Advances in the Application of Perovskite Materials
Corresponding Author: Liming Ding
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 177
Abstract
Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
Highlights:
1 A comprehensive summary of the representative promising applications of metal halide perovskite materials, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission.
2 For each application, the fundamentals of the field, the current progress and the remaining challenges are provided, based on the up-to-date works.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3 V voltage loss. Science 369, 1615 (2020). https://doi.org/10.1126/science.abb7167
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu et al., Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021). https://doi.org/10.1002/adma.202103268
- T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato et al., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12, 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y
- L. Zhu, H. Cao, C. Xue, H. Zhang, M. Qin et al., Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat. Commun. 12, 5081 (2021). https://doi.org/10.1038/s41467-021-25407-8
- J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
- X. Zhan, X. Zhang, Z. Liu, C. Chen, L. Kong et al., Boosting the performance of self-powered CsPbCl3-based UV photodetectors by a sequential vapor-deposition strategy and heterojunction engineering. ACS Appl. Mater. Interfaces 13, 45744–45757 (2021). https://doi.org/10.1021/acsami.1c15013
- L.H. Zeng, Q.M. Chen, Z.X. Zhang, D. Wu, H. Yuan et al., Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 6, 1901134 (2019). https://doi.org/10.1002/advs.201901134
- L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang et al., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). https://doi.org/10.1038/ncomms6404
- S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas et al., High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4, 681–688 (2021). https://doi.org/10.1038/s41928-021-00644-3
- Y. He, I. Hadar, M.G. Kanatzidis, Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16, 14–26 (2022). https://doi.org/10.1038/s41566-021-00909-5
- C. Qin, A.S.D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang et al., Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020). https://doi.org/10.1038/s41586-020-2621-1
- C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan et al., Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). https://doi.org/10.1126/science.aba4597
- Y. Park, S.H. Kim, D. Lee, J.-S. Lee, Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. Nat. Commun. 12, 3527 (2021). https://doi.org/10.1038/s41467-021-23871-w
- J. Choi, J.S. Han, K. Hong, S.Y. Kim, H.W. Jang, Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30, 1704002 (2018). https://doi.org/10.1002/adma.201704002
- R.A. John, N. Yantara, Y.F. Ng, G. Narasimman, E. Mosconi et al., Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater. 30, 1805454 (2018). https://doi.org/10.1002/adma.201805454
- D. Zhao, G. Xiao, Z. Liu, L. Sui, K. Yuan et al., Harvesting cool daylight in hybrid organic–inorganic halides microtubules through the reservation of pressure-induced emission. Adv. Mater. 33, 2100323 (2021). https://doi.org/10.1002/adma.202100323
- R. Fu, W. Zhao, L. Wang, Z. Ma, G. Xiao et al., Pressure-induced emission toward harvesting cold white light from warm white light. Angew. Chem. Int. Ed. 60, 10082–10088 (2021). https://doi.org/10.1002/anie.202015395
- D. Lu, C. Xu, Y. Zhong, J. Dong, X. He et al., The effect of the effective electron mass on the hot electron collection. DeCarbon (2023). https://doi.org/10.1016/j.decarb.2023.100002
- H.L. Wells, Über die cäsium- und kalium-bleihalogenide. Z. Anorg. Chem. 3, 195–210 (1893). https://doi.org/10.1002/zaac.18930030124
- M. Era, S. Morimoto, T. Tsutsui, S. Saito, Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 65, 676–678 (1994). https://doi.org/10.1063/1.112265
- C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r
- National renewable energy laboratory. Best research-cell effiencies. 2022(8).
- Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
- N.C. Giebink, G.P. Wiederrecht, M.R. Wasielewski, S.R. Forrest, Thermodynamic efficiency limit of excitonic solar cells. Phys. Rev. B 83, 195326 (2011). https://doi.org/10.1103/PhysRevB.83.195326
- M.A. Green, E.D. Dunlop, G. Siefer, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 61) (accessed: 2022). Prog. Photovoltaics Res. Appl. 31, 3–16 (2023). https://doi.org/10.1002/pip.3646
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci. 7, 982–988 (2014). https://doi.org/10.1039/c3ee43822h
- J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho et al., Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015). https://doi.org/10.1002/aenm.201501310
- G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti et al., Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 11, 2490–2496 (2020). https://doi.org/10.1021/acs.jpclett.0c00295
- C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x
- C. Liu, Y. Yang, O.A. Syzgantseva, Y. Ding, M.A. Syzgantseva et al., Α-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells. Adv. Mater. 32, e2002632 (2020). https://doi.org/10.1002/adma.202002632
- L.A. Frolova, D.V. Anokhin, A.A. Piryazev, S.Y. Luchkin, N.N. Dremova et al., Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67–72 (2017). https://doi.org/10.1021/acs.jpclett.6b02594
- Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao et al., Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2, 2219–2227 (2017). https://doi.org/10.1021/acsenergylett.7b00508
- T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang et al., Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31, 1900605 (2019). https://doi.org/10.1002/adma.201900605
- Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang et al., Efficient α- CsPbI3 photovoltaics with surface terminated organic cations. Joule 2, 2065–2075 (2018). https://doi.org/10.1016/j.joule.2018.06.013
- S. Tan, B. Yu, Y. Cui, F. Meng, C. Huang et al., Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew. Chem. Int. Ed. 61, e202201300 (2022). https://doi.org/10.1002/anie.202201300
- Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022). https://doi.org/10.1126/science.abm8566
- J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
- W.Q. Wu, J.F. Liao, J.X. Zhong, Y.F. Xu, L. Wang et al., Suppressing interfacial charge recombination in electron-transport-layer-free perovskite solar cells to give an efficiency exceeding 21%. Angew. Chem. Int. Ed. 132, 21166–21173 (2020). https://doi.org/10.1002/ange.202005680
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- Y. Lv, R. Yuan, B. Cai, B. Bahrami, A.H. Chowdhury et al., High‐efficiency perovskite solar cells enabled by anatase TiO2 nanopyramid arrays with an oriented electric field. Angew. Chem. Int. Ed. 59, 11969–11976 (2020). https://doi.org/10.1002/anie.201915928
- W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang et al., Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 9, 1625 (2018). https://doi.org/10.1038/s41467-018-04028-8
- S. Liu, D. Zhang, Y. Sheng, W. Zhang, Z. Qin et al., Highly oriented MAPbI3 crystals for efficient hole-conductor-free printable mesoscopic perovskite solar cells. Fundam Res. 2, 276–283 (2022). https://doi.org/10.1016/j.fmre.2021.09.008
- T. Tian, J.-X. Zhong, M. Yang, W. Feng, C. Zhang et al., Interfacial linkage and carbon encapsulation enable full solution-printed perovskite photovoltaics with prolonged lifespan. Angew. Chem. Int. Ed. 60, 23735–23742 (2021). https://doi.org/10.1002/anie.202108495
- X. Yang, Q. Li, Y. Zheng, D. Luo, Y. Zhang et al., Perovskite hetero-bilayer for efficient charge-transport-layer-free solar cells. Joule 6, 1277–1289 (2022). https://doi.org/10.1016/j.joule.2022.04.012
- M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot- SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022). https://doi.org/10.1126/science.abh1885
- J. Peng, D. Walter, Y. Ren, M. Tebyetekerwa, Y. Wu et al., Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021). https://doi.org/10.1126/science.abb8687
- W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015). https://doi.org/10.1126/science.aad1015
- J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013). https://doi.org/10.1002/adma.201301327
- S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda et al., Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 2868 (2022). https://doi.org/10.1038/s41467-022-30426-0
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). https://doi.org/10.1126/science.abm5784
- F. Sadegh, S. Akin, M. Moghadam, R. Keshavarzi, V. Mirkhani et al., Copolymer-templated nickel oxide for high-efficiency mesoscopic perovskite solar cells in inverted architecture. Adv. Funct. Mater. 31, 2102237 (2021). https://doi.org/10.1002/adfm.202102237
- Y. Chen, Z. Yang, S. Wang, X. Zheng, Y. Wu et al., Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 30, 1805660 (2018). https://doi.org/10.1002/adma.201805660
- Y. Chen, W. Tang, Y. Wu, X. Yu, J. Yang et al., Reducing carrier transport barrier in anode interface enables efficient and stable inverted mesoscopic methylammonium-free perovskite solar cells. Chem. Eng. J. 425, 131499 (2021). https://doi.org/10.1016/j.cej.2021.131499
- Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17, 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
- J. Peng, F. Kremer, D. Walter, Y. Wu, Y. Ji et al., Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578 (2022). https://doi.org/10.1038/s41586-021-04216-5
- T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). https://doi.org/10.1038/ncomms3885
- L. Xiong, J. Li, F. Ye, H. Wang, Y. Guo et al., Bifunctional SnO2 colloid offers no annealing effect compact layer and mesoporous scaffold for efficient perovskite solar cells. Adv. Funct. Mater. 31, 2103949 (2021). https://doi.org/10.1002/adfm.202103949
- K. Mahmood, B.S. Swain, H.S. Jung, Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale 6, 9127–9138 (2014). https://doi.org/10.1039/c4nr02065k
- S.S. Mali, C. Su Shim, C. Kook Hong, Highly porous zinc stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci. Rep. 5, 11424 (2015). https://doi.org/10.1038/srep11424
- L.Z. Zhu, J.J. Ye, X.H. Zhang, H.Y. Zheng, G.Z. Liu et al., Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J. Mater. Chem. A 5, 3675–3682 (2017). https://doi.org/10.1039/c6ta09689a
- A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed et al., Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118, 28494–28501 (2014). https://doi.org/10.1021/jp509753p
- H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. Garcia de Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017). https://doi.org/10.1126/science.aai9081
- J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015). https://doi.org/10.1039/c5ee02608c
- R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu et al., Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 14, 5074–5083 (2021). https://doi.org/10.1039/D1EE01519B
- Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv. Mater. 34, 2109879 (2022). https://doi.org/10.1002/adma.202109879
- Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34, 2106118 (2022). https://doi.org/10.1002/adma.202106118
- J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013). https://doi.org/10.1039/C3NR00218G
- X. Gao, J. Li, J. Baker, Y. Hou, D. Guan et al., Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films. Chem. Commun. 50, 6368–6371 (2014). https://doi.org/10.1039/c4cc01864h
- Y. Lv, P. Wang, B. Cai, Q. Ma, X. Zheng et al., Facile fabrication of SnO2 nanorod arrays films as electron transporting layer for perovskite solar cells. Sol. RRL 2, 1800133 (2018). https://doi.org/10.1002/solr.201800133
- H. Sun, K. Deng, Y. Zhu, M. Liao, J. Xiong et al., A novel conductive mesoporous layer with a dynamic two-step deposition strategy boosts efficiency of perovskite solar cells to 20%. Adv. Mater. 30, 1801935 (2018). https://doi.org/10.1002/adma.201801935
- D. Zhong, B. Cai, X. Wang, Z. Yang, Y. Xing et al., Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. Nano Energy 11, 409–418 (2015). https://doi.org/10.1016/j.nanoen.2014.11.014
- L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31, e1806133 (2019). https://doi.org/10.1002/adma.201806133
- Y. Kim, E.H. Jung, G. Kim, D. Kim, B.J. Kim et al., Sequentially fluorinated PTAA polymers for enhancing Voc of high-performance perovskite solar cells. Adv. Energy Mater. 8, 1801668 (2018). https://doi.org/10.1002/aenm.201801668
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). https://doi.org/10.1126/science.abm5784
- M. Li, H. Li, Q. Zhuang, D. He, B. Liu et al., Stabilizing perovskite precursor by synergy of Functional groups for NiOx -based inverted solar cells with 23.5% efficiency. Angew. Chem. Int. Ed. 61, e202206914 (2022). https://doi.org/10.1002/anie.202206914
- K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau et al., P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756 (2014). https://doi.org/10.1038/srep04756
- Y. Chen, Z. Yang, X. Jia, Y. Wu, N. Yuan et al., Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy 61, 148–157 (2019). https://doi.org/10.1016/j.nanoen.2019.04.042
- D. Li, L. Chao, C. Chen, X. Ran, Y. Wang et al., In situ interface engineering for highly efficient electron-transport-layer-free perovskite solar cells. Nano Lett. 20, 5799–5806 (2020). https://doi.org/10.1021/acs.nanolett.0c01689
- W. Kong, W. Li, C. Liu, H. Liu, J. Miao et al., Organic monomolecular layers enable energy-level matching for efficient hole transporting layer free inverted perovskite solar cells. ACS Nano 13, 1625–1634 (2019). https://doi.org/10.1021/acsnano.8b07627
- Y. Wu, L. Wan, S. Fu, W. Zhang, X. Li et al., Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells. J. Mater. Chem. A 7, 14136–14144 (2019). https://doi.org/10.1039/C9TA04192C
- S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao et al., A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504–7512 (2017). https://doi.org/10.1021/jacs.7b01439
- L. Fagiolari, F. Bella, Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12, 3437–3472 (2019). https://doi.org/10.1039/C9EE02115A
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). https://doi.org/10.1126/science.1254763
- X. Chen, Y. Xia, Q. Huang, Z. Li, A. Mei et al., Tailoring the dimensionality of hybrid perovskites in mesoporous carbon electrodes for type-II band alignment and enhanced performance of printable hole-conductor-free perovskite solar cells. Adv. Energy Mater. 11, 2100292 (2021). https://doi.org/10.1002/aenm.202100292
- J. Du, C. Qiu, S. Li, W. Zhang, W. Zhang et al., Minimizing the voltage loss in hole-conductor-free printable mesoscopic perovskite solar cells. Adv. Energy Mater. 12, 2102229 (2022). https://doi.org/10.1002/aenm.202102229
- L. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki et al., Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020). https://doi.org/10.1002/adma.202000752
- H. Bu, C. He, Y. Xu, L. Xing, X. Liu et al., Emerging new-generation detecting and sensing of metal halide perovskites. Adv. Electron. Mater. 8, 2101204 (2022). https://doi.org/10.1002/aelm.202101204
- Y.-H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao et al., Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021). https://doi.org/10.1126/science.abf5291
- Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
- B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
- K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
- M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
- N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
- M. Ban, Y. Zou, J.P.H. Rivett, Y. Yang, T.H. Thomas et al., Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018). https://doi.org/10.1038/s41467-018-06425-5
- Z. Chu, Y. Zhao, F. Ma, C.-X. Zhang, H. Deng et al., Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat. Commun. 11, 4165 (2020). https://doi.org/10.1038/s41467-020-17943-6
- J. Song, J. Li, X. Li, L. Xu, Y. Dong et al., Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015). https://doi.org/10.1002/adma.201502567
- J. Wang, N. Wang, Y. Jin, J. Si, Z.-K. Tan et al., Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015). https://doi.org/10.1002/adma.201405217
- J. Si, Y. Liu, Z. He, H. Du, K. Du et al., Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 11, 11100–11107 (2017). https://doi.org/10.1021/acsnano.7b05191
- Y. Liu, J. Cui, K. Du, H. Tian, Z. He et al., Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 13, 760–764 (2019). https://doi.org/10.1038/s41566-019-0505-4
- B. Zhao, Y. Lian, L. Cui, G. Divitini, G. Kusch et al., Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020). https://doi.org/10.1038/s41928-020-00487-4
- M. Lu, X. Zhang, Y. Zhang, J. Guo, X. Shen et al., Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 30, 1804691 (2018). https://doi.org/10.1002/adma.201804691
- P. Teng, S. Reichert, W. Xu, S.-C. Yang, F. Fu et al., Degradation and self-repairing in perovskite light-emitting diodes. Matter 4, 3710–3724 (2021). https://doi.org/10.1016/j.matt.2021.09.007
- C. Cho, B. Zhao, G.D. Tainter, J.-Y. Lee, R.H. Friend et al., The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020). https://doi.org/10.1038/s41467-020-14401-1
- B. Guo, R. Lai, S. Jiang, L. Zhou, Z. Ren et al., Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics 16, 637–643 (2022). https://doi.org/10.1038/s41566-022-01046-3
- M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021). https://doi.org/10.1038/s41467-020-20582-6
- J. Chen, J. Wang, X. Xu, J. Li, J. Song et al., Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 15, 238–244 (2021). https://doi.org/10.1038/s41566-020-00743-1
- Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou et al., Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5, 456–466 (2021). https://doi.org/10.1016/j.joule.2020.12.008
- W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang et al., Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018). https://doi.org/10.1038/s41467-018-03049-7
- W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao et al., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x
- J. Cui, Y. Liu, Y. Deng, C. Lin, Z. Fang et al., Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021). https://doi.org/10.1126/sciadv.abg8458
- Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng et al., Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10, 5633 (2019). https://doi.org/10.1038/s41467-019-13580-w
- Y. Liu, Z. Li, J. Xu, Y. Dong, B. Chen et al., Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes. J. Am. Chem. Soc. 144, 4009–4016 (2022). https://doi.org/10.1021/jacs.1c12556
- G. Li, F.W.R. Rivarola, N.J.L.K. Davis, S. Bai, T.C. Jellicoe et al., Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016). https://doi.org/10.1002/adma.201600064
- L. Xu, J. Li, B. Cai, J. Song, F. Zhang et al., A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020). https://doi.org/10.1038/s41467-020-17633-3
- H. Li, H. Lin, D. Ouyang, C. Yao, C. Li et al., Efficient and stable red perovskite light-emitting diodes with operational stability >300 h. Adv. Mater. 33, 2008820 (2021). https://doi.org/10.1002/adma.202008820
- B. Han, S. Yuan, B. Cai, J. Song, W. Liu et al., Green perovskite light-emitting diodes with 200 hours stability and 16% efficiency: cross-linking strategy and mechanism. Adv. Funct. Mater. 31, 2011003 (2021). https://doi.org/10.1002/adfm.202011003
- Z. Yao, C. Bi, A. Liu, M. Zhang, J. Tian, High brightness and stability pure-blue perovskite light-emitting diodes based on a novel structural quantum-dot film. Nano Energy 95, 106974 (2022). https://doi.org/10.1016/j.nanoen.2022.106974
- Y. Yang, S. Xu, Z. Ni, C.H. Van Brackle, L. Zhao et al., Highly efficient pure-blue light-emitting diodes based on rubidium and chlorine alloyed metal halide perovskite. Adv. Mater. 33, 2100783 (2021). https://doi.org/10.1002/adma.202100783
- Y. Liu, Y. Dong, T. Zhu, D. Ma, A. Proppe et al., Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143, 15606–15615 (2021). https://doi.org/10.1021/jacs.1c02148
- C. Kuang, Z. Hu, Z. Yuan, K. Wen, J. Qing et al., Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 5, 618–630 (2021). https://doi.org/10.1016/j.joule.2021.01.003
- H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019). https://doi.org/10.1038/s41467-019-08425-5
- Z. Chen, Z. Li, T.R. Hopper, A.A. Bakulin, H.-L. Yip, Materials, photophysics and device engineering of perovskite light-emitting diodes. Rep. Prog. Phys. 84, 046401 (2021). https://doi.org/10.1088/1361-6633/abefba
- J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
- C. Zou, C. Chang, D. Sun, K.F. Böhringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20, 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
- X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
- C. Zou, Y. Liu, D.S. Ginger, L.Y. Lin, Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14, 6076–6086 (2020). https://doi.org/10.1021/acsnano.0c01817
- L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci. Appl. 10, 61 (2021). https://doi.org/10.1038/s41377-021-00501-0
- X. Zhao, Z.-K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14, 215–218 (2020). https://doi.org/10.1038/s41566-019-0559-3
- Y. Jiang, C. Qin, M. Cui, T. He, K. Liu et al., Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019). https://doi.org/10.1038/s41467-019-09794-7
- J. Lin, X. Dai, X. Liang, D. Chen, X. Zheng et al., High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function. Adv. Funct. Mater. 30, 1907265 (2020). https://doi.org/10.1002/adfm.201907265
- Y.-H. Kim, H. Cho, J.H. Heo, T.-S. Kim, N. Myoung et al., Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015). https://doi.org/10.1002/adma.201403751
- D. Ma, K. Lin, Y. Dong, H. Choubisa, A.H. Proppe et al., Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021). https://doi.org/10.1038/s41586-021-03997-z
- Y.-K. Wang, F. Yuan, Y. Dong, J.-Y. Li, A. Johnston et al., All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 16164–16170 (2021). https://doi.org/10.1002/anie.202104812
- L. Zhang, Y. Jiang, Y. Feng, M. Cui, S. Li et al., Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 62, e202302184 (2023). https://doi.org/10.1002/anie.202302184
- T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
- I. Zarazua, G. Han, P.P. Boix, S. Mhaisalkar, F. Fabregat-Santiago et al., Surface recombination and collection efficiency in perovskite solar cells from impedance analysis. J. Phys. Chem. Lett. 7, 5105–5113 (2016). https://doi.org/10.1021/acs.jpclett.6b02193
- X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang et al., Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16, 1415–1420 (2016). https://doi.org/10.1021/acs.nanolett.5b04959
- J.C. Yu, D.B. Kim, G. Baek, B.R. Lee, E.D. Jung et al., High-performance planar perovskite optoelectronic devices: a morphological and interfacial control by polar solvent treatment. Adv. Mater. 27, 3492–3500 (2015). https://doi.org/10.1002/adma.201500465
- R. Li, L. Cai, Y. Zou, H. Xu, Y. Tan et al., High-efficiency perovskite light-emitting diodes with improved interfacial contact. ACS Appl. Mater. Interfaces 12, 36681–36687 (2020). https://doi.org/10.1021/acsami.0c07514
- X.-B. Shi, Y. Liu, Z. Yuan, X.-K. Liu, Y. Miao et al., Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018). https://doi.org/10.1002/adom.201800667
- S. Kumar, T. Marcato, F. Krumeich, Y.-T. Li, Y.-C. Chiu et al., Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022). https://doi.org/10.1038/s41467-022-29812-5
- M. Pazos-Outón Luis, M. Szumilo, R. Lamboll, M. Richter Johannes, M. Crespo-Quesada et al., Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016). https://doi.org/10.1126/science.aaf1168
- C. Zou, L.Y. Lin, Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Opt. Lett. 45, 4786–4789 (2020). https://doi.org/10.1364/OL.400814
- Y.-C. Ye, Y.-Q. Li, X.-Y. Cai, W. Zhou, Y. Shen et al., Minimizing optical energy losses for long-lifetime perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2105813 (2021). https://doi.org/10.1002/adfm.202105813
- Y. Miao, L. Cheng, W. Zou, L. Gu, J. Zhang et al., Microcavity top-emission perovskite light-emitting diodes. Light Sci. Appl. 9, 89 (2020). https://doi.org/10.1038/s41377-020-0328-6
- Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li et al., Plasmonic effects of metallic nanops on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces 9, 34821–34832 (2017). https://doi.org/10.1021/acsami.7b08489
- X. Zhang, B. Xu, W. Wang, S. Liu, Y. Zheng et al., Plasmonic perovskite light-emitting diodes based on the Ag–CsPbBr3 system. ACS Appl. Mater. Interfaces 9, 4926–4931 (2017). https://doi.org/10.1021/acsami.6b12450
- P. Lova, D. Cortecchia, H.N.S. Krishnamoorthy, P. Giusto, C. Bastianini et al., Engineering the emission of broadband 2D perovskites by polymer distributed bragg reflectors. ACS Photonics 5, 867–874 (2018). https://doi.org/10.1021/acsphotonics.7b01077
- C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi et al., Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6, 7026 (2015). https://doi.org/10.1038/ncomms8026
- Q. Dong, L. Lei, J. Mendes, F. So, Operational stability of perovskite light emitting diodes. J. Phys: Mater. 3, 012002 (2020). https://doi.org/10.1088/2515-7639/ab60c4
- H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens et al., Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014). https://doi.org/10.1021/jz500113x
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
- O.A. Jaramillo-Quintero, R.S. Sanchez, M. Rincon, I. Mora-Sero, Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer. J. Phys. Chem. Lett. 6, 1883–1890 (2015). https://doi.org/10.1021/acs.jpclett.5b00732
- B. Jeong, H. Han, Y.J. Choi, S.H. Cho, E.H. Kim et al., All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 28, 1706401 (2018). https://doi.org/10.1002/adfm.201706401
- Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite leds. Nature 591, 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
- J. Xing, Y. Zhao, M. Askerka, L.N. Quan, X. Gong et al., Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018). https://doi.org/10.1038/s41467-018-05909-8
- P. Vashishtha, J.E. Halpert, Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29, 5965–5973 (2017). https://doi.org/10.1021/acs.chemmater.7b01609
- Z. Yuan, Y. Miao, Z. Hu, W. Xu, C. Kuang et al., Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019). https://doi.org/10.1038/s41467-019-10612-3
- X. Peng, X. Yang, D. Liu, T. Zhang, Y. Yang et al., Targeted distribution of passivator for polycrystalline perovskite light-emitting diodes with high efficiency. ACS Energy Lett. 6, 4187–4194 (2021). https://doi.org/10.1021/acsenergylett.1c01753
- X. Zheng, S. Yuan, J. Liu, J. Yin, F. Yuan et al., Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett. 5, 793–798 (2020). https://doi.org/10.1021/acsenergylett.0c00057
- S.J. Yoon, M. Kuno, P.V. Kamat, Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites. ACS Energy Lett. 2, 1507–1514 (2017). https://doi.org/10.1021/acsenergylett.7b00357
- C. Bi, Z. Yao, X. Sun, X. Wei, J. Wang et al., Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv. Mater. 33, 2006722 (2021). https://doi.org/10.1002/adma.202006722
- Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue leds based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
- A. Liu, C. Bi, J. Tian, All solution-processed high performance pure-blue perovskite quantum-dot light-emitting diodes. Adv. Funct. Mater. 32, 2207069 (2022). https://doi.org/10.1002/adfm.202207069
- J. Luo, X. Wang, S. Li, J. Liu, Y. Guo et al., Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018). https://doi.org/10.1038/s41586-018-0691-0
- Y. Zhang, Z. Zhang, W. Yu, Y. He, Z. Chen et al., Lead-free double perovskite Cs2AgIn0.9Bi0.1Cl6 quantum dots for white light-emitting diodes. Adv. Sci. 9, 2102895 (2022). https://doi.org/10.1002/advs.202102895
- H. Chen, L. Zhu, C. Xue, P. Liu, X. Du et al., Efficient and bright warm-white electroluminescence from lead-free metal halides. Nat. Commun. 12, 1421 (2021). https://doi.org/10.1038/s41467-021-21638-x
- W. Liu, Q. Lin, H. Li, K. Wu, I. Robel et al., Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138, 14954–14961 (2016). https://doi.org/10.1021/jacs.6b08085
- G. Huang, C. Wang, S. Xu, S. Zong, J. Lu et al., Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange. Adv. Mater. 29, 1700095 (2017). https://doi.org/10.1002/adma.201700095
- R. Sun, P. Lu, D. Zhou, W. Xu, N. Ding et al., Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes. ACS Energy Lett. 5, 2131–2139 (2020). https://doi.org/10.1021/acsenergylett.0c00931
- D. Liu, X. Liu, Y. Gan, Z. Liu, G. Sun et al., Perovskite/organic hybrid white electroluminescent devices with stable spectrum and extended operating lifetime. ACS Energy Lett. 7, 523–532 (2022). https://doi.org/10.1021/acsenergylett.1c02631
- Z. Chen, Z. Li, C. Zhang, X.-F. Jiang, D. Chen et al., Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv. Mater. 30, 1801370 (2018). https://doi.org/10.1002/adma.201801370
- G. Xing, B. Wu, X. Wu, M. Li, B. Du et al., Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017). https://doi.org/10.1038/ncomms14558
- J.M. Pietryga, Y.-S. Park, J. Lim, A.F. Fidler, W.K. Bae et al., Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016). https://doi.org/10.1021/acs.chemrev.6b00169
- L. Zhao, K.M. Lee, K. Roh, S.U.Z. Khan, B.P. Rand, Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019). https://doi.org/10.1002/adma.201805836
- G. Zou, Z. Li, Z. Chen, L. Chu, H.-L. Yip et al., Color-stable deep-blue perovskite light-emitting diodes based on organotrichlorosilane post-treatment. Adv. Funct. Mater. 31, 2103219 (2021). https://doi.org/10.1002/adfm.202103219
- A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016). https://doi.org/10.1038/nmat4572
- D. Yang, G. Zhang, R. Lai, Y. Cheng, Y. Lian et al., Germanium-lead perovskite light-emitting diodes. Nat. Commun. 12, 4295 (2021). https://doi.org/10.1038/s41467-021-24616-5
- H.-C. Wang, W. Wang, A.-C. Tang, H.-Y. Tsai, Z. Bao et al., High-performance CsPb1-xSnxBr3 perovskite quantum dots for light-emitting diodes. Angew. Chem. Int. Ed. 56, 13650–13654 (2017). https://doi.org/10.1002/anie.201706860
- W.-L. Hong, Y.-C. Huang, C.-Y. Chang, Z.-C. Zhang, H.-R. Tsai et al., Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes. Adv. Mater. 28, 8029–8036 (2016). https://doi.org/10.1002/adma.201601024
- L. Lanzetta, J.M. Marin-Beloqui, I. Sanchez-Molina, D. Ding, S.A. Haque, Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Lett. 2, 1662–1668 (2017). https://doi.org/10.1021/acsenergylett.7b00414
- H. Jia, H. Shi, R. Yu, H. Ma, Z. Wang et al., Biuret induced tin-anchoring and crystallization-regulating for efficient lead-free tin halide perovskite light-emitting diodes. Small 18, 2200036 (2022). https://doi.org/10.1002/smll.202200036
- J. Lu, X. Guan, Y. Li, K. Lin, W. Feng et al., Dendritic cssni3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv. Mater. 33, 2104414 (2021). https://doi.org/10.1002/adma.202104414
- K. Wang, L. Jin, Y. Gao, A. Liang, B.P. Finkenauer et al., Lead-free organic–perovskite hybrid quantum wells for highly stable light-emitting diodes. ACS Nano 15, 6316–6325 (2021). https://doi.org/10.1021/acsnano.1c00872
- C.-Y. Wang, P. Liang, R.-J. Xie, Y. Yao, P. Liu et al., Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 32, 7814–7821 (2020). https://doi.org/10.1021/acs.chemmater.0c02463
- Z. Ma, Z. Shi, D. Yang, F. Zhang, S. Li et al., Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 5, 385–394 (2020). https://doi.org/10.1021/acsenergylett.9b02096
- G. Seo, H. Jung, T.D. Creason, V. Yeddu, M. Bamidele et al., Lead-free halide light-emitting diodes with external quantum efficiency exceeding 7% using host–dopant strategy. ACS Energy Lett. 6, 2584–2593 (2021). https://doi.org/10.1021/acsenergylett.1c01117
- L. Wang, Z. Shi, Z. Ma, D. Yang, F. Zhang et al., Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett. 20, 3568–3576 (2020). https://doi.org/10.1021/acs.nanolett.0c00513
- G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque et al., CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781–3786 (2015). https://doi.org/10.1021/acs.jpclett.5b01666
- V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady et al., Fast and sensitive solution-processed visible-blind perovskite UV photodetectors. Adv. Mater. 28, 7264–7268 (2016). https://doi.org/10.1002/adma.201601196
- T. Zou, X. Liu, R. Qiu, Y. Wang, S. Huang et al., Enhanced UV-C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down-conversion layer. Adv. Opt. Mater. 7, 1801812 (2019). https://doi.org/10.1002/adom.201801812
- J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao et al., High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv. 7, 36722–36727 (2017). https://doi.org/10.1039/C7RA06597C
- E. Zheng, B. Yuh, G.A. Tosado, Q. Yu, Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films. J. Mater. Chem. C 5, 3796–3806 (2017). https://doi.org/10.1039/C7TC00639J
- P. Gui, H. Zhou, F. Yao, Z. Song, B. Li et al., Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small 15, 1902618 (2019). https://doi.org/10.1002/smll.201902618
- W. Zhu, M. Deng, D. Chen, Z. Zhang, W. Chai et al., Dual-phase CsPbCl3–Cs4PbCl6 perovskite films for self-powered, visible-blind UV photodetectors with fast response. ACS Appl. Mater. Interfaces 12, 32961–32969 (2020). https://doi.org/10.1021/acsami.0c09910
- M. Ahmadi, T. Wu, B. Hu, A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29, 1605242 (2017). https://doi.org/10.1002/adma.201605242
- H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204–5236 (2017). https://doi.org/10.1039/C6CS00896H
- H.L. Zhu, J.Q. Cheng, D. Zhang, C.J. Liang, C.J. Reckmeier et al., Room-temperature solution-processed NiOx:PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors. ACS Nano 10, 6808–6815 (2016). https://doi.org/10.1021/acsnano.6b02425
- L. Mei, K. Zhang, N. Cui, W. Yu, Y. Li et al., Ultraviolet-visible-short-wavelength infrared broadband and fast-response photodetectors enabled by individual monocrystalline perovskite nanoplate. Small (2023). https://doi.org/10.1002/smll.202301386
- M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng et al., Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015). https://doi.org/10.1038/ncomms9724
- Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015). https://doi.org/10.1038/nphoton.2015.156
- Q. Lin, A. Armin, P.L. Burn, P. Meredith, Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015). https://doi.org/10.1038/nphoton.2015.175
- W. Wu, X. Han, J. Li, X. Wang, Y. Zhang et al., Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 33, 2006006 (2021). https://doi.org/10.1002/adma.202006006
- L. Mei, R. Huang, C. Shen, J. Hu, P. Wang et al., Hybrid halide perovskite-based near-infrared photodetectors and imaging arrays. Adv. Opt. Mater. 10, 2102656 (2022). https://doi.org/10.1002/adom.202102656
- Q. Lin, A. Armin, P.L. Burn, P. Meredith, Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals. Laser Photonics Rev. 10, 1047–1053 (2016). https://doi.org/10.1002/lpor.201600215
- Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren et al., 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 4, 1829–1837 (2016). https://doi.org/10.1002/adom.201600327
- S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie et al., A flexible UV–Vis–NIR photodetector based on a perovskite/conjugated-polymer composite. Adv. Mater. 28, 5969–5974 (2016). https://doi.org/10.1002/adma.201600468
- W. Hu, H. Cong, W. Huang, Y. Huang, L. Chen et al., Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl. 8, 106 (2019). https://doi.org/10.1038/s41377-019-0218-y
- Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W.J. Yoo et al., High-performance perovskite–graphene hybrid photodetector. Adv. Mater. 27, 41–46 (2015). https://doi.org/10.1002/adma.201402271
- Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang et al., NiOx high-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 8, 1703432 (2018). https://doi.org/10.1002/aenm.201703432
- D.-H. Kang, S.R. Pae, J. Shim, G. Yoo, J. Jeon et al., An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 28, 7799–7806 (2016). https://doi.org/10.1002/adma.201600992
- W. Wang, D. Zhao, F. Zhang, L. Li, M. Du et al., Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region. Adv. Funct. Mater. 27, 1703953 (2017). https://doi.org/10.1002/adfm.201703953
- H.L. Zhu, Z. Liang, Z. Huo, W.K. Ng, J. Mao et al., Low-bandgap methylammonium-rubidium cation sn-rich perovskites for efficient ultraviolet–visible–near infrared photodetectors. Adv. Funct. Mater. 28, 1706068 (2018). https://doi.org/10.1002/adfm.201706068
- H.L. Zhu, H. Lin, Z. Song, Z. Wang, F. Ye et al., Achieving high-quality Sn–Pb perovskite films on complementary metal-oxide-semiconductor-compatible metal/silicon substrates for efficient imaging array. ACS Nano 13, 11800–11808 (2019). https://doi.org/10.1021/acsnano.9b05774
- R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
- F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu et al., Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Sol. RRL 2, 1800136 (2018). https://doi.org/10.1002/solr.201800136
- Z. Zhang, G. Yang, Recent advancements in using perovskite single crystals for gamma-ray detection. J. Mater. Sci. Mater. Electron. 32, 12758–12770 (2021). https://doi.org/10.1007/s10854-020-03519-z
- L.C. Johnson, D.L. Campbell, E.L. Hull, T.E. Peterson, Characterization of a high-purity germanium detector for small-animal spect. Phys. Med. Biology 56, 5877 (2011). https://doi.org/10.1088/0031-9155/56/18/007
- V. Zaletin, V. Varvaritsa, Wide-bandgap compound semiconductors for X-or gamma-ray detectors. Russ. Microlectron. 40, 543–552 (2011). https://doi.org/10.1134/S1063739711080208
- U.N. Roy, G. Camarda, Y. Cui, R. Gul, A. Hossain et al., Role of selenium addition to cdznte matrix for room-temperature radiation detector applications. Sci. Rep. 9, 1620 (2019). https://doi.org/10.1038/s41598-018-38188-w
- H. Wei, J. Huang, Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019). https://doi.org/10.1038/s41467-019-08981-w
- O. Nazarenko, S. Yakunin, V. Morad, I. Cherniukh, M.V. Kovalenko, Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9, e373 (2017). https://doi.org/10.1038/am.2017.45
- H. Wei, D. DeSantis, W. Wei, Y. Deng, D. Guo et al., Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017). https://doi.org/10.1038/nmat4927
- Y. He, L. Matei, H.J. Jung, K.M. McCall, M. Chen et al., High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018). https://doi.org/10.1038/s41467-018-04073-3
- M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). https://doi.org/10.1038/ncomms8586
- Y. Liu, Y. Zhang, X. Zhu, J. Feng, I. Spanopoulos et al., Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33, 2006010 (2021). https://doi.org/10.1002/adma.202006010
- C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z. Liu, M. Sebastian et al., Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth Design 13, 2722–2727 (2013). https://doi.org/10.1021/cg400645t
- S. Yakunin, D.N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh et al., Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 10, 585–589 (2016). https://doi.org/10.1038/nphoton.2016.139
- Y. He, W. Ke, G.C. Alexander, K.M. McCall, D.G. Chica et al., Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photonics 5, 4132–4138 (2018). https://doi.org/10.1021/acsphotonics.8b00873
- Y. He, M. Petryk, Z. Liu, D.G. Chica, I. Hadar et al., CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 15, 36–42 (2021). https://doi.org/10.1038/s41566-020-00727-1
- S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9, 444 (2015). https://doi.org/10.1038/nphoton.2015.82
- W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11, 726 (2017). https://doi.org/10.1038/s41566-017-0012-4
- Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87 (2017). https://doi.org/10.1038/nature24032
- H. Cho, H. Kim, Y. Choi, S. Lee, H. Ryu et al., The effects of photon flux on energy spectra and imaging characteristics in a photon-counting X-ray detector. Phys. Med. Biology 58, 4865 (2013). https://doi.org/10.1088/0031-9155/58/14/4865
- K. Taguchi, E.C. Frey, X. Wang, J.S. Iwanczyk, W.C. Barber, An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting X-ray detectors. Med. Phys. 37, 3957–3969 (2010). https://doi.org/10.1118/1.3429056
- L. Pan, Y. He, V.V. Klepov, M.C. De Siena, M.G. Kanatzidis, Perovskite CsPbBr3 single crystal detector for high flux X-ray photon counting. IEEE Trans. Med. Imaging 41, 3053–3061 (2022). https://doi.org/10.1109/TMI.2022.3176801
- E.M. Tennyson, T.A. Doherty, S.D. Stranks, Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019). https://doi.org/10.1038/s41578-019-0125-0
- H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian et al., Femtosecond X-ray protein nanocrystallography. Nature 470, 73–73 (2011). https://doi.org/10.1038/nature09750
- M. Spahn, X-ray detectors in medical imaging. Nucl. Inst. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 731, 57–63 (2013). https://doi.org/10.1016/j.nima.2013.05.174
- X. Duan, J. Cheng, L. Zhang, Y. Xing, Z. Chen et al., X-ray cargo container inspection system with few-view projection imaging. Nucl. Inst. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 598, 439–444 (2009). https://doi.org/10.1016/j.nima.2008.08.151
- H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4, 144–163 (2021). https://doi.org/10.1016/j.matt.2020.11.015
- Y. Su, W. Ma, Y. Yang, Perovskite semiconductors for direct X-ray detection and imaging. J. Semicond. (2020). https://doi.org/10.1088/1674-4926/41/5/051204
- W. Wei, Y. Zhang, Q. Xu, H. Wei, Y. Fang et al., Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 11, 315–321 (2017). https://doi.org/10.1038/nphoton.2017.43
- J. Peng, C.Q. Xia, Y. Xu, R. Li, L. Cui et al., Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 12, 1531 (2021). https://doi.org/10.1038/s41467-021-21805-0
- R. Zhuang, X. Wang, W. Ma, Y. Wu, X. Chen et al., Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 13, 602 (2019). https://doi.org/10.1038/s41566-019-0466-7
- X. Zheng, W. Zhao, P. Wang, H. Tan, M.I. Saidaminov et al., Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J. Energy Chem. 49, 299–306 (2020). https://doi.org/10.1016/j.jechem.2020.02.049
- Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang et al., Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun. 11, 2304 (2020). https://doi.org/10.1038/s41467-020-16034-w
- M. Xia, Z. Song, H. Wu, X. Du, X. He et al., Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32, 2110729 (2022). https://doi.org/10.1002/adfm.202110729
- P. Jin, Y. Tang, X. Xu, P. Ran, Y. Wang et al., Solution-processed perovskite/metal-oxide hybrid X-ray detector and array with decoupled electronic and ionic transport pathways. Small Methods (2022). https://doi.org/10.1002/smtd.202200500
- Y. Li, E. Adeagbo, C. Koughia, B. Simonson, R.D. Pettipas et al., Direct conversion X-ray detectors with 70 pA cm-2 dark currents coated from an alcohol-based perovskite ink. J. Mater. Chem. C 10, 1228–1235 (2022). https://doi.org/10.1039/d1tc05338h
- Y. Zhou, L. Zhao, Z. Ni, S. Xu, J. Zhao et al., Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abg6716
- G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014). https://doi.org/10.1038/nmat3911
- M. Li, Q. Shang, C. Li, S. Li, Y. Liang et al., High optical gain of solution-processed mixed-cation CsPbBr3 thin films towards enhanced amplified spontaneous emission. Adv. Funct. Mater. 31, 2102210 (2021). https://doi.org/10.1002/adfm.202102210
- G. Xing, M.H. Kumar, W.K. Chong, X. Liu, Y. Cai et al., Solution-processed tin-based perovskite for near-infrared lasing. Adv. Mater. 28, 8191–8196 (2016). https://doi.org/10.1002/adma.201601418
- R. Dhanker, A.N. Brigeman, A.V. Larsen, R.J. Stewart, J.B. Asbury et al., Random lasing in organo-lead halide perovskite microcrystal networks. Appl. Phys. Lett. 105, 151112 (2014). https://doi.org/10.1063/1.4898703
- F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.D. Jarausch et al., High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014). https://doi.org/10.1021/jz5005285
- H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015). https://doi.org/10.1038/nmat4271
- Q. Zhang, S.T. Ha, X. Liu, T.C. Sum, Q. Xiong, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014). https://doi.org/10.1021/nl503057g
- K. Wang, G. Xing, Q. Song, S. Xiao, Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Adv. Mater. 33, e2000306 (2021). https://doi.org/10.1002/adma.202000306
- B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang et al., Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano 11, 10681–10688 (2017). https://doi.org/10.1021/acsnano.7b04496
- B.R. Sutherland, S. Hoogland, M.M. Adachi, C.T. Wong, E.H. Sargent, Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014). https://doi.org/10.1021/nn504856g
- N. Zhang, W. Sun, S.P. Rodrigues, K. Wang, Z. Gu et al., Highly reproducible organometallic halide perovskite microdevices based on top-down lithography. Adv. Mater. 29, 1606205 (2017). https://doi.org/10.1002/adma.201606205
- H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao et al., 2D ruddlesden-popper perovskites microring laser array. Adv. Mater. 30, e1706186 (2018). https://doi.org/10.1002/adma.201706186
- H. Dong, C.N. Saggau, M. Zhu, J. Liang, S. Duan et al., Perovskite origami for programmable microtube lasing. Adv. Funct. Mater. 31, 2109080 (2021). https://doi.org/10.1002/adfm.202109080
- Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng et al., All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101–7108 (2015). https://doi.org/10.1002/adma.201503573
- K. Wang, Z. Gu, S. Liu, J. Li, S. Xiao et al., Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation. Opt. Lett. 41, 555–558 (2016). https://doi.org/10.1364/OL.41.000555
- M. Saliba, S.M. Wood, J.B. Patel, P.K. Nayak, J. Huang et al., Structured organic-inorganic perovskite toward a distributed feedback laser. Adv. Mater. 28, 923–929 (2016). https://doi.org/10.1002/adma.201502608
- S. Chen, K. Roh, J. Lee, W.K. Chong, Y. Lu et al., A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 10, 3959–3967 (2016). https://doi.org/10.1021/acsnano.5b08153
- Y. Jia, R.A. Kerner, A.J. Grede, A.N. Brigeman, B.P. Rand et al., Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 16, 4624–4629 (2016). https://doi.org/10.1021/acs.nanolett.6b01946
- Y. Jia, R.A. Kerner, A.J. Grede, B.P. Rand, N.C. Giebink, Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics 11, 784–788 (2017). https://doi.org/10.1038/s41566-017-0047-6
- T.J.S. Evans, A. Schlaus, Y. Fu, X. Zhong, T.L. Atallah et al., Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2017). https://doi.org/10.1002/adom.201700982
- P. Brenner, O. Bar-On, M. Jakoby, I. Allegro, B.S. Richards et al., Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nat. Commun. 10, 988 (2019). https://doi.org/10.1038/s41467-019-08929-0
- Z. Gu, K. Wang, W. Sun, J. Li, S. Liu et al., Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4, 472–479 (2016). https://doi.org/10.1002/adom.201500597
- D.C. Yang, C. Xie, X.H. Xu, P. You, F. Yan et al., Lasing characteristics of CH3NH3PbCl3 single-crystal microcavities under multiphoton excitation. Adv. Opt. Mater. 6, 1700992 (2018). https://doi.org/10.1002/adom.201700992
- Y. Zhou, Z. Hu, Y. Li, J. Xu, X. Tang et al., CsPbBr 3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser. Appl. Phys. Lett. 108, 261108 (2016). https://doi.org/10.1063/1.4955037
- J. Li, H. Dong, B. Xu, S. Zhang, Z. Cai et al., CsPbBr3 perovskite quantum dots: saturable absorption properties and passively q-switched visible lasers. Photon Res. 5, 457 (2017). https://doi.org/10.1364/prj.5.000457
- B. Tang, L. Sun, W. Zheng, H. Dong, B. Zhao et al., Ultrahigh quality upconverted single-mode lasing in cesium lead bromide spherical microcavity. Adv. Opt. Mater. 6, 1800391 (2018). https://doi.org/10.1002/adom.201800391
- K. Iga, Vertical-cavity surface-emitting laser: Its conception and evolution. Jpn. J. Appl. Phys. 47, 1–10 (2008). https://doi.org/10.1143/jjap.47.1
- K. Wang, W. Sun, J. Li, Z. Gu, S. Xiao et al., Unidirectional lasing emissions from CH3NH3PbBr3 perovskite microdisks. ACS Photonics 3, 1125–1130 (2016). https://doi.org/10.1021/acsphotonics.6b00209
- P.J. Cegielski, S. Neutzner, C. Porschatis, H. Lerch, J. Bolten et al., Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Opt. Express. 25, 13199–13206 (2017). https://doi.org/10.1364/OE.25.013199
- Z.Y. Gu, W.Z. Sun, K.Y. Wang, N. Zhang, C. Zhang et al., Hybridizing CH3NH3PbBr3 microwires and tapered fibers for efficient light collection. J. Mater. Chem. A 4, 8015–8019 (2016). https://doi.org/10.1039/c6ta01620k
- Y. Wang, X. Cheng, K. Yuan, Y. Wan, P. Li et al., Direct synthesis of high-quality perovskite nanocrystals on a flexible substrate and deterministic transfer. Sci. Bull. 63, 1576–1582 (2018). https://doi.org/10.1016/j.scib.2018.11.014
- N. Zhang, K. Wang, H. Wei, Z. Gu, W. Sun et al., Postsynthetic and selective control of lead halide perovskite microlasers. J. Phys. Chem. Lett. 7, 3886–3891 (2016). https://doi.org/10.1021/acs.jpclett.6b01751
- Z. Yang, J. Lu, M. ZhuGe, Y. Cheng, J. Hu et al., Controllable growth of aligned monocrystalline CsPbBr3 microwire a
References
M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3 V voltage loss. Science 369, 1615 (2020). https://doi.org/10.1126/science.abb7167
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu et al., Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021). https://doi.org/10.1002/adma.202103268
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato et al., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12, 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y
L. Zhu, H. Cao, C. Xue, H. Zhang, M. Qin et al., Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat. Commun. 12, 5081 (2021). https://doi.org/10.1038/s41467-021-25407-8
J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
X. Zhan, X. Zhang, Z. Liu, C. Chen, L. Kong et al., Boosting the performance of self-powered CsPbCl3-based UV photodetectors by a sequential vapor-deposition strategy and heterojunction engineering. ACS Appl. Mater. Interfaces 13, 45744–45757 (2021). https://doi.org/10.1021/acsami.1c15013
L.H. Zeng, Q.M. Chen, Z.X. Zhang, D. Wu, H. Yuan et al., Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 6, 1901134 (2019). https://doi.org/10.1002/advs.201901134
L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang et al., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). https://doi.org/10.1038/ncomms6404
S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas et al., High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4, 681–688 (2021). https://doi.org/10.1038/s41928-021-00644-3
Y. He, I. Hadar, M.G. Kanatzidis, Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16, 14–26 (2022). https://doi.org/10.1038/s41566-021-00909-5
C. Qin, A.S.D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang et al., Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020). https://doi.org/10.1038/s41586-020-2621-1
C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan et al., Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). https://doi.org/10.1126/science.aba4597
Y. Park, S.H. Kim, D. Lee, J.-S. Lee, Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. Nat. Commun. 12, 3527 (2021). https://doi.org/10.1038/s41467-021-23871-w
J. Choi, J.S. Han, K. Hong, S.Y. Kim, H.W. Jang, Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30, 1704002 (2018). https://doi.org/10.1002/adma.201704002
R.A. John, N. Yantara, Y.F. Ng, G. Narasimman, E. Mosconi et al., Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater. 30, 1805454 (2018). https://doi.org/10.1002/adma.201805454
D. Zhao, G. Xiao, Z. Liu, L. Sui, K. Yuan et al., Harvesting cool daylight in hybrid organic–inorganic halides microtubules through the reservation of pressure-induced emission. Adv. Mater. 33, 2100323 (2021). https://doi.org/10.1002/adma.202100323
R. Fu, W. Zhao, L. Wang, Z. Ma, G. Xiao et al., Pressure-induced emission toward harvesting cold white light from warm white light. Angew. Chem. Int. Ed. 60, 10082–10088 (2021). https://doi.org/10.1002/anie.202015395
D. Lu, C. Xu, Y. Zhong, J. Dong, X. He et al., The effect of the effective electron mass on the hot electron collection. DeCarbon (2023). https://doi.org/10.1016/j.decarb.2023.100002
H.L. Wells, Über die cäsium- und kalium-bleihalogenide. Z. Anorg. Chem. 3, 195–210 (1893). https://doi.org/10.1002/zaac.18930030124
M. Era, S. Morimoto, T. Tsutsui, S. Saito, Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 65, 676–678 (1994). https://doi.org/10.1063/1.112265
C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r
National renewable energy laboratory. Best research-cell effiencies. 2022(8).
Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
N.C. Giebink, G.P. Wiederrecht, M.R. Wasielewski, S.R. Forrest, Thermodynamic efficiency limit of excitonic solar cells. Phys. Rev. B 83, 195326 (2011). https://doi.org/10.1103/PhysRevB.83.195326
M.A. Green, E.D. Dunlop, G. Siefer, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 61) (accessed: 2022). Prog. Photovoltaics Res. Appl. 31, 3–16 (2023). https://doi.org/10.1002/pip.3646
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci. 7, 982–988 (2014). https://doi.org/10.1039/c3ee43822h
J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho et al., Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015). https://doi.org/10.1002/aenm.201501310
G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti et al., Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 11, 2490–2496 (2020). https://doi.org/10.1021/acs.jpclett.0c00295
C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x
C. Liu, Y. Yang, O.A. Syzgantseva, Y. Ding, M.A. Syzgantseva et al., Α-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells. Adv. Mater. 32, e2002632 (2020). https://doi.org/10.1002/adma.202002632
L.A. Frolova, D.V. Anokhin, A.A. Piryazev, S.Y. Luchkin, N.N. Dremova et al., Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67–72 (2017). https://doi.org/10.1021/acs.jpclett.6b02594
Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao et al., Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2, 2219–2227 (2017). https://doi.org/10.1021/acsenergylett.7b00508
T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang et al., Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31, 1900605 (2019). https://doi.org/10.1002/adma.201900605
Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang et al., Efficient α- CsPbI3 photovoltaics with surface terminated organic cations. Joule 2, 2065–2075 (2018). https://doi.org/10.1016/j.joule.2018.06.013
S. Tan, B. Yu, Y. Cui, F. Meng, C. Huang et al., Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew. Chem. Int. Ed. 61, e202201300 (2022). https://doi.org/10.1002/anie.202201300
Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022). https://doi.org/10.1126/science.abm8566
J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
W.Q. Wu, J.F. Liao, J.X. Zhong, Y.F. Xu, L. Wang et al., Suppressing interfacial charge recombination in electron-transport-layer-free perovskite solar cells to give an efficiency exceeding 21%. Angew. Chem. Int. Ed. 132, 21166–21173 (2020). https://doi.org/10.1002/ange.202005680
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
Y. Lv, R. Yuan, B. Cai, B. Bahrami, A.H. Chowdhury et al., High‐efficiency perovskite solar cells enabled by anatase TiO2 nanopyramid arrays with an oriented electric field. Angew. Chem. Int. Ed. 59, 11969–11976 (2020). https://doi.org/10.1002/anie.201915928
W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang et al., Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 9, 1625 (2018). https://doi.org/10.1038/s41467-018-04028-8
S. Liu, D. Zhang, Y. Sheng, W. Zhang, Z. Qin et al., Highly oriented MAPbI3 crystals for efficient hole-conductor-free printable mesoscopic perovskite solar cells. Fundam Res. 2, 276–283 (2022). https://doi.org/10.1016/j.fmre.2021.09.008
T. Tian, J.-X. Zhong, M. Yang, W. Feng, C. Zhang et al., Interfacial linkage and carbon encapsulation enable full solution-printed perovskite photovoltaics with prolonged lifespan. Angew. Chem. Int. Ed. 60, 23735–23742 (2021). https://doi.org/10.1002/anie.202108495
X. Yang, Q. Li, Y. Zheng, D. Luo, Y. Zhang et al., Perovskite hetero-bilayer for efficient charge-transport-layer-free solar cells. Joule 6, 1277–1289 (2022). https://doi.org/10.1016/j.joule.2022.04.012
M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot- SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022). https://doi.org/10.1126/science.abh1885
J. Peng, D. Walter, Y. Ren, M. Tebyetekerwa, Y. Wu et al., Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021). https://doi.org/10.1126/science.abb8687
W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015). https://doi.org/10.1126/science.aad1015
J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013). https://doi.org/10.1002/adma.201301327
S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda et al., Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 2868 (2022). https://doi.org/10.1038/s41467-022-30426-0
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). https://doi.org/10.1126/science.abm5784
F. Sadegh, S. Akin, M. Moghadam, R. Keshavarzi, V. Mirkhani et al., Copolymer-templated nickel oxide for high-efficiency mesoscopic perovskite solar cells in inverted architecture. Adv. Funct. Mater. 31, 2102237 (2021). https://doi.org/10.1002/adfm.202102237
Y. Chen, Z. Yang, S. Wang, X. Zheng, Y. Wu et al., Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 30, 1805660 (2018). https://doi.org/10.1002/adma.201805660
Y. Chen, W. Tang, Y. Wu, X. Yu, J. Yang et al., Reducing carrier transport barrier in anode interface enables efficient and stable inverted mesoscopic methylammonium-free perovskite solar cells. Chem. Eng. J. 425, 131499 (2021). https://doi.org/10.1016/j.cej.2021.131499
Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17, 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
J. Peng, F. Kremer, D. Walter, Y. Wu, Y. Ji et al., Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578 (2022). https://doi.org/10.1038/s41586-021-04216-5
T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). https://doi.org/10.1038/ncomms3885
L. Xiong, J. Li, F. Ye, H. Wang, Y. Guo et al., Bifunctional SnO2 colloid offers no annealing effect compact layer and mesoporous scaffold for efficient perovskite solar cells. Adv. Funct. Mater. 31, 2103949 (2021). https://doi.org/10.1002/adfm.202103949
K. Mahmood, B.S. Swain, H.S. Jung, Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale 6, 9127–9138 (2014). https://doi.org/10.1039/c4nr02065k
S.S. Mali, C. Su Shim, C. Kook Hong, Highly porous zinc stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci. Rep. 5, 11424 (2015). https://doi.org/10.1038/srep11424
L.Z. Zhu, J.J. Ye, X.H. Zhang, H.Y. Zheng, G.Z. Liu et al., Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J. Mater. Chem. A 5, 3675–3682 (2017). https://doi.org/10.1039/c6ta09689a
A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed et al., Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118, 28494–28501 (2014). https://doi.org/10.1021/jp509753p
H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. Garcia de Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017). https://doi.org/10.1126/science.aai9081
J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015). https://doi.org/10.1039/c5ee02608c
R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu et al., Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 14, 5074–5083 (2021). https://doi.org/10.1039/D1EE01519B
Z. Zheng, F. Li, J. Gong, Y. Ma, J. Gu et al., Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv. Mater. 34, 2109879 (2022). https://doi.org/10.1002/adma.202109879
Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34, 2106118 (2022). https://doi.org/10.1002/adma.202106118
J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013). https://doi.org/10.1039/C3NR00218G
X. Gao, J. Li, J. Baker, Y. Hou, D. Guan et al., Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films. Chem. Commun. 50, 6368–6371 (2014). https://doi.org/10.1039/c4cc01864h
Y. Lv, P. Wang, B. Cai, Q. Ma, X. Zheng et al., Facile fabrication of SnO2 nanorod arrays films as electron transporting layer for perovskite solar cells. Sol. RRL 2, 1800133 (2018). https://doi.org/10.1002/solr.201800133
H. Sun, K. Deng, Y. Zhu, M. Liao, J. Xiong et al., A novel conductive mesoporous layer with a dynamic two-step deposition strategy boosts efficiency of perovskite solar cells to 20%. Adv. Mater. 30, 1801935 (2018). https://doi.org/10.1002/adma.201801935
D. Zhong, B. Cai, X. Wang, Z. Yang, Y. Xing et al., Synthesis of oriented TiO2 nanocones with fast charge transfer for perovskite solar cells. Nano Energy 11, 409–418 (2015). https://doi.org/10.1016/j.nanoen.2014.11.014
L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31, e1806133 (2019). https://doi.org/10.1002/adma.201806133
Y. Kim, E.H. Jung, G. Kim, D. Kim, B.J. Kim et al., Sequentially fluorinated PTAA polymers for enhancing Voc of high-performance perovskite solar cells. Adv. Energy Mater. 8, 1801668 (2018). https://doi.org/10.1002/aenm.201801668
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). https://doi.org/10.1126/science.abm5784
M. Li, H. Li, Q. Zhuang, D. He, B. Liu et al., Stabilizing perovskite precursor by synergy of Functional groups for NiOx -based inverted solar cells with 23.5% efficiency. Angew. Chem. Int. Ed. 61, e202206914 (2022). https://doi.org/10.1002/anie.202206914
K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau et al., P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756 (2014). https://doi.org/10.1038/srep04756
Y. Chen, Z. Yang, X. Jia, Y. Wu, N. Yuan et al., Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy 61, 148–157 (2019). https://doi.org/10.1016/j.nanoen.2019.04.042
D. Li, L. Chao, C. Chen, X. Ran, Y. Wang et al., In situ interface engineering for highly efficient electron-transport-layer-free perovskite solar cells. Nano Lett. 20, 5799–5806 (2020). https://doi.org/10.1021/acs.nanolett.0c01689
W. Kong, W. Li, C. Liu, H. Liu, J. Miao et al., Organic monomolecular layers enable energy-level matching for efficient hole transporting layer free inverted perovskite solar cells. ACS Nano 13, 1625–1634 (2019). https://doi.org/10.1021/acsnano.8b07627
Y. Wu, L. Wan, S. Fu, W. Zhang, X. Li et al., Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells. J. Mater. Chem. A 7, 14136–14144 (2019). https://doi.org/10.1039/C9TA04192C
S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao et al., A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504–7512 (2017). https://doi.org/10.1021/jacs.7b01439
L. Fagiolari, F. Bella, Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12, 3437–3472 (2019). https://doi.org/10.1039/C9EE02115A
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). https://doi.org/10.1126/science.1254763
X. Chen, Y. Xia, Q. Huang, Z. Li, A. Mei et al., Tailoring the dimensionality of hybrid perovskites in mesoporous carbon electrodes for type-II band alignment and enhanced performance of printable hole-conductor-free perovskite solar cells. Adv. Energy Mater. 11, 2100292 (2021). https://doi.org/10.1002/aenm.202100292
J. Du, C. Qiu, S. Li, W. Zhang, W. Zhang et al., Minimizing the voltage loss in hole-conductor-free printable mesoscopic perovskite solar cells. Adv. Energy Mater. 12, 2102229 (2022). https://doi.org/10.1002/aenm.202102229
L. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki et al., Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020). https://doi.org/10.1002/adma.202000752
H. Bu, C. He, Y. Xu, L. Xing, X. Liu et al., Emerging new-generation detecting and sensing of metal halide perovskites. Adv. Electron. Mater. 8, 2101204 (2022). https://doi.org/10.1002/aelm.202101204
Y.-H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao et al., Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021). https://doi.org/10.1126/science.abf5291
Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015). https://doi.org/10.1126/science.aad1818
M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
M. Ban, Y. Zou, J.P.H. Rivett, Y. Yang, T.H. Thomas et al., Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018). https://doi.org/10.1038/s41467-018-06425-5
Z. Chu, Y. Zhao, F. Ma, C.-X. Zhang, H. Deng et al., Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat. Commun. 11, 4165 (2020). https://doi.org/10.1038/s41467-020-17943-6
J. Song, J. Li, X. Li, L. Xu, Y. Dong et al., Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015). https://doi.org/10.1002/adma.201502567
J. Wang, N. Wang, Y. Jin, J. Si, Z.-K. Tan et al., Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015). https://doi.org/10.1002/adma.201405217
J. Si, Y. Liu, Z. He, H. Du, K. Du et al., Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 11, 11100–11107 (2017). https://doi.org/10.1021/acsnano.7b05191
Y. Liu, J. Cui, K. Du, H. Tian, Z. He et al., Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 13, 760–764 (2019). https://doi.org/10.1038/s41566-019-0505-4
B. Zhao, Y. Lian, L. Cui, G. Divitini, G. Kusch et al., Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020). https://doi.org/10.1038/s41928-020-00487-4
M. Lu, X. Zhang, Y. Zhang, J. Guo, X. Shen et al., Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 30, 1804691 (2018). https://doi.org/10.1002/adma.201804691
P. Teng, S. Reichert, W. Xu, S.-C. Yang, F. Fu et al., Degradation and self-repairing in perovskite light-emitting diodes. Matter 4, 3710–3724 (2021). https://doi.org/10.1016/j.matt.2021.09.007
C. Cho, B. Zhao, G.D. Tainter, J.-Y. Lee, R.H. Friend et al., The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020). https://doi.org/10.1038/s41467-020-14401-1
B. Guo, R. Lai, S. Jiang, L. Zhou, Z. Ren et al., Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics 16, 637–643 (2022). https://doi.org/10.1038/s41566-022-01046-3
M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021). https://doi.org/10.1038/s41467-020-20582-6
J. Chen, J. Wang, X. Xu, J. Li, J. Song et al., Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 15, 238–244 (2021). https://doi.org/10.1038/s41566-020-00743-1
Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou et al., Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5, 456–466 (2021). https://doi.org/10.1016/j.joule.2020.12.008
W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang et al., Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018). https://doi.org/10.1038/s41467-018-03049-7
W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao et al., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x
J. Cui, Y. Liu, Y. Deng, C. Lin, Z. Fang et al., Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021). https://doi.org/10.1126/sciadv.abg8458
Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng et al., Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10, 5633 (2019). https://doi.org/10.1038/s41467-019-13580-w
Y. Liu, Z. Li, J. Xu, Y. Dong, B. Chen et al., Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes. J. Am. Chem. Soc. 144, 4009–4016 (2022). https://doi.org/10.1021/jacs.1c12556
G. Li, F.W.R. Rivarola, N.J.L.K. Davis, S. Bai, T.C. Jellicoe et al., Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016). https://doi.org/10.1002/adma.201600064
L. Xu, J. Li, B. Cai, J. Song, F. Zhang et al., A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020). https://doi.org/10.1038/s41467-020-17633-3
H. Li, H. Lin, D. Ouyang, C. Yao, C. Li et al., Efficient and stable red perovskite light-emitting diodes with operational stability >300 h. Adv. Mater. 33, 2008820 (2021). https://doi.org/10.1002/adma.202008820
B. Han, S. Yuan, B. Cai, J. Song, W. Liu et al., Green perovskite light-emitting diodes with 200 hours stability and 16% efficiency: cross-linking strategy and mechanism. Adv. Funct. Mater. 31, 2011003 (2021). https://doi.org/10.1002/adfm.202011003
Z. Yao, C. Bi, A. Liu, M. Zhang, J. Tian, High brightness and stability pure-blue perovskite light-emitting diodes based on a novel structural quantum-dot film. Nano Energy 95, 106974 (2022). https://doi.org/10.1016/j.nanoen.2022.106974
Y. Yang, S. Xu, Z. Ni, C.H. Van Brackle, L. Zhao et al., Highly efficient pure-blue light-emitting diodes based on rubidium and chlorine alloyed metal halide perovskite. Adv. Mater. 33, 2100783 (2021). https://doi.org/10.1002/adma.202100783
Y. Liu, Y. Dong, T. Zhu, D. Ma, A. Proppe et al., Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143, 15606–15615 (2021). https://doi.org/10.1021/jacs.1c02148
C. Kuang, Z. Hu, Z. Yuan, K. Wen, J. Qing et al., Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 5, 618–630 (2021). https://doi.org/10.1016/j.joule.2021.01.003
H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019). https://doi.org/10.1038/s41467-019-08425-5
Z. Chen, Z. Li, T.R. Hopper, A.A. Bakulin, H.-L. Yip, Materials, photophysics and device engineering of perovskite light-emitting diodes. Rep. Prog. Phys. 84, 046401 (2021). https://doi.org/10.1088/1361-6633/abefba
J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
C. Zou, C. Chang, D. Sun, K.F. Böhringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20, 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
C. Zou, Y. Liu, D.S. Ginger, L.Y. Lin, Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14, 6076–6086 (2020). https://doi.org/10.1021/acsnano.0c01817
L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci. Appl. 10, 61 (2021). https://doi.org/10.1038/s41377-021-00501-0
X. Zhao, Z.-K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14, 215–218 (2020). https://doi.org/10.1038/s41566-019-0559-3
Y. Jiang, C. Qin, M. Cui, T. He, K. Liu et al., Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019). https://doi.org/10.1038/s41467-019-09794-7
J. Lin, X. Dai, X. Liang, D. Chen, X. Zheng et al., High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function. Adv. Funct. Mater. 30, 1907265 (2020). https://doi.org/10.1002/adfm.201907265
Y.-H. Kim, H. Cho, J.H. Heo, T.-S. Kim, N. Myoung et al., Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015). https://doi.org/10.1002/adma.201403751
D. Ma, K. Lin, Y. Dong, H. Choubisa, A.H. Proppe et al., Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021). https://doi.org/10.1038/s41586-021-03997-z
Y.-K. Wang, F. Yuan, Y. Dong, J.-Y. Li, A. Johnston et al., All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 16164–16170 (2021). https://doi.org/10.1002/anie.202104812
L. Zhang, Y. Jiang, Y. Feng, M. Cui, S. Li et al., Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 62, e202302184 (2023). https://doi.org/10.1002/anie.202302184
T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
I. Zarazua, G. Han, P.P. Boix, S. Mhaisalkar, F. Fabregat-Santiago et al., Surface recombination and collection efficiency in perovskite solar cells from impedance analysis. J. Phys. Chem. Lett. 7, 5105–5113 (2016). https://doi.org/10.1021/acs.jpclett.6b02193
X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang et al., Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16, 1415–1420 (2016). https://doi.org/10.1021/acs.nanolett.5b04959
J.C. Yu, D.B. Kim, G. Baek, B.R. Lee, E.D. Jung et al., High-performance planar perovskite optoelectronic devices: a morphological and interfacial control by polar solvent treatment. Adv. Mater. 27, 3492–3500 (2015). https://doi.org/10.1002/adma.201500465
R. Li, L. Cai, Y. Zou, H. Xu, Y. Tan et al., High-efficiency perovskite light-emitting diodes with improved interfacial contact. ACS Appl. Mater. Interfaces 12, 36681–36687 (2020). https://doi.org/10.1021/acsami.0c07514
X.-B. Shi, Y. Liu, Z. Yuan, X.-K. Liu, Y. Miao et al., Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018). https://doi.org/10.1002/adom.201800667
S. Kumar, T. Marcato, F. Krumeich, Y.-T. Li, Y.-C. Chiu et al., Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022). https://doi.org/10.1038/s41467-022-29812-5
M. Pazos-Outón Luis, M. Szumilo, R. Lamboll, M. Richter Johannes, M. Crespo-Quesada et al., Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016). https://doi.org/10.1126/science.aaf1168
C. Zou, L.Y. Lin, Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Opt. Lett. 45, 4786–4789 (2020). https://doi.org/10.1364/OL.400814
Y.-C. Ye, Y.-Q. Li, X.-Y. Cai, W. Zhou, Y. Shen et al., Minimizing optical energy losses for long-lifetime perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2105813 (2021). https://doi.org/10.1002/adfm.202105813
Y. Miao, L. Cheng, W. Zou, L. Gu, J. Zhang et al., Microcavity top-emission perovskite light-emitting diodes. Light Sci. Appl. 9, 89 (2020). https://doi.org/10.1038/s41377-020-0328-6
Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li et al., Plasmonic effects of metallic nanops on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces 9, 34821–34832 (2017). https://doi.org/10.1021/acsami.7b08489
X. Zhang, B. Xu, W. Wang, S. Liu, Y. Zheng et al., Plasmonic perovskite light-emitting diodes based on the Ag–CsPbBr3 system. ACS Appl. Mater. Interfaces 9, 4926–4931 (2017). https://doi.org/10.1021/acsami.6b12450
P. Lova, D. Cortecchia, H.N.S. Krishnamoorthy, P. Giusto, C. Bastianini et al., Engineering the emission of broadband 2D perovskites by polymer distributed bragg reflectors. ACS Photonics 5, 867–874 (2018). https://doi.org/10.1021/acsphotonics.7b01077
C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi et al., Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6, 7026 (2015). https://doi.org/10.1038/ncomms8026
Q. Dong, L. Lei, J. Mendes, F. So, Operational stability of perovskite light emitting diodes. J. Phys: Mater. 3, 012002 (2020). https://doi.org/10.1088/2515-7639/ab60c4
H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens et al., Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014). https://doi.org/10.1021/jz500113x
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh et al., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497
O.A. Jaramillo-Quintero, R.S. Sanchez, M. Rincon, I. Mora-Sero, Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer. J. Phys. Chem. Lett. 6, 1883–1890 (2015). https://doi.org/10.1021/acs.jpclett.5b00732
B. Jeong, H. Han, Y.J. Choi, S.H. Cho, E.H. Kim et al., All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 28, 1706401 (2018). https://doi.org/10.1002/adfm.201706401
Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite leds. Nature 591, 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
J. Xing, Y. Zhao, M. Askerka, L.N. Quan, X. Gong et al., Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018). https://doi.org/10.1038/s41467-018-05909-8
P. Vashishtha, J.E. Halpert, Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29, 5965–5973 (2017). https://doi.org/10.1021/acs.chemmater.7b01609
Z. Yuan, Y. Miao, Z. Hu, W. Xu, C. Kuang et al., Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019). https://doi.org/10.1038/s41467-019-10612-3
X. Peng, X. Yang, D. Liu, T. Zhang, Y. Yang et al., Targeted distribution of passivator for polycrystalline perovskite light-emitting diodes with high efficiency. ACS Energy Lett. 6, 4187–4194 (2021). https://doi.org/10.1021/acsenergylett.1c01753
X. Zheng, S. Yuan, J. Liu, J. Yin, F. Yuan et al., Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett. 5, 793–798 (2020). https://doi.org/10.1021/acsenergylett.0c00057
S.J. Yoon, M. Kuno, P.V. Kamat, Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites. ACS Energy Lett. 2, 1507–1514 (2017). https://doi.org/10.1021/acsenergylett.7b00357
C. Bi, Z. Yao, X. Sun, X. Wei, J. Wang et al., Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv. Mater. 33, 2006722 (2021). https://doi.org/10.1002/adma.202006722
Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue leds based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
A. Liu, C. Bi, J. Tian, All solution-processed high performance pure-blue perovskite quantum-dot light-emitting diodes. Adv. Funct. Mater. 32, 2207069 (2022). https://doi.org/10.1002/adfm.202207069
J. Luo, X. Wang, S. Li, J. Liu, Y. Guo et al., Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018). https://doi.org/10.1038/s41586-018-0691-0
Y. Zhang, Z. Zhang, W. Yu, Y. He, Z. Chen et al., Lead-free double perovskite Cs2AgIn0.9Bi0.1Cl6 quantum dots for white light-emitting diodes. Adv. Sci. 9, 2102895 (2022). https://doi.org/10.1002/advs.202102895
H. Chen, L. Zhu, C. Xue, P. Liu, X. Du et al., Efficient and bright warm-white electroluminescence from lead-free metal halides. Nat. Commun. 12, 1421 (2021). https://doi.org/10.1038/s41467-021-21638-x
W. Liu, Q. Lin, H. Li, K. Wu, I. Robel et al., Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138, 14954–14961 (2016). https://doi.org/10.1021/jacs.6b08085
G. Huang, C. Wang, S. Xu, S. Zong, J. Lu et al., Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange. Adv. Mater. 29, 1700095 (2017). https://doi.org/10.1002/adma.201700095
R. Sun, P. Lu, D. Zhou, W. Xu, N. Ding et al., Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes. ACS Energy Lett. 5, 2131–2139 (2020). https://doi.org/10.1021/acsenergylett.0c00931
D. Liu, X. Liu, Y. Gan, Z. Liu, G. Sun et al., Perovskite/organic hybrid white electroluminescent devices with stable spectrum and extended operating lifetime. ACS Energy Lett. 7, 523–532 (2022). https://doi.org/10.1021/acsenergylett.1c02631
Z. Chen, Z. Li, C. Zhang, X.-F. Jiang, D. Chen et al., Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv. Mater. 30, 1801370 (2018). https://doi.org/10.1002/adma.201801370
G. Xing, B. Wu, X. Wu, M. Li, B. Du et al., Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017). https://doi.org/10.1038/ncomms14558
J.M. Pietryga, Y.-S. Park, J. Lim, A.F. Fidler, W.K. Bae et al., Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016). https://doi.org/10.1021/acs.chemrev.6b00169
L. Zhao, K.M. Lee, K. Roh, S.U.Z. Khan, B.P. Rand, Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019). https://doi.org/10.1002/adma.201805836
G. Zou, Z. Li, Z. Chen, L. Chu, H.-L. Yip et al., Color-stable deep-blue perovskite light-emitting diodes based on organotrichlorosilane post-treatment. Adv. Funct. Mater. 31, 2103219 (2021). https://doi.org/10.1002/adfm.202103219
A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016). https://doi.org/10.1038/nmat4572
D. Yang, G. Zhang, R. Lai, Y. Cheng, Y. Lian et al., Germanium-lead perovskite light-emitting diodes. Nat. Commun. 12, 4295 (2021). https://doi.org/10.1038/s41467-021-24616-5
H.-C. Wang, W. Wang, A.-C. Tang, H.-Y. Tsai, Z. Bao et al., High-performance CsPb1-xSnxBr3 perovskite quantum dots for light-emitting diodes. Angew. Chem. Int. Ed. 56, 13650–13654 (2017). https://doi.org/10.1002/anie.201706860
W.-L. Hong, Y.-C. Huang, C.-Y. Chang, Z.-C. Zhang, H.-R. Tsai et al., Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes. Adv. Mater. 28, 8029–8036 (2016). https://doi.org/10.1002/adma.201601024
L. Lanzetta, J.M. Marin-Beloqui, I. Sanchez-Molina, D. Ding, S.A. Haque, Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Lett. 2, 1662–1668 (2017). https://doi.org/10.1021/acsenergylett.7b00414
H. Jia, H. Shi, R. Yu, H. Ma, Z. Wang et al., Biuret induced tin-anchoring and crystallization-regulating for efficient lead-free tin halide perovskite light-emitting diodes. Small 18, 2200036 (2022). https://doi.org/10.1002/smll.202200036
J. Lu, X. Guan, Y. Li, K. Lin, W. Feng et al., Dendritic cssni3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv. Mater. 33, 2104414 (2021). https://doi.org/10.1002/adma.202104414
K. Wang, L. Jin, Y. Gao, A. Liang, B.P. Finkenauer et al., Lead-free organic–perovskite hybrid quantum wells for highly stable light-emitting diodes. ACS Nano 15, 6316–6325 (2021). https://doi.org/10.1021/acsnano.1c00872
C.-Y. Wang, P. Liang, R.-J. Xie, Y. Yao, P. Liu et al., Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 32, 7814–7821 (2020). https://doi.org/10.1021/acs.chemmater.0c02463
Z. Ma, Z. Shi, D. Yang, F. Zhang, S. Li et al., Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 5, 385–394 (2020). https://doi.org/10.1021/acsenergylett.9b02096
G. Seo, H. Jung, T.D. Creason, V. Yeddu, M. Bamidele et al., Lead-free halide light-emitting diodes with external quantum efficiency exceeding 7% using host–dopant strategy. ACS Energy Lett. 6, 2584–2593 (2021). https://doi.org/10.1021/acsenergylett.1c01117
L. Wang, Z. Shi, Z. Ma, D. Yang, F. Zhang et al., Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett. 20, 3568–3576 (2020). https://doi.org/10.1021/acs.nanolett.0c00513
G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque et al., CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781–3786 (2015). https://doi.org/10.1021/acs.jpclett.5b01666
V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady et al., Fast and sensitive solution-processed visible-blind perovskite UV photodetectors. Adv. Mater. 28, 7264–7268 (2016). https://doi.org/10.1002/adma.201601196
T. Zou, X. Liu, R. Qiu, Y. Wang, S. Huang et al., Enhanced UV-C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down-conversion layer. Adv. Opt. Mater. 7, 1801812 (2019). https://doi.org/10.1002/adom.201801812
J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao et al., High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv. 7, 36722–36727 (2017). https://doi.org/10.1039/C7RA06597C
E. Zheng, B. Yuh, G.A. Tosado, Q. Yu, Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films. J. Mater. Chem. C 5, 3796–3806 (2017). https://doi.org/10.1039/C7TC00639J
P. Gui, H. Zhou, F. Yao, Z. Song, B. Li et al., Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small 15, 1902618 (2019). https://doi.org/10.1002/smll.201902618
W. Zhu, M. Deng, D. Chen, Z. Zhang, W. Chai et al., Dual-phase CsPbCl3–Cs4PbCl6 perovskite films for self-powered, visible-blind UV photodetectors with fast response. ACS Appl. Mater. Interfaces 12, 32961–32969 (2020). https://doi.org/10.1021/acsami.0c09910
M. Ahmadi, T. Wu, B. Hu, A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29, 1605242 (2017). https://doi.org/10.1002/adma.201605242
H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204–5236 (2017). https://doi.org/10.1039/C6CS00896H
H.L. Zhu, J.Q. Cheng, D. Zhang, C.J. Liang, C.J. Reckmeier et al., Room-temperature solution-processed NiOx:PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors. ACS Nano 10, 6808–6815 (2016). https://doi.org/10.1021/acsnano.6b02425
L. Mei, K. Zhang, N. Cui, W. Yu, Y. Li et al., Ultraviolet-visible-short-wavelength infrared broadband and fast-response photodetectors enabled by individual monocrystalline perovskite nanoplate. Small (2023). https://doi.org/10.1002/smll.202301386
M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng et al., Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015). https://doi.org/10.1038/ncomms9724
Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015). https://doi.org/10.1038/nphoton.2015.156
Q. Lin, A. Armin, P.L. Burn, P. Meredith, Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015). https://doi.org/10.1038/nphoton.2015.175
W. Wu, X. Han, J. Li, X. Wang, Y. Zhang et al., Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 33, 2006006 (2021). https://doi.org/10.1002/adma.202006006
L. Mei, R. Huang, C. Shen, J. Hu, P. Wang et al., Hybrid halide perovskite-based near-infrared photodetectors and imaging arrays. Adv. Opt. Mater. 10, 2102656 (2022). https://doi.org/10.1002/adom.202102656
Q. Lin, A. Armin, P.L. Burn, P. Meredith, Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals. Laser Photonics Rev. 10, 1047–1053 (2016). https://doi.org/10.1002/lpor.201600215
Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren et al., 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 4, 1829–1837 (2016). https://doi.org/10.1002/adom.201600327
S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie et al., A flexible UV–Vis–NIR photodetector based on a perovskite/conjugated-polymer composite. Adv. Mater. 28, 5969–5974 (2016). https://doi.org/10.1002/adma.201600468
W. Hu, H. Cong, W. Huang, Y. Huang, L. Chen et al., Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl. 8, 106 (2019). https://doi.org/10.1038/s41377-019-0218-y
Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W.J. Yoo et al., High-performance perovskite–graphene hybrid photodetector. Adv. Mater. 27, 41–46 (2015). https://doi.org/10.1002/adma.201402271
Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang et al., NiOx high-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 8, 1703432 (2018). https://doi.org/10.1002/aenm.201703432
D.-H. Kang, S.R. Pae, J. Shim, G. Yoo, J. Jeon et al., An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 28, 7799–7806 (2016). https://doi.org/10.1002/adma.201600992
W. Wang, D. Zhao, F. Zhang, L. Li, M. Du et al., Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region. Adv. Funct. Mater. 27, 1703953 (2017). https://doi.org/10.1002/adfm.201703953
H.L. Zhu, Z. Liang, Z. Huo, W.K. Ng, J. Mao et al., Low-bandgap methylammonium-rubidium cation sn-rich perovskites for efficient ultraviolet–visible–near infrared photodetectors. Adv. Funct. Mater. 28, 1706068 (2018). https://doi.org/10.1002/adfm.201706068
H.L. Zhu, H. Lin, Z. Song, Z. Wang, F. Ye et al., Achieving high-quality Sn–Pb perovskite films on complementary metal-oxide-semiconductor-compatible metal/silicon substrates for efficient imaging array. ACS Nano 13, 11800–11808 (2019). https://doi.org/10.1021/acsnano.9b05774
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu et al., Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Sol. RRL 2, 1800136 (2018). https://doi.org/10.1002/solr.201800136
Z. Zhang, G. Yang, Recent advancements in using perovskite single crystals for gamma-ray detection. J. Mater. Sci. Mater. Electron. 32, 12758–12770 (2021). https://doi.org/10.1007/s10854-020-03519-z
L.C. Johnson, D.L. Campbell, E.L. Hull, T.E. Peterson, Characterization of a high-purity germanium detector for small-animal spect. Phys. Med. Biology 56, 5877 (2011). https://doi.org/10.1088/0031-9155/56/18/007
V. Zaletin, V. Varvaritsa, Wide-bandgap compound semiconductors for X-or gamma-ray detectors. Russ. Microlectron. 40, 543–552 (2011). https://doi.org/10.1134/S1063739711080208
U.N. Roy, G. Camarda, Y. Cui, R. Gul, A. Hossain et al., Role of selenium addition to cdznte matrix for room-temperature radiation detector applications. Sci. Rep. 9, 1620 (2019). https://doi.org/10.1038/s41598-018-38188-w
H. Wei, J. Huang, Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019). https://doi.org/10.1038/s41467-019-08981-w
O. Nazarenko, S. Yakunin, V. Morad, I. Cherniukh, M.V. Kovalenko, Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9, e373 (2017). https://doi.org/10.1038/am.2017.45
H. Wei, D. DeSantis, W. Wei, Y. Deng, D. Guo et al., Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017). https://doi.org/10.1038/nmat4927
Y. He, L. Matei, H.J. Jung, K.M. McCall, M. Chen et al., High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018). https://doi.org/10.1038/s41467-018-04073-3
M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). https://doi.org/10.1038/ncomms8586
Y. Liu, Y. Zhang, X. Zhu, J. Feng, I. Spanopoulos et al., Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33, 2006010 (2021). https://doi.org/10.1002/adma.202006010
C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z. Liu, M. Sebastian et al., Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth Design 13, 2722–2727 (2013). https://doi.org/10.1021/cg400645t
S. Yakunin, D.N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh et al., Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 10, 585–589 (2016). https://doi.org/10.1038/nphoton.2016.139
Y. He, W. Ke, G.C. Alexander, K.M. McCall, D.G. Chica et al., Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photonics 5, 4132–4138 (2018). https://doi.org/10.1021/acsphotonics.8b00873
Y. He, M. Petryk, Z. Liu, D.G. Chica, I. Hadar et al., CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 15, 36–42 (2021). https://doi.org/10.1038/s41566-020-00727-1
S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9, 444 (2015). https://doi.org/10.1038/nphoton.2015.82
W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11, 726 (2017). https://doi.org/10.1038/s41566-017-0012-4
Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87 (2017). https://doi.org/10.1038/nature24032
H. Cho, H. Kim, Y. Choi, S. Lee, H. Ryu et al., The effects of photon flux on energy spectra and imaging characteristics in a photon-counting X-ray detector. Phys. Med. Biology 58, 4865 (2013). https://doi.org/10.1088/0031-9155/58/14/4865
K. Taguchi, E.C. Frey, X. Wang, J.S. Iwanczyk, W.C. Barber, An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting X-ray detectors. Med. Phys. 37, 3957–3969 (2010). https://doi.org/10.1118/1.3429056
L. Pan, Y. He, V.V. Klepov, M.C. De Siena, M.G. Kanatzidis, Perovskite CsPbBr3 single crystal detector for high flux X-ray photon counting. IEEE Trans. Med. Imaging 41, 3053–3061 (2022). https://doi.org/10.1109/TMI.2022.3176801
E.M. Tennyson, T.A. Doherty, S.D. Stranks, Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019). https://doi.org/10.1038/s41578-019-0125-0
H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian et al., Femtosecond X-ray protein nanocrystallography. Nature 470, 73–73 (2011). https://doi.org/10.1038/nature09750
M. Spahn, X-ray detectors in medical imaging. Nucl. Inst. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 731, 57–63 (2013). https://doi.org/10.1016/j.nima.2013.05.174
X. Duan, J. Cheng, L. Zhang, Y. Xing, Z. Chen et al., X-ray cargo container inspection system with few-view projection imaging. Nucl. Inst. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 598, 439–444 (2009). https://doi.org/10.1016/j.nima.2008.08.151
H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4, 144–163 (2021). https://doi.org/10.1016/j.matt.2020.11.015
Y. Su, W. Ma, Y. Yang, Perovskite semiconductors for direct X-ray detection and imaging. J. Semicond. (2020). https://doi.org/10.1088/1674-4926/41/5/051204
W. Wei, Y. Zhang, Q. Xu, H. Wei, Y. Fang et al., Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 11, 315–321 (2017). https://doi.org/10.1038/nphoton.2017.43
J. Peng, C.Q. Xia, Y. Xu, R. Li, L. Cui et al., Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 12, 1531 (2021). https://doi.org/10.1038/s41467-021-21805-0
R. Zhuang, X. Wang, W. Ma, Y. Wu, X. Chen et al., Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 13, 602 (2019). https://doi.org/10.1038/s41566-019-0466-7
X. Zheng, W. Zhao, P. Wang, H. Tan, M.I. Saidaminov et al., Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J. Energy Chem. 49, 299–306 (2020). https://doi.org/10.1016/j.jechem.2020.02.049
Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang et al., Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun. 11, 2304 (2020). https://doi.org/10.1038/s41467-020-16034-w
M. Xia, Z. Song, H. Wu, X. Du, X. He et al., Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32, 2110729 (2022). https://doi.org/10.1002/adfm.202110729
P. Jin, Y. Tang, X. Xu, P. Ran, Y. Wang et al., Solution-processed perovskite/metal-oxide hybrid X-ray detector and array with decoupled electronic and ionic transport pathways. Small Methods (2022). https://doi.org/10.1002/smtd.202200500
Y. Li, E. Adeagbo, C. Koughia, B. Simonson, R.D. Pettipas et al., Direct conversion X-ray detectors with 70 pA cm-2 dark currents coated from an alcohol-based perovskite ink. J. Mater. Chem. C 10, 1228–1235 (2022). https://doi.org/10.1039/d1tc05338h
Y. Zhou, L. Zhao, Z. Ni, S. Xu, J. Zhao et al., Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abg6716
G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014). https://doi.org/10.1038/nmat3911
M. Li, Q. Shang, C. Li, S. Li, Y. Liang et al., High optical gain of solution-processed mixed-cation CsPbBr3 thin films towards enhanced amplified spontaneous emission. Adv. Funct. Mater. 31, 2102210 (2021). https://doi.org/10.1002/adfm.202102210
G. Xing, M.H. Kumar, W.K. Chong, X. Liu, Y. Cai et al., Solution-processed tin-based perovskite for near-infrared lasing. Adv. Mater. 28, 8191–8196 (2016). https://doi.org/10.1002/adma.201601418
R. Dhanker, A.N. Brigeman, A.V. Larsen, R.J. Stewart, J.B. Asbury et al., Random lasing in organo-lead halide perovskite microcrystal networks. Appl. Phys. Lett. 105, 151112 (2014). https://doi.org/10.1063/1.4898703
F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.D. Jarausch et al., High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014). https://doi.org/10.1021/jz5005285
H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015). https://doi.org/10.1038/nmat4271
Q. Zhang, S.T. Ha, X. Liu, T.C. Sum, Q. Xiong, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014). https://doi.org/10.1021/nl503057g
K. Wang, G. Xing, Q. Song, S. Xiao, Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Adv. Mater. 33, e2000306 (2021). https://doi.org/10.1002/adma.202000306
B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang et al., Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano 11, 10681–10688 (2017). https://doi.org/10.1021/acsnano.7b04496
B.R. Sutherland, S. Hoogland, M.M. Adachi, C.T. Wong, E.H. Sargent, Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014). https://doi.org/10.1021/nn504856g
N. Zhang, W. Sun, S.P. Rodrigues, K. Wang, Z. Gu et al., Highly reproducible organometallic halide perovskite microdevices based on top-down lithography. Adv. Mater. 29, 1606205 (2017). https://doi.org/10.1002/adma.201606205
H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao et al., 2D ruddlesden-popper perovskites microring laser array. Adv. Mater. 30, e1706186 (2018). https://doi.org/10.1002/adma.201706186
H. Dong, C.N. Saggau, M. Zhu, J. Liang, S. Duan et al., Perovskite origami for programmable microtube lasing. Adv. Funct. Mater. 31, 2109080 (2021). https://doi.org/10.1002/adfm.202109080
Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng et al., All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101–7108 (2015). https://doi.org/10.1002/adma.201503573
K. Wang, Z. Gu, S. Liu, J. Li, S. Xiao et al., Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation. Opt. Lett. 41, 555–558 (2016). https://doi.org/10.1364/OL.41.000555
M. Saliba, S.M. Wood, J.B. Patel, P.K. Nayak, J. Huang et al., Structured organic-inorganic perovskite toward a distributed feedback laser. Adv. Mater. 28, 923–929 (2016). https://doi.org/10.1002/adma.201502608
S. Chen, K. Roh, J. Lee, W.K. Chong, Y. Lu et al., A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 10, 3959–3967 (2016). https://doi.org/10.1021/acsnano.5b08153
Y. Jia, R.A. Kerner, A.J. Grede, A.N. Brigeman, B.P. Rand et al., Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 16, 4624–4629 (2016). https://doi.org/10.1021/acs.nanolett.6b01946
Y. Jia, R.A. Kerner, A.J. Grede, B.P. Rand, N.C. Giebink, Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics 11, 784–788 (2017). https://doi.org/10.1038/s41566-017-0047-6
T.J.S. Evans, A. Schlaus, Y. Fu, X. Zhong, T.L. Atallah et al., Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2017). https://doi.org/10.1002/adom.201700982
P. Brenner, O. Bar-On, M. Jakoby, I. Allegro, B.S. Richards et al., Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nat. Commun. 10, 988 (2019). https://doi.org/10.1038/s41467-019-08929-0
Z. Gu, K. Wang, W. Sun, J. Li, S. Liu et al., Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4, 472–479 (2016). https://doi.org/10.1002/adom.201500597
D.C. Yang, C. Xie, X.H. Xu, P. You, F. Yan et al., Lasing characteristics of CH3NH3PbCl3 single-crystal microcavities under multiphoton excitation. Adv. Opt. Mater. 6, 1700992 (2018). https://doi.org/10.1002/adom.201700992
Y. Zhou, Z. Hu, Y. Li, J. Xu, X. Tang et al., CsPbBr 3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser. Appl. Phys. Lett. 108, 261108 (2016). https://doi.org/10.1063/1.4955037
J. Li, H. Dong, B. Xu, S. Zhang, Z. Cai et al., CsPbBr3 perovskite quantum dots: saturable absorption properties and passively q-switched visible lasers. Photon Res. 5, 457 (2017). https://doi.org/10.1364/prj.5.000457
B. Tang, L. Sun, W. Zheng, H. Dong, B. Zhao et al., Ultrahigh quality upconverted single-mode lasing in cesium lead bromide spherical microcavity. Adv. Opt. Mater. 6, 1800391 (2018). https://doi.org/10.1002/adom.201800391
K. Iga, Vertical-cavity surface-emitting laser: Its conception and evolution. Jpn. J. Appl. Phys. 47, 1–10 (2008). https://doi.org/10.1143/jjap.47.1
K. Wang, W. Sun, J. Li, Z. Gu, S. Xiao et al., Unidirectional lasing emissions from CH3NH3PbBr3 perovskite microdisks. ACS Photonics 3, 1125–1130 (2016). https://doi.org/10.1021/acsphotonics.6b00209
P.J. Cegielski, S. Neutzner, C. Porschatis, H. Lerch, J. Bolten et al., Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Opt. Express. 25, 13199–13206 (2017). https://doi.org/10.1364/OE.25.013199
Z.Y. Gu, W.Z. Sun, K.Y. Wang, N. Zhang, C. Zhang et al., Hybridizing CH3NH3PbBr3 microwires and tapered fibers for efficient light collection. J. Mater. Chem. A 4, 8015–8019 (2016). https://doi.org/10.1039/c6ta01620k
Y. Wang, X. Cheng, K. Yuan, Y. Wan, P. Li et al., Direct synthesis of high-quality perovskite nanocrystals on a flexible substrate and deterministic transfer. Sci. Bull. 63, 1576–1582 (2018). https://doi.org/10.1016/j.scib.2018.11.014
N. Zhang, K. Wang, H. Wei, Z. Gu, W. Sun et al., Postsynthetic and selective control of lead halide perovskite microlasers. J. Phys. Chem. Lett. 7, 3886–3891 (2016). https://doi.org/10.1021/acs.jpclett.6b01751
Z. Yang, J. Lu, M. ZhuGe, Y. Cheng, J. Hu et al., Controllable growth of aligned monocrystalline CsPbBr3 microwire a