Tailoring the Meso-Structure of Gold Nanoparticles in Keratin-Based Activated Carbon Toward High-Performance Flexible Sensor
Corresponding Author: Xiang Yang Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 117
Abstract
Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metal-doped porous carbon as electrode material. The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer. The conducting electrode material is fabricated at 500 °C under customized parameters, which mimics A–B type (two different repeating units) polymeric material and displays excellent deprotonation performance (pH sensitivity). The obtained pH sensor exhibits high pH sensitivity of 57 mV/pH unit and insignificant relative standard deviation of 0.088%. Conversely, the composite carbon material with sp2 structure prepared at 700 °C is doped with nitrogen and gold nanoparticles, which exhibits good conductivity and electrocatalytic activity for uric acid oxidation. The uric acid sensor has linear response over a range of 1–150 µM and a limit of detection 0.1 µM. These results will provide new avenues where biological material will be the best start, which can be useful to target contradictory applications through molecular engineering at mesoscale.
Highlights:
1 Materials with contradictory performance were prepared using wool keratin (WK).
2 WK used for in situ preparation of AuNPs and N-doped carbon precursor as well.
3 Two- and three-electrode flexible strip sensors designed for pH and UA detection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014). https://doi.org/10.1038/nature13118
- S.Y. Oh, S.Y. Hong, Y.R. Jeong, J. Yun, H. Park et al., Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces. 10, 13729–13740 (2018). https://doi.org/10.1021/acsami.8b03342
- K.L. Rock, H. Kataoka, J.J. Lai, Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol. 9, 13–23 (2013). https://doi.org/10.1038/nrrheum.2012.143
- M.T. Nurmohamed, M. Heslinga, G.D. Kitas, Cardiovascular comorbidity in rheumatic diseases. Nat. Rev. Rheumatol. 11, 693–704 (2015). https://doi.org/10.1038/nrrheum.2015.112
- Y. Xing, C. Shi, J. Zhao, W. Qiu, N. Lin et al., Mesoscopic-functionalization of silk fibroin with gold nanoclusters mediated by keratin and bioinspired silk synapse. Small 13, 1702390 (2017). https://doi.org/10.1002/smll.201702390
- Q. Wang, M. Jian, C. Wang, Y. Zhang, Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27, 1605657 (2017). https://doi.org/10.1002/adfm.201605657
- S. Zhu, W. Zeng, Z. Meng, W. Luo, L. Ma et al., Using wool keratin as a basic resist material to fabricate precise protein patterns. Adv. Mater. 31, 1900870 (2019). https://doi.org/10.1002/adma.201900870
- J.P. Xie, Y.G. Zheng, J.Y. Ying, Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888–889 (2009). https://doi.org/10.1021/ja806804u
- A.B. Patil, Y. Huang, L. Ma, R. Wu, Z. Meng et al., An efficient disposable and flexible electrochemical sensor based on a novel and stable metal carbon composite derived from cocoon silk. Biosens. Bioelectron. 142, 111595 (2019). https://doi.org/10.1016/j.bios.2019.111595
- D. Angin, Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel 115, 804–811 (2014). https://doi.org/10.1016/j.fuel.2013.04.060
- Y. Zhu, W. Sun, J. Luo, W. Chen, T. Cao et al., A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 9, 3861 (2018). https://doi.org/10.1038/s41467-018-06296-w
- Z.H. Hu, M.P. Srinivasan, Y.M. Ni, Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon 39, 877–886 (2001). https://doi.org/10.1016/S0008-6223(00)00198-6
- R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011). https://doi.org/10.1080/00018732.2011.582251
- Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25, 1993–1998 (2013). https://doi.org/10.1002/adma.201204692
- D. Takagi, Y. Kobayashi, H. Hlbirio, S. Suzuki, Y. Homma, Mechanism of gold-catalyzed carbon material growth. Nano Lett. 8, 832–835 (2008). https://doi.org/10.1021/nl0728930
- H.Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa et al., A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca(2+) and pH. ACS Nano 10, 7216–7224 (2016). https://doi.org/10.1021/acsnano.6b04005
- N.M. Maalouf, M.A. Cameron, O.W. Moe, K. Sakhaee, Metabolic basis for low urine pH in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 5, 1277–1281 (2010). https://doi.org/10.2215/CJN.08331109
- J.L. Matousek, K.L. Campbell, A comparative review of cutaneous pH. Vet. Dermatol. 13, 293–300 (2002). https://doi.org/10.1046/j.1365-3164.2002.00312.x
- M.H. Schmid-Wendtner, H.C. Korting, The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 19, 296–302 (2006). https://doi.org/10.1159/000094670
- H.J. Park, J.H. Yoon, K.G. Lee, B.G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Convergence 6, 9 (2019). https://doi.org/10.1186/s40580-019-0179-0
- P. Salvo, N. Calisi, B. Melai, B. Cortigiani, M. Mannini et al., Temperature and pH sensors based on graphenic materials. Biosens. Bioelectron. 91, 870–877 (2017). https://doi.org/10.1016/j.bios.2017.01.062
- D.-M. Kim, S.J. Cho, C.-H. Cho, K.B. Kim, M.-Y. Kim, Y.-B. Shim, Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide. Biosens. Bioelectron. 79, 165–172 (2016). https://doi.org/10.1016/j.bios.2015.12.002
- A.J. Bandodkar, V.W.S. Hung, W.Z. Jia, G. Valdes-Ramirez, J.R. Windmiller et al., Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138, 123–128 (2013). https://doi.org/10.1039/C2AN36422K
- S.H. Huang, Y.C. Shih, C.Y. Wu, C.J. Yuan, Y.S. Yang, Y.K. Li, T.K. Wu, Detection of serum uric acid using the optical polymeric enzyme biochip system. Biosens. Bioelectron. 19, 1627–1633 (2004). https://doi.org/10.1016/j.bios.2003.12.026
References
E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014). https://doi.org/10.1038/nature13118
S.Y. Oh, S.Y. Hong, Y.R. Jeong, J. Yun, H. Park et al., Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces. 10, 13729–13740 (2018). https://doi.org/10.1021/acsami.8b03342
K.L. Rock, H. Kataoka, J.J. Lai, Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol. 9, 13–23 (2013). https://doi.org/10.1038/nrrheum.2012.143
M.T. Nurmohamed, M. Heslinga, G.D. Kitas, Cardiovascular comorbidity in rheumatic diseases. Nat. Rev. Rheumatol. 11, 693–704 (2015). https://doi.org/10.1038/nrrheum.2015.112
Y. Xing, C. Shi, J. Zhao, W. Qiu, N. Lin et al., Mesoscopic-functionalization of silk fibroin with gold nanoclusters mediated by keratin and bioinspired silk synapse. Small 13, 1702390 (2017). https://doi.org/10.1002/smll.201702390
Q. Wang, M. Jian, C. Wang, Y. Zhang, Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27, 1605657 (2017). https://doi.org/10.1002/adfm.201605657
S. Zhu, W. Zeng, Z. Meng, W. Luo, L. Ma et al., Using wool keratin as a basic resist material to fabricate precise protein patterns. Adv. Mater. 31, 1900870 (2019). https://doi.org/10.1002/adma.201900870
J.P. Xie, Y.G. Zheng, J.Y. Ying, Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888–889 (2009). https://doi.org/10.1021/ja806804u
A.B. Patil, Y. Huang, L. Ma, R. Wu, Z. Meng et al., An efficient disposable and flexible electrochemical sensor based on a novel and stable metal carbon composite derived from cocoon silk. Biosens. Bioelectron. 142, 111595 (2019). https://doi.org/10.1016/j.bios.2019.111595
D. Angin, Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel 115, 804–811 (2014). https://doi.org/10.1016/j.fuel.2013.04.060
Y. Zhu, W. Sun, J. Luo, W. Chen, T. Cao et al., A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 9, 3861 (2018). https://doi.org/10.1038/s41467-018-06296-w
Z.H. Hu, M.P. Srinivasan, Y.M. Ni, Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon 39, 877–886 (2001). https://doi.org/10.1016/S0008-6223(00)00198-6
R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011). https://doi.org/10.1080/00018732.2011.582251
Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25, 1993–1998 (2013). https://doi.org/10.1002/adma.201204692
D. Takagi, Y. Kobayashi, H. Hlbirio, S. Suzuki, Y. Homma, Mechanism of gold-catalyzed carbon material growth. Nano Lett. 8, 832–835 (2008). https://doi.org/10.1021/nl0728930
H.Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa et al., A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca(2+) and pH. ACS Nano 10, 7216–7224 (2016). https://doi.org/10.1021/acsnano.6b04005
N.M. Maalouf, M.A. Cameron, O.W. Moe, K. Sakhaee, Metabolic basis for low urine pH in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 5, 1277–1281 (2010). https://doi.org/10.2215/CJN.08331109
J.L. Matousek, K.L. Campbell, A comparative review of cutaneous pH. Vet. Dermatol. 13, 293–300 (2002). https://doi.org/10.1046/j.1365-3164.2002.00312.x
M.H. Schmid-Wendtner, H.C. Korting, The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 19, 296–302 (2006). https://doi.org/10.1159/000094670
H.J. Park, J.H. Yoon, K.G. Lee, B.G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Convergence 6, 9 (2019). https://doi.org/10.1186/s40580-019-0179-0
P. Salvo, N. Calisi, B. Melai, B. Cortigiani, M. Mannini et al., Temperature and pH sensors based on graphenic materials. Biosens. Bioelectron. 91, 870–877 (2017). https://doi.org/10.1016/j.bios.2017.01.062
D.-M. Kim, S.J. Cho, C.-H. Cho, K.B. Kim, M.-Y. Kim, Y.-B. Shim, Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide. Biosens. Bioelectron. 79, 165–172 (2016). https://doi.org/10.1016/j.bios.2015.12.002
A.J. Bandodkar, V.W.S. Hung, W.Z. Jia, G. Valdes-Ramirez, J.R. Windmiller et al., Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138, 123–128 (2013). https://doi.org/10.1039/C2AN36422K
S.H. Huang, Y.C. Shih, C.Y. Wu, C.J. Yuan, Y.S. Yang, Y.K. Li, T.K. Wu, Detection of serum uric acid using the optical polymeric enzyme biochip system. Biosens. Bioelectron. 19, 1627–1633 (2004). https://doi.org/10.1016/j.bios.2003.12.026