4318 (2019). https://doi.org/10.1039/C9CC00016J
J. Pan, Y. Shang, J. Yin, M.D. Bastiani, W. Peng et al., Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140(2), 562–565 (2017). https://doi.org/10.1021/jacs.7b10647
B. Xu, M.I. Jacobs, O. Kostko, M. Ahmed, Guanidinium group remains protonated in a strongly basic arginine solution. ChemPhysChem 18(12), 1503–1506 (2017). https://doi.org/10.1002/cphc.201700197
B.W. Boote, H.P. Andaraarachchi, B.A. Rosales, R. Blome-Fernández, F. Zhu et al., Unveiling the photo-and thermal-stability of cesium lead halide perovskite nanocrystals. ChemPhysChem 20(20), 2647–2656 (2019). https://doi.org/10.1002/cphc.201900432
S. Dastidar, C.J. Hawley, A.D. Dillon, A.D. Gutierrez-Perez, J.E. Spanier et al., Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 8(6), 1278–1282 (2017). https://doi.org/10.1021/acs.jpclett.7b00134
Y. Kim, P. Nandi, D. Lee, H. Shin, Stabilization of 3-D trigonal phase in guanidinium (C(NH2)3) lead triiodide (GAPbI3) films. Appl. Surf. Sci. 542, 148575 (2021). https://doi.org/10.1016/j.apsusc.2020.148575
C. Li, A. Guerrero, S. Huettner, J. Bisquert, Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6
N.D. Pham, C. Zhang, V.T. Tiong, S. Zhang, G. Will et al., Tailoring crystal structure of FA0.83Cs0.17PbI3 perovskite through guanidinium doping for enhanced performance and tunable hysteresis of planar perovskite solar cells. Adv. Func. Mater. 29(1), 1806479 (2019). https://doi.org/10.1002/adfm.201806479
R. Grisorio, M.E.D. Clemente, E. Fanizza, I. Allegretta, D. Altamura et al., Exploring the surface chemistry of cesium lead halide perovskite nanocrystals. Nanoscale 11(3), 986–999 (2019). https://doi.org/10.1039/C8NR08011A
C. Wang, A.S. Chesman, J.J. Jasieniak, Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Commun. 53(1), 232–235 (2017). https://doi.org/10.1039/C6CC08282C
V. Wood, M.J. Panzer, J.M. Caruge, J.E. Halpert, M.G. Bawendi et al., Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett. 10(1), 24–29 (2010). https://doi.org/10.1021/nl902425g
C. Kagan, C. Murray, M. Bawendi, Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633 (1996). https://doi.org/10.1103/PhysRevB.54.8633